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Abstract

For obtaining a zero defect level, a high fault coverage
with respect to the stuck-at fault model is often not suffi-
cient as there are many defects that show a more complex
behavior. In this paper, a method is presented for comput-
ing the occurrence probabilities of certain defects and the
realistic fault coverage for test sets. The method is highly
efficient as a pre-processing step is used for partitioning
the layout and extracting the defects ranked in the order of
their occurrence probabilities.

The method was applied to a public domain library
where defects causing a complex faulty behavior are possi-
ble. The occurrence probability of these faults was com-
puted, and the defect coverage for different test sets was
determined.

1 Introduction

Safety-critical applications require extremely high qual-
ity standards which have to be guaranteed by refined test-
ing techniques. Hence, very low defect levels are specified
(less than 100 ppm) where defect level is defined as the
percentage of defective parts that are misleadingly consid-
ered as good by the production test. High defect levels may
be caused by a fault model which does not reflect the actu-
al defect mechanisms [2,5,7,8,14,15,19,27]. In this case,
even a high fault coverage does not ensure a high product
quality, because the most likely physical defects might es-
cape. The terms defect coverage or realistic fault coverage
have been introduced for describing the quality of a test set
T [25,26]. A realistic fault f changes the logic or timing
behaviour of the circuit and is related to a set of defects Df
such that the occurrence of a defect d Î Df introduces the

fault f into the circuit. The probability P(f) of fault f is
identical with the occurrence probability P(Df). Let F be

the set of all realistic faults, and F(T) Ì F are the faults
detected by test set T. The defect coverage of T is roughly

estimated by:   DC(T)  :=  ( å
fÎF(T)

ÊP(f) ) / (å
fÎF

ÊP(f) ).

1.1 Objectives of the work
In recent years a variety of approaches were published

for determining the set of realistic faults based on the cir-
cuit layout. The main obstacle to introducing these proce-
dures into practice is the huge number of possible faults
and defects causing a very high computing complexity.

In this paper a procedure is presented that extracts the
realistic faults in the order of their occurrence probability.
It is shown that the faults F«Ì F with a high occurrence
probability form a rather small subset of F, and their de-
tection leads to sufficient defect coverage. One reason for
that is the small number of defect mechanisms which
dominate a fabrication process [12,13,14]. Moreover, ex-
tracting only the faults F«Ì F leads to drastic saving in
computing time for defect analysis such that small and
medium sized layouts can be completely analyzed.

The main new idea for increasing the efficiency is to
partition the layout into so called elementary objects.
Computing defect probabilities is first restricted to these
objects, and the results are refined and combined in a later
step. The presented procedure has been applied to a public
domain library [18], and the defect coverage obtained by
test sets for 100% stuck-at fault coverage is discussed. The
probability of such defects is computed whose delectability
depends on test speed, driving strength at the inputs or the
order of the applied test patterns.

1.2 State of the art
One of the first reports on the extraction of realistic

faults is based on a stochastic insertion of defects into a
layout description and analyzing the induced misbehavior
[21]. This approach is known as inductive fault analysis
[6,7,28]. As a large number of the inserted defects do not
lead to a faulty behavior the efficiency can be increased if
the analysis is restricted to so called critical areas [28]
which have been introduced for yield estimation [17,23].

Later work tried to enhance both the precision and the



efficiency of the analysis. In [9,26] the computations of
the critical area was substituted by approximations such
that more complex circuits could be handled. In [13] not
only bridgings but also other defects as open lines were
considered.

As the exact computation of critical areas is very ex-
pensive, several authors proposed a pre-processing of the
circuit layout [4,10]. Gyves and Di used the concept of
susceptible sites depending on the defect type. These are
sites where a certain type of defect can cause a malfunc-
tion, and which restrict the area to be analyzed.

1.3 Organisation of the paper
In the next section an overview of the defect analysis

tool EDEN (Efficient Defect Extraction) is given, and it
is shown how to pre-process the layout description for fur-
ther analysis. In section 3 the algorithm is presented for
extracting the defects in the decreasing order of their occur-
rence probabilities. In the following section these physical
defects are mapped to electrical faults to be simulated.
Simulation results are presented in section 5, and in sec-
tion 6 two defects of an example layout are investigated.
They have a rather significant occurrence probability, but
show a complex malfunction, and they are hard to detect.

2 EDEN (Efficient Defect Extraction)

2.1 Defects
Defects are modifications of the circuit layout which

can be distinguished in the following way:

1) Missing material in one object or in multiple objects
of a single layer.

2) Additional material resulting in a connection of some
objects of a single layer.

3) Additional material resulting in a overlapping of ob-
jects of different layers.

These types include the most relevant defects, for in-
stance bridgings, opens, pin holes, and also some parame-
ter variations. Based on process data and known defect
mechanisms, the geometric alterations caused by a certain
type of defects have to be determined manually. Moreover,
we identify defects of a certain type if the same objects are
affected in the same way, and hence they cause the same
faulty topological structure. For instance defect A and B of
figure 1a belong to the same class as both of them cause
the faulty topology of figure 1b. But in figure 2 defect A
causes topology b) and defect B causes topology c).
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Figure 1: Two defects of the same class
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Figure 2: Two defects of different classes

Based on a layout description and data of statistic yield
or defect monitoring, the program EDEN generates defects
and their occurrence probabilities (figure 3). The main idea
of this approach is layout pre-processing by a partitioning
algorithm such that:

  - a refined circuit extraction provides sufficient informa-
tion for generating the faulty electrical functions,

  - the fault probability can efficiently be calculated by us-
ing the concept of divide and conquer,

  - all defect kinds are correctly mapped to the electrical
netlist.
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Figure 3: Basic flow of EDEN

2.2 Layout partitioning



The procedure PARTITION decomposes the layout in
elementary objects which are defined by the following
three conditions:

1) All defects of the same type and size with centres on
the elementary object are equivalent.

2) The object is a rectangle.
3) The area of the object is maximum under condition 1

and 2.
Condition 2 and 3 allow an efficient calculation of the

likelihood of faults by supporting a divide and conquer
procedure. This calculation is based on the concept of crit-
ical area (see section 3.3) which is not tractable for arbi-
trary polygons but for rectangles. As an example, figure 4
shows the elementary objects for a single layout object.
Defects on the elementary object 4 might cause a discon-
nection of all the other parts.

b) equivalent defect
    free electrical circuit

a) topology

B

DA C1 2

3

4

Figure 4: Example of elementary objects

Three kinds of elementary objects can be discriminated:

- Redundancy rectangles which have only a single or
even no connection to a second object (e.g. object 3 in
figure 4).

- Connection rectangles with exactly two connections
(e.g. object 1).

- Branch rectangles with more than two connections
(e.g. object 4).

The partition into elementary objects is not unique.
The partitioning algorithm is actually implemented as fol-
lows. First a region is decomposed into disjoint rectangles
of maximum size as shown in figure 5. Second, branches
are identified. A rectangle with more than 2 direct neigh-
bors (shadowed in figure 5) contains a branch and must
recursively be decomposed into smaller rectangles while
condition 3 of the definition is not violated (see figure 6).
During those three steps also vertical connections result-
ing in contacts or transistors are considered.

Þ

Figure 5: Partitioning of an object into maximum rectangles

Redundancy rectangle

Connection rectangle

Branch rectangle

Figure 6: Region after complete partitioning

2.3 Extended netlist extraction
The computing efficiency is increased if the defect in-

formation at layout level is lifted to transistor level as
early as possible. Therefore, the transistor netlist is refined
such that every elementary object can exactly be assigned
to one netlist element. In an extracted netlist branch rec-
tangles are mapped to additional nodes whereas a path of
connection rectangles is modeled by a simple edge usually
representing parasitic resistors. In such an extended netlist
all defects can exactly be located (see as an ex. fig. 2).

Figure 7 shows the simplified layout of a CMOS in-
verter, the result of a conventional netlist extractor, and
the actually generated extended netlist by EDEN. For
clearness capacitors are omitted.
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Figure 7: Layout and electrical netlists of a CMOS inverter

3 Ordering defect extraction

3.1 Analysis pairs
To handle more complex circuits it is necessary to

concentrate on the defect mechanisms and defects with
high occurrence probability. This restriction is justified
since usually only a few defect kinds dominate in a fabrica-



tion process and many defects have a negligible occurrence
probability [12,13,24]. Therefore, defects causing faults
with high likelihood have to be analyzed first, which also
reduces the test costs [22]. In this section a procedure for
establishing an order and an estimation for the reached de-
fect coverage is given.

For each layer i a list RLi := (Ri,0, .. , Ri,n), n Î IN,
of the elementary objects Ri,j, j Î {0, .. , n} is generated
such that A(Ri,j) < A(Ri,k) implies k < j where A(R) de-
notes the size of R. Based on process data, the probability
Di,j of the defect type j on layer i per area unit is known.
These data are used for instance for yield modeling and for
the so called product model [23]. For the underlying tech-
nology process, a list DTi := (Di,0, .. , Di,n) is generated
which contains these probabilities in decreasing order (see
figure 8).

A pair (R,D) of a rectangle R Î RLi and defect type D
Î DTi describes a possible defect, and it is called analysis
pair. For instance, if metal is the first layer, and the most
frequent defect type on this layer is missing material then
(R1,1, D1,0) is an analysis pair describing the second rect-
angle of the RL-list for metal with this defect.

P(Di,j) : likelihood of defect type j 
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Figure 8: List of rectangles and defect types

An analysis pair provides a weight

W(R,D) := A(R) * P(D)

which is first rough estimation of the real defect proba-
bility. W(R,D) describes an upper bound, especially for de-
fects affecting more than one rectangle, e.g. additional ma-
terial resulting in a short. Here, just the weight for addi-
tional material connected with the rectangle R is com-
puted.

A total weight is defined by

TW :=  å
i=0

L

Ê Ê [ Ê å
j=0

m(i)

A(Ri,j)Ê  á  å
k=0

n(i)

P(Di,k)] 

where the notations of figure 8 are used. For a set AP
of analysis pairs the weight is defined by:

W(AP) :=  å
(R,D)ÊÎ ÊAP

ÊW(R,D) .

An estimation of the defect coverage obtained by ana-
lyzing all pairs in AP is given by

DC :=  
W(AP)

TW
 .

This is used as a stop criterion for generating analysis
pairs. The procedure of figure 9 shows the computation of
analysis pairs in the order of their weights W(R,D). If pro-
cess data are not available all the Di,j have to be constant,
and only the size of the objects is considered.

3.2 An example
The cells of the public domain library of the OCT-

TOOLS [18] were completely analyzed. The most com-
plex combinational cell is a 2:1-multiplexor realized as a
CMOS complex gate. Figure 10 shows the layout. This
circuit will serve as an example for the rest of this paper.

procedure SEQUE(RL1,.., RLL, DT1,.., DTL);
AP_set := Æ; help_set := Æ;
for all L do

help_set += (RL,0 , DL,0);
endfor;
sort help_set;
do

AP_set += (first AP := (Ri,j , Di,j)
of help_set);

help_set -= AP;
if (Ri,j+1 , Di,j) exist and not in

help_set
(add and sort) (Ri,j+1, D,j) into

help_set;
endif;
if (Ri,j , Di,j+1) exist and not in

help_set
(add and sort) (Ri,j, Di,j+1) into

help_set;
endif;

until (estimated DC >= required defect
coverage);

out AP_set;
endprocedure;

Figure 9: Determining analysis pairs



Figure 10: Example layout of a 2:1-multiplexor

As process data are confidential, for the analysis de-
scribed here the data published in [24] were used. They are
confirmed by the work of [12]. Figure 11 shows the esti-
mations of defect coverages DC under both the assumption
that process data are not available, and based on process
data.

50% 100%10%
0%

With process data

Without process data

100%

50%

estimated defect 
coverage

number of  AP in %

Figure 11: Estimated defect coverage by analysis pairs

Only a few percent of possible defects had to be ex-
tracted to reach over 90% weighted defect coverage. Using
real process data reduces the number of analysis pairs to

consider.

3.3 Critical area
Output of the procedure SEQUENCE (figure 3) is the

sorted list of analysis pairs which have to be processed fur-
ther to get exact defect probabilities. These probabilities
are determined based on the concept of the critical area
CA(d) for a defect with diameter d. It is the area, where
placing the centre of such a defect will cause a fault.

Figure 12 shows the critical area for bridgings with re-
spect to 2 elementary objects.

d
d

defects

elementary objects

critical area

elementary objects

d/2

Figure 12: Two defects with diameter d, critical area and ele-
mentary objects

The average number l of faults is estimated by

l =  õó
Ê 0

¥ Ê

CA(d)ÊáÊD(d)Êdd 

=  D   á õó
Ê 0

¥ Ê

CA(d)ÊáÊh(d)Êdd .

where D(d) is the distribution of defect diameters, D   is
the average defect density, and

h(d) :=  
D(d)

D
 .

This leads to the average critical area

CA   :=  õó
Ê 0

¥ Ê

CA(d)ÊáÊh(d)Êdd .

This concept can be adapted to various defect distribu-
tions and yield models, for the analysis here the Gamma-
distribution, and also the defect size distribution by Stap-
per are assumed [23].

The critical area depends on the shape and size of the
involved objects. In the original concept CA were deter-
mined by approximations which are sufficient for yield
modeling. But within cells these approximations may
cause errors up to 100% [4]. Hence, a refined but efficient
technique for computing critical area is required. In the
presented approach an extended method of [4] is used. The
refinements consist in a rather complex framework of for-



mulas for computing CA at the boundaries. Here, geomet-
ric formulas that are numerically hard to evaluate are sub-
stituted by easily computable but still precise estimations.
The used estimations allow closed formulas instead of an
approximation by series, and take into account that usu-
ally several rectangles are connected. The ranked list of
analysis pairs gives the objects and defect types for which
critical areas are computed. As seen before, the critical area
is proportional to the probability of such a defect.

4 Fault extraction

4.1 Faults at transistor level
The defect classes determined so far must be lifted to

the electrical level. Equivalent defects that lead to the same
faulty transistor netlist should be identified at an early
stage of the process and their probabilities should be com-
bined, whereas defects which do not have an electrical ef-
fect should be removed. For gaining efficiency this should
be done before electrical simulation.

For each analysis pair (R,D) the corresponding defect is
modeled in the netlist and the faulty behavior is deter-
mined. If two analysis pairs turn out to cause the same
faulty transistor netlist their corresponding defect proba-
bilities are combined. Furthermore, if two different topolo-
gies of a transistor netlist show the same behavior during
electrical simulation their defect probabilities are united,
too, resulting in a single value P(f) for the realistic fault f.

The input of this procedure is the ordered list of analy-
sis pairs, output are realistic faults. The order of generat-
ing such a fault is determined by the weights of the analy-
sis pairs, in the next section it is shown that these
weights and the realistic fault probabilities have a high
correlation.

4.2 Example (continued)
The layout of the multiplexor circuit (figure 10) is par-

titioned into elementary objects which are mapped to the
extended transistor netlist. The additional nodes correspond
to branch rectangles (figure 13), bold nodes will be men-
tioned in the text.
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Figure 13: Extended netlist for the example circuit without
resistors and capacitors.

In the approach presented so far, we first estimate de-
fect coverage based on analysis pairs, afterwards we com-
pute defect coverage based on critical areas, and the stop
criterion is the estimated value before. Hence, its is spe-
cially important that estimated and exact values for the de-
fect coverage are highly correlated. Figure 14 shows both
curves fit very well for the example circuit, but it should
be pointed out that this estimation cannot be used for de-
termining the real weight of the faults, and only their ra-
tios are established.
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Figure 14: Estimated and real defect coverage.

5 Fault simulation

5.1 Waveform generation
The purpose of electrical fault simulation is both iden-

tifying equivalent defects and determining the defect cover-
age of a given test set. The first task needs a tremendous
computing effort as the circuit behavior depends on many
factors as the speed, the strength and the order of signals.
Hence, this can only be done for small cells and a subset
of the defects.

Moreover, the surroundings of a cell has to be consid-
ered, as it is impossible to stimulate the inputs directly.
Usually the waveforms are generated by preceding cells,
and responses are observed through following gates. The
simulation model discussed in the sequel passes all input
signals through a driver, and the output signal through an
inverter (figure 15).

out

inA

inB

sel

investigated
circuit

2 to 1
multiplexer

Figure 15: Simulation environment.

5.2 Defect coverage
If a test set is already generated, fault detection depends

also on the ability of observing the behavior, which re-
quires high capabilities of the tester equipment. Many
faults may show a malfunction which is not determin-
istically detectable due to a limited observation interval of
the tester, or a behavior which is still within the system
specification.

Hence, we differentiate the effective defect coverage of a
test set T in the following way:

  - DCl(T) :=  

å
fÎFl(T)

ÊP(f)

Ê å
fÎFl

ÊP(f)
 

is the coverage of defects which cause a logic fault.
  - DCg(T) is the coverage of defects which cause a logic

fault or a gross delay fault. Fg contains these faults,
where gross delay faults have an additional delay of at
least 25% of the maximum delay of the analysed cir-
cuit.

  - DC(T) is the coverage of all defects F including small
delay faults. There are also some short-timed spikes
and glitches which may cause distortions during operat-
ing but are not guaranteed to be detected by the test
equipment.

DCl(T) is obtainable by a standard tester, and the faults
of DCg(T) are possibly detectable by a high performance
equipment. The probability of detecting faults of DC(T)
that produce only a small delay fault is very low.

DC*(T) :=  

å
fÎFl(T)

ÊP(f)

Ê å
fÎF

ÊP(f)
 

evaluats the portion of realistic faults surely detected
by a standard test equipment.

5.3 Example (continued)
Based on the example layout, 214 modifications of the

transistor netlist were extracted. These electrical faults
form only about 50% of all possible defects, but detecting
them would lead to a defect coverage of 99.9%.

A complete test set including all pattern sequences up
to length 3 was applied using different driver strengths
available in the used library. Table 1 shows the sum of the
fault probabilities. The number in brackets denote logic
faults which still show a dynamic behavior. First they
produce a correct output value which is altered after a cer-
tain time period. These faults are only detectable by a low
speed test.
6 Quality of test sets

In this section some defects are discussed which cause a
hardly detectable fault behavior. During the analysis, well-
known effects as a sequential behavior of stuck-open faults
or some delays were observed. More interesting malfunc-
tions include the dependency of fault detection on the
driver strength at the input, and a dynamic malfunction
where a correct output signal does not stay stable.

For the example circuit an exhaustive test set (ex), four
deterministic test sets (d1 - d4), and three sets of random
patterns were generated. The complex multiplexor cell was



described by a netlist of single gates which were input to
the deterministic test pattern generator SOCRATES [20].
The fault simulator FSILOS [3] was used for determining
the stuck-at fault coverage of all the test sets. Size and
stuck-at fault coverage are listed in table 2.

test set # pattern # covered stuck-at fault
stuck-at faults coverage

ex 8 22 100%

d 1 4 22 100%
d 2 4 22 100%
d 3 4 22 100%
d 4 4 22 100%
r 1 4 13 59%
r 2 4 18 82%
r 3 8 18 82%

Table 2: Applied test sets.

6.1 Defect coverage and driving strength

First some statistic data are reported, then two defects
are analyzed in deeper detail. All test sets were applied
with three different driver strengths. The defect coverage
DCl and DC* are  as defined before. Additionally, tables 3,
4 and 5 contain values for DCl   and DC*l   where the
faults are not weighted and are assumed to have all the
same probability. This is the usual assumption, and it is
only included for comparison reasons.

The usually estimated defect coverage DC   and the re-
alistic defect coverage  DC  differ significantly. Especially

driver logic faults logic + gross delay faults all faults

strength number å
fÎFl

P(f) number å
fÎFg

P(f) number å
fÎF

P(f) 

very high 127 (0) 1.9178e-06 139 1.9262e-06 151 5.2420e-06
high 130 (1) 1.9189e-06 139 1.9262e-o6 151 5.2420e-06

medium 140 (2) 1.9262e-06 143 2.4337e-06 151 5.2420e-06
medium/low 143 (5) 2.1824e-06 151 5.2420e-06 152 5.2421e-06

low 150 (20) 4.9890e-06 151 5.2420e-06 151 5.2420e-06
very low 151 (10) 5.2420e-06 151 5.2420e-06 151 5.2420e-06

Table 1: Number and likelihood of realistic faults.

for medium and high driving strengths the conventional
approaches overestimate the realistic value by more than
100%. None of the test sets covers all the realistic faults
for all the driver strengths even if only logic faults are
considered, despite the fact that five of the test sets obtain
complete stuck-fault coverage. If a medium strength driver
is applied, the effective fault coverage is in the average
40%. These results are worse with respect to the stuck-at
fault model than some reported data [7] where fault detec-
tion of stuck-at test sets was determined by switch-level
simulation. Test sets d1 , d2 and d3, d4, resp., only differ
in the order of the applied patterns, but show significant
differences in the defect coverage.

test set #Fl DCl DCl  DC* DC*  

ex 127 99.94 97.69 3 6 . 5 8 84.10
d 1 126 99.94 96.92 3 6 . 5 8 83.44
d 2 129 99.95 99.23 3 6 . 5 9 85.43
d 3 117 86.09 90.00 3 1 . 5 1 77.48

d 4 119 86.09 91.53 3 1 . 5 1 78.80
r 1 80 51.66 61.53 1 8 . 9 1 52.98
r 2 68 49.94 52.30 1 8 . 2 8 45.03
r 3 122 99.69 93.84 3 6 . 4 9 80.79

Table 3: Defect coverage with high driver strength.

test set #Fl DCl DCl  DC* DC*  

ex 135 99.66 96.42 3 6 . 6 2 89.40
d 1 135 99.91 96.42 3 6 . 7 1 89.40
d 2 137 99.82 97.85 3 6 . 6 8 90.72
d 3 125 86.02 89.28 3 1 . 6 1 82.78
d 4 126 85.85 90.00 3 1 . 5 5 83.44
r 1 77 51.36 55.00 1 8 . 8 7 50.99
r 2 69 49.79 49.28 1 8 . 2 9 45.69
r 3 125 99.37 89.28 3 6 . 5 2 82.78

Table 4: Defect coverage with medium driver strength.



test set #Fl DCl DCl  DC* DC*  

ex 151 100.00 100.00 1 0 0 . 0 0 100.00
d 1 148 99.99 98.01 9 9 . 9 9 98.01
d 2 151 100.00 100.00 1 0 0 . 0 0 100.00
d 3 144 95.12 95.36 9 5 . 1 2 95.36
d 4 147 95.12 97.35 9 5 . 1 2 97.35
r 1 96 77.53 63.57 7 7 . 5 3 63.57
r 2 104 52.43 68.87 5 2 . 4 3 68.87
r 3 144 99.82 95.36 9 9 . 8 2 95.36

Table 5: Defect coverage with low driver strength.

The result concerning the random test set r3 also indi-
cates that stuck-at fault coverage does not reflect the cover-
age of realistic faults sufficiently. Here, only a stuck-at
fault coverage of 82% was obtained, but defect coverage
was higher than obtainable by the deterministic test sets
d3 and d4 with 100% stuck-at coverage. A similar result
was observed for the other investigated cells of the library
and by measuring actually produced dies [16].

As seen in table 1, the number of faults that cause
only a delay is decreasing if the driver strength is reduced,
and the number of logic faults is growing. Hence, testing
is becoming easier by lowering the strength of the input
drivers as also observed in [11]. In numbers, only 130
faults out of 151 faults cause a logic malfunction if the
driver strength is high, but using low strength drivers all
151 faults are detectable statically. As the driving strength
is pattern dependent, some faults may be overlooked dur-
ing testing, moreover, they may reduce reliability (see also
[11]). For all the test sets the realistic fault coverage DC
is increasing by reducing driving strength, and two of
them (d2 and ex) lead to complete realistic fault coverage.
In the presented example, the variations of the driver
strength are uniform for all inputs, the results looks simi-
larly if different inputs are driven with different strengths.

6.2 An example defect
The test set d2 (table 6) was applied to a gate oxide de-

fect within the p-channel transistor such that the gate is
connected with the N-tub, which is node 42 in the ex-
tended netlist. This realistic fault is number 2 of the rank-
ing list, and its probability is P(f) = 6.21e-07.

inA inB s e l out
0 1 0 0
0 1 1 1
1 0 1 0
1 0 0 1

Table 6: Test set d2.

Figure 16 is the output plot of the electrical simula-
tion with SPICE for the defect free circuit. Besides the

voltage of node out and node inB also the graph for node
20 is shown, which is the drain of the defective transistor.
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Figure 16: Electrical simulation of the defect free-circuit.
Figures 17a - 17c show the simulation results for the

defect circuit with falling driving strength. The bridge di-
vides the voltage such that for strong input driving the re-
sulting value of node 20 is in the range of 0.4 V and 1.6
V, and the transistor Tf does not switch, but reducing the
driver strength holds node 20 on a low potential, and the
output out is definitely on GND. For stronger drivers at
the input, the fault does not cause a notable delay (0 ²
0.1ns), and seems only to be detectable by iddq-testing.
This supports the results reported in [15] where a combi-
nation of logic testing, delay testing and iddq-testing is
proposed for obtaining maximum product quality.
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Figure 17: Electrical simulation of the defect circuit with de-
creasing driver strength for test set d2.

6.3 An example of a dynamic fault
A bridging between node inB and node 69 may be

caused by a defect of the metal layer, and has probability
p(f) = 6.12e-9 which is rank 17 in the fault list. If test set
d3 (see table 7) is applied, the shorted nodes inB and 69
get complementary values at the third pattern, resulting in
a voltage of 2.3 V at node 69.

inA inB s e l out

1 1 0 0
0 1 1 1
1 0 0 1

1 0 1 0

Table 7: Test set d3.

The small value of 2.3 V makes the following transis-
tor conducting with a considerable resistance such that
node 39 which is connected to the gates of the output in-
verter looses its capacity slowly. Figure 18 shows that the
correct output is generated for approximately 20 ns before
the signal falls to the erroneous low level. The immediate
transition is due to the inverter at the output.
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Figure 18: Simulation results for a bridging for node inB and
node 69 using test set d3 and low driver strength.

This defect did not cause any other faulty behavior, and
cannot be detected by usual high speed test. Moreover,
even if testing is done at low speed this fault may escape
and cause a wrong output later as during operation the
same pattern may be repeated several times. Similar to the
fault described in the previous section, this fault produces
a considerable iddq-current and can be detected by iddq-test-
ing on principle.

Conclusions

A method was presented for efficient determining the
realistic fault coverage based on the circuit layout. The
layout is partitioned into elementary objects which are
specially suited for defect analysis. The faults are extracted
and ranked in the order of their occurrence probability.

A CMOS library was investigated using this tool, and
several results were obtained. The defect coverage of a test
set generated for stuck-at faults of the gate level equivalent
is not always superior to random test sets. For all test sets
the defect coverage increases if the strength of the input
driver is reduced. There are faults which only have an effect
for a certain driving strength, other faults cause instable
outputs, delays or sequential behavior.

Using the tool presented, the defects causing these
faults are identified and their occurrence probabilities are
computed. Further applications are in the field of fault di-
agnosis and layout synthesis for testability.
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