
A Unified Method for Assembling Global Test Schedules

Albrecht P. Stroele
Institute of Computer Design and Fault Tolerance

University of Karlsruhe
0-76128 Karlsruhe, Germany

Abstract
In order to a register transfer structure tes/able, il

is u.sually divided into /wIerional blocks that can be tested
independently by various test methods. The tesl palUms
aTt shifttd in or generated autonomously at the inpu.ts of
tach block. The. test ruponsu of a block are compacted or
obstTved 0.1 its output register. In this paper a unified
method fOT asumbling all the single tests to a global
sCMdule is presented. It is compatible with a variety 0/
dif/utnl test 1M/hods. The descriJnd scheduling procedures
reduce the ovuoll test lirM and minimizt the number of
intemaJ. registers that have to bt made directly observable.

KEYWORDS: Built-in self-ust, data path. SJnlhesisfof
testability, test scheduling

1. Introduction
Integrated circuits and systems usually tequire a divide

and conquer approach for testing. The circuit is divided
into subcircuits whose inputs and outputs are easily con-
trollable and observable. respectively, ()r can generate
patterns and compact test responses in a self-test mode.
The work presented here assumes that during high-level

T2 T3

T5 T6

.T7
Figure 1: Example of test units at register transfer level

(with test registers Tl, ...• T7)

• This work was supponed in part by ESPRIT-projcct 7107
ARCHIMEDES.

Q.818&6690-0/IM $".00 0 1994lEEE
268

Hans-Joachim Wunderlich *
Institute of Computer Structures

University of Siegen, Holderlinstr. 3
0-57068 Siegen, Gennany

synthesis or during top-down design test circuitry has
already been added at the register tranfer level. and the
circuit has been segmented into subcircuits that are
surrounded by test registers (e.g. [1. 16]). Figure I shows
an example.

The test registers can be shift registers included in a
(partial) scan path. or multifunctional regislern for generat-
ing test patterns and compacting test responses in an auto-
nomous mode (BIST registers). Compaction is mostly
done by signature analysis whereas the generated patterns
may be random (BILBO [10]), weighted random (OURT
[20]), pseudo-exhaustive 12], 01" even deterministic patterns.

For test execution, the order of testing the subcircuils
has to be specified. The test schedule should achieve a
shon test time, and its implementation should cause only
low additional hardware cost. In this paper a scheduling
approach for assembling a complete test is presented
which allows combining various test strategies, e. g.
(weighted) random, (pseudo-)exhaustive or deterministic,
and extemal scan-based or built-in test.

If only a scan-based external test is considered, the test
hardware overhead is independent of the test schedule. In
\1, IS), a segmentation approach for this si tuation is
des<:ribed, all subcircuits are tested simultaneously. The
first test session lasts until the subcircuil with the
smallest test length has been tested completely. After-
wards. test patterns are applied only to the remaining
subcircuits. [IS] proposed a procedure to order the registers
included in the scan chain such that the exccution time of
this test schedule is minimized.

For self-testable c ircuits, a different segmentation is
appropriate. In order to test a panion of the circuit, at least
one test register must collect test responses. Thus the
smallest region that can be tested independently (tert unit)
consists of one test register that can be configured as a test
response collector, the block of logic connected to the
inputs of this register, and a set of test registers to supply
test patterns for the inputs of the block.

In this way, every test unit u(Ti) is uniquely determined
by the test register Tj at its outputs. In figure I , the test
unit U(T4) includes test register T4 (collecling test
responses), logic block I, and the test registers TI and T2
(supplying patterns). The block contained in the test unit
usually consists of combinational or pipeline structured
logic. Test units may overlap.

In this paper. we consider block tests as defined in (5) .
A block test is a test of a !est unit using one specific test
method. Block tests are regarded as indivisible entities for
scheduling. Generally not all block tests can be perfonned
simultaneously since they share some test resources that
can be used only exclusively. If for instance delenninistic
patterns are applied. the block !ests of test units u(f4) and
u(TS) in figure I might have contradicting requirements on
the contents of register T2. These restrictions are described
in the test incompatibility graph GI := (U. Ed (5). The
nodes UE U of this graph represent the block tests. the
edges connect pairs of block tests that cannot be perfonned
simultaneously (incompatible block tests).

If a test unit is tested by multiple test methods (e.g.
applying random patterns followed by some detenninistic
patterns). there are muhiple block tests for this test unit.
These block tests are pairwise incompatible and form a
complete subgraph of the test incompatibility graph. For
simplicity. we assume in the following that there is just
one block test for each test unit . Then we do not have to
distinguish between test units and their block tests
explicitly. But the scheduling procedures presented in this
paper can easily be extended to the general case of test
units with multiple block tests.

Based on test units. the test schedule can be structured
in the following way. A teSt session Si is a set of pairwise
compatible leu units that are processed iimuhaneously.
A Itst schtdult S:= (sr, E) is described by a sequence of
test sessions 5::: (SO. 51, ...• !>d-l)' a repetition number r,
and a subset E of test registers whose contents are
evaluated at test end. The set E must include all the test
registers at the primary outputs since the signatures in
these test registers cannot influence any other signatures.
sr is a shan hand nOlation for the sequence where s is
concatenated r times. 51 =5, 52=55. etc.

In order to minimize the number of test sessions, the
set of test units must be partitioned into a minimal
number of subsets with pairwise compalible test units.
This problem is equivalent to coloring the nodes of the
test incompatibility graph with a minimal number of
colors such that no edge connects two nodes of the same
color [5, I I}. The nodes with the same color represent a
set of compatible test units. If for each color one test
session is formed. the number of test sessions is
minimum. During test execution, all the test units of a
test session are staned simultaneously. and the test session
continues until the test unit which requires the largest test
length has been finished.

The test schedule also has an impact on the number of
signatures that have to be evaluated. A BIST register that
operates in the signature analysis mode can get a faulty
signature if the processed test unit contains a detectable
fault. or if at least one of the involved pattern generating
DIST registers has got a faulty signature some time before
and thus produces a pattern sequence that differs from the
fault-free case. In this way faulty signatures can propagate
through the circuit provided that the test registers are not

""

reinitializ.ed during test execution [18). If for instance in
figure I the !est of unit u(TS) produced a faulty signature
in test register TS. and afterwards this register generates
patterns for u(T1). then u(T1) gets an entirely wrong
pauern sequence and the responses observed in T1 differ
from the fault-free situation.

In this paper the propagation of faulty signatures is
utilized to reduce the amount of self-test hardware. For
many circuits the scanning of test registers and the
evaluation of signatures can be restricted to a subset of the
test registers and must be done only once at the end of the
entire test. The advantages of this approach are short test
times, a simplified self-test control and savings in hard-
ware overhead by omitting the internal scan path.

The rest of this paper is organized as follows: The next
section introduces test units more formally and discusses
the compatibility of !est units that are subject to different
test strategies. In section 3. the resulting test incompati-
bility graphs are constructed and test scheduling is reduced
to graph coloring. Furthennore. an algorithm is presented
which builds test schedules such that no internal signa-
tures need to be evaluated. an internal scan path is not
required, and the complete test infonnation is available at
the primary outputs. Finally, in section 4 some experi-
mental results are discussed.

2. Test units
2. I Regislu transrer description

Test scheduling procedures require a description of the
circuit under teSI including DIST and scan registers.
A common description is the register graph that is
produced as an intennediate structure during high-level
synthesis or during top-down design (see figure 2).

The nodes of the register graph GR :::: (VR. ER)
represent the registers, and there is a directed edge between
two nodes if there exists a path of combinational elements
between the corresponding registers. The node set VR
includes the subsets
N: Registers without any testability features
0 : Directly accessible registers

(primary inpul5 I. primary outputs 0, and registers
that are integrated into a partial or complete scan path)

T: BIST registers for generating test patterns and com-
pacting test responses in an autonomous mode

Some or all DIST registers are directly accessible. In a
fully self-testable design we have T:::> I u O.

The test register graph G,.;= (VT, ET) has the node
set VT := OuT. and for each path in GR that connects
two nodes of VT only via nodes of N there is a correspond-
ing edge in ET- Iffor inSlance 0 = Rsl and T=0
(figure 2), then the test register graph is as shown in
figure 3.

-"-" ..
R,

R6
" Rl

R. ..
R2 R7 .,
R8 R3

Figure 2: Registcr (fansftr structure: and corresponding
register graph

The hardware overhead for testability reasons depends on
both the number of scannable: registers and the number of
8 1ST registers. Including BIST registers in It (partial) scali
path increases the overhead as the BIST registers need an
extra shift mode:, additional area is required for wiring, and
test control is more compleJ{,

2.2 Placement or test registers
In order to obtain leSiable subcircuits, the scannable

registers and the BIST registers must be placed at appropri-
ate positions. Breaking all cycles in the circuit structure
by It partial scan path bounds the length of the required lest
sequences to the sequential depth of the circuit [4,7,12.
14].

4T5'

T.'

T3'

Figure 3: Test register graph and test unilS for scan-based
testing

The placement of test registers as shown in figure 3
breaks al1 cycles and is sui ted to scan·based testing. As T,'
is not used for collecting test responses, we obtain two
test units.

For scan-based testing, the output register of a test unit
may also serve as one of its input registers, For BIST,
however, the circuit SlnlCture obtained from breaking all
cycles is not a priori suited to BIST since during self-
testing some registers may have 10 generate patterns and
compact test responses concurrently (e.g. T4'). This kind
of parallel self-test, where the signatures are used as test
patterns, is feasible in some cases 19, 19), but in general
the required properties of the test patterns (exhaustive,
random , etc.) cannot be guaranteed. So additional test
registers are required such that all cycles are broken at least
twlce. Hence for BIST the set T must include RI, ... , R"
and we obtain the test register graph and the test units
shown in figure 4.

T2

T5

Tl

T

T3

"'"
"

Figure 4: Test register graph and test units for BrST

2.3 Compatibility or tes t units

Test units can be tested by detenniniSlic, random,
weighted random or (pseudo-)exhaustive patterns. The
chosen test methods have an impact on the compatibility
of test units:
a) Scan-based test (patterns generated externally,

responses evaluated externally)

2"

al : Random patterns: All test units can be processed
concurrently as all the input patterns are equally
disuibuted,

a2: Weighted random, pseudo-exhaustive or
deterministic patterns: Two test units are
compatible if their input regi sters are disjoint ,
Otherwise they are incompatible si nce weights,
distributions, and pattern sets are spec.:ific to each

lesl unit. In figure I only the lesl unilS U(T4l and
u(TS) are incompatible.

b) BIS T (patterns generated inlemally.
responses compacted inlemally)

bJ : RCUldom paltltnu: Two test unilS are incompati-
ble if Ihe output register of one is an input
register of the othef. In this situation the register
would have to compact and generate patterns
Simultaneously, and random properties could not
be guaranteed. In the ell.ample of figure I, u(TS)
and u(T,) are incompatible.

b2: Wltighud random. pseudo·uhouslivlt or determi-
nislic pal/ems: Tn addition to the 'condition of b l .
here also the input registers have to be disjoint.
Hence u(TS) and u(T,) are incompatible, but also
u(T4) and u(Ts)·

Using these conditions, the test incompatibility graph
0 1 :- (U, Ell is constructed where the edges connect
incompatible test units. Depending on the test method
applied, figure 5 shows the resulting test incompatibi lity
graph for the circuit of figure 2.

____ ..-.;.,....,.....-01
_d,,4 __

IIIsr __

....,....-'" ",.f. __

Figure 5: Test incompatibi li ty graphs for the structure of
figure 2

3. Test scheduling
In this section, general test scheduling procedures arc

presented that can be applied to circuilS with a variety of
different testing techniques, LeI E be the set of all the test
registers that arc used for collecting test responses. If the
only objecti ve is a minimum number of test sessions,
then a test schedule S '"' «SO. $1 , id-I). E) has to be
constructed where d is minimum. This problem can be
solved by coloring the test incompatibility graph G,.

In order to reduce the BIST hardware overhead, the
number of eVlluated signatures should be minimized. The
signalures collected in the test registers at the primary
outpulS must always be evaluated since they cannot
influence any otncr signatures. Usually these Signatures
arc sufficient. Only if some test registers at the primary
outpulS have a re latively high alilSing probability, other
test registers must be added 10 the minimal sel of teSI
registers, Emin, whose conlents have 10 be evaluated al
tesl end. 1lIe following problem hIS to be solved.

'"

Test scbeduling wltb • nxed (minlm.1) set of
eva lu.ted slgn.tures:

Given: • Test register graph, Gr (including .lilSing
probabilities of all signature lIIa1yz.ers)

• Set of test registers whose signalures are
evaluated at test end. Emin

• Test incompatibility graph. GI
• Set of faults. F
• Requi red fau lt covenlgc. FCo
• Number of different test sessions, d

Find: Test schedule S '" «SO, sl, .. " Sci.d. Emin)
where fault coverage is at lelSt FCo and r is
minimum

It can be shown Ihal the corresponding decis ion
problem contains the graph K-colorability problem (6J as
a special ease and hence is NP·hard.

Each fault located in a nonredundant part of a test uni t
u(TiI) can cause a faulty signature in the corresponding
signature register Til' Propagating this faulty signature
along a path (Til' Th, ,." Ti.) of the tcst register graph
GT requires the test units u(Til)' u(Til)' .. " u(Ti,) 10 be
processed in the same order, and the tcst session sequence
must look like (...• lu(Th) •... , (u(Ti0 J, ... , ... ,
I u(Ti.), ... 1, ...). Thus each required propagation imposes
a condition on the tesl SC$sion sequence.

For each test register used IS I Signature analyzer, it is
sufficient to consider a shortesl path to a test register of
Emin. 1bere always ellists such a path since the infonna-
tion in all nonredundant pans of the circuit hIS an effect
on tnc data at the primary outputs. The resulting con-
ditions can be summarized by a directed tree (prltcedeflu
tree) wncre lhe nodes represent the test units and an edge
(u(T i). u(Tj» means that the test unit U(Ti) must be
processed before lhe test unit u(Tj)'

Each node u(Ti) of the tree is marked with a value
dist(u(Ti» that gives the length of the longest path leading
to u(Ti). In order to propagate the effects of all faullS to
the signatures at the primary outputs. at least dist(u(TO»
test sessions must be executed . Figure 7 shows the
precedence tree for the circui t of figure 6.

The leSI session sequence (S(), 51, ... , Sci· I)! that
satisfies all Ihe conditions given by the test
incompatibilily graph and Ihe precedence tree is built in
f ltvtrsed limit ordtr. Since Ihe signatures at the primary
outputs cannot influence any other signatures. il is best to
collect them during the lISt test session. The signatures
that can influence tnc signatures I t the primary outpulS
should preferably be COlJecled during the lISt but one test
session, and so on.

At the beginning, all the lest sessions are empty, and
only the root of the precedence tree is marked IS scheduled.
f n each step, all nodes of the precedence tree that have 00l
yet been marked as scheduled, but whose immediate

have already been marked as scheduled, can be
included in the next test session. If not all of these
candidates are compatible to each other and to the test
units already included in the test session, the nodes with
higher distance values are preferred. 1bese priori ties help
to keep the test session sequence as short as possible. 1be
newly included nodes are also marked as scheduled. For the
example circuit of figure 6 and d=3, the resulting test
schedule is «l u(T3), u(TS>l, (u(T4). u(T7)1. lu(T2),
u(TS),u(T9)Jf. ITS. T91)·

Figure 6: Example circuit

" " " """ ,
n

" """ """ """ ,"" ,
" u(H) u(T8) ""., , u(T8) " " " u(TS) u(TS) u(T5) , """ ,

""'" .
Figure 7: Test register graph (left). test incompatibi lity

graph (center), and precedence tree (right) for
the circuit of figure 6

If the constructed test schedule (sr, Emin) does not
achieve the required fault coverage, the number of
repetitions must be increased unt il the value FCo is
reached (ct. (181). Of course a fault coverage value greater
than the value obtai ned withoUl test response comp3l.:tion
(and fault masking) cannot be obtained.

The method desc ri bed above is easily extended to
circuits containing some lest units that are tes ted using a
scan path. The scan nable registers that collect teSt
responses are added to the set Emin before the precC(!ence
tree is constructed. Then the procedure described above is
applied in the same way.

m

4 . Experimental results
This section presents the results achieved on three

different designs. The circuit M U impleme nts matrix
mul tiplication. and its register transfer structure was
generated by a high-level synthesis system (8]; the signal
processor SP is the result of a manual design as described
in [13]; and 535932 is one of the ISCAS'89 sequential
benchmark circu its [3) whose description at register
transfer level has been constructed us ing the method of
[17). The other sequential benchmllfk circuits cannot serve
as examples since they seem to be control units with an
irregular structure, and their descriptions at register transfer
level are not known . Table I and table 2 list the
characteristic data of the considered cin.:uits.

circu it II primary II primary II gates II flip-
inputs outPUtS 0,..

MU 43 26 ". 183
SP 83 " 13.54 239

13S932 " 320 1606S 1728 .. Tabk J: Gale level charactensuc$ of lhe Circu its

circuit " regiuers " scan regiuers " BI ST regi:ners

deSIgn
(desian with
external

(design with
internal

MU 24 14 " SP 68 44 " s3.5932 67 40 67
Table 2. Registers. scannable reglsten, and B1ST registers

For the external scan-based test using weighted random,
pseudo-exhaustive or detenninistic patterns, ali the regis-
ters at the primary inputs and outputS were included in
a scan chain and in addition a minimal number of registers
such that each cycle of the register graph conlains at least
one scannable register. Then the test incompatibili ty
graphs were construc ted. and the test schedules with
a minimal number of tes t sessions were detennined using
the graph coloring method (table 3). Compared to sequen·
tially tes ting all the test units, the number of test sessions
is reduced by 50% (MU), 56% (SP) and 24% (s35932),
respect ively.

circuit 1/ test units scheduling method " sessions
MU JO araph coloring ,
SP " graph coloring " $3S932 37 graph coloring 28

Tabl, J: Test scheduling for external tUI
For the internal test, multifunctional test registers were

placed at the primary inputs and o utputs, and a minimal
number of additional BIST registers was insened such that
each cycle of the register graph includes at least two of
them. In general , we get o ther test units than those ob-
tained in the scan deSigns. The test incompatibility graphs
differ for random patterns on the one hand and weighted
I1lndom. pseudo-exhaustive or deterministic patterns on the
OIherhand.

Table 4 and table 5 show the scheduling results of the
graph coloring method and the procedure described in
section 3 (called SEQUENCE). The graph coloring
method assumes that all test regis ters are observable.
whereas SEQUENCE drives the signatures to the primary
outputs and thus reduces the number of test registers that
must be observable from 15 to 4 eMU), from 31 to 13
(SP). and from 64 10 10 (s35932), respeclively. d is the
number of d ifferent tes t sessions. r denoles how often
these: test sessions musl be executed so thaI the faults of
all test ullits can influence the signatures at the primary
outputs. 1be algori thm provides various solutions where a
larger d in general complicates test conrrol. and a larger r
prolongs test time

circuit scheduling #sessions (r - d.)
method

MU graph coloring 2
(IS test un its) 'fQUENCE 3 - 2

S , -,
" SP Sl!r coloring 3
31 um units1 S ,'4

535932 graph coloring 2
(64 test units) '-2

, - 7
Table 4: Test scheduhng for Internal test usmg random

pallerns
Table 5 shows that us ing weighted random, (pseudo-)
exhaustive or deterministic pallems has a strong impact on
self-test control and test application time as both the
number of different test sessions, d. and the total number
of executed test sessions r -d increase . .

circuit scheduling II sessions (rod)
method

MU graph coloring ,
(IS test units) 2'0

J ' 7 ,p graph coloring 11
131 test units) , I • II

535932 graph coloring 28
64 test unitsl S , ' 29

Table j: Test scheduling for mlernal test usmg weIghted
random. pseudo-exhaustive or deterministic panems

5 . Conclus ions
A unified method for test scheduli ng is presented that

takes into account combinations of various test methods
as external. scan-based or bui lt-in tes t, and random.
weighted random, (pseudo-)exhaustive or deterministic
paltems. In order to get a test schedule with a minimal
number of tes l sessions, a graph coloring approach is
applied. For BIST, the scheduling algorithm has been
extended such that a shon test application lime (compared
to testing all the test un its sequentially) and reduced test
hardware overhead are obtained. It drives internal signatures
to the primary outputs of the circuit such thai no shifl
mode of the BIST registers and no internal scan path are
required for scanning signatures. Moreovcr. signatures need

only be evaluated after completing the entire test. and self-
test conrrol is simplified.

6 .
"]

'2]

'3]

'4]

'"
'0]
(7]

(8]

(9]

(10)

(] I]

References
M. S. Abadir, M. A. Breuer: -A Knowledgc-Based
System for Designing Testable VLS I Chips", IEEE
Design&Test. Aug. t985. pp. 56-6g
Z. 8arzilai, D. Coppersmith, A. L. Rosenberg:
"ExhaU5live Generallon of Bit Patterns with
Applications to VLSI Self-Testing". IEEE Trans. on
Computers, Feb. 1983. pp.]90-194
F. Drglez, D. Bryan. K. Kozminski: "Combinational
Profiles of Sequential 8enchmark Circuits". Int. Symp.
on Circuits and Systems. 1989. pp 1929- 1934
K.-T. Cheng, V. D. Agrawal: "A Panial Scan Method for
Sequential Circuits with Feedback", IEEE Trans. on
Computers. April 1990, pp. 544 - 547
G. L. Craig, C. R. Kime, K. K. Saluja: "Tcst Scheduling
and Control for VLSI Built-In Self-Test",IEEE Trans. on
Computers. Sept. 1998. pp.]099-1109
M. R. Garey, D. S. Johnson: ·Computers and
Intractability·, Freeman. New York. 1979
R. Gupta, R. Gupta. M. A. Breuer: "The BALLAST
Methodology for Structured Partial Scan Design". IEEE
Trans. on CompUleT!l. April 1990. pp. 538-544
P. Gutberlet : "Entwurf cines schnellcn Mauizen-
mullipliziereT!l" (in German). Studienarbeit. Departmc:nt
of Computer Science. University of Karlsruhe, 1988
K. Kim. O. Ha,l. Tront: "On Using Signature Register.;
as Pseudorandom Pattern Gencrators in Built-in Self
Testing-, IEEE Trans. on CAD. 1988. pp. 919-928
B. Koenemann. J. Mucha. G. Zwiehoff: "Built-In Logic
Block Observation Techniques". Test Conference,
Cherry Hill Nl.]979. pp. 37-4]
A. Krasniewski, A. Albicki: "Automatic Design of
Exhaustively Self·Testing Chip5 with BILBO Modules".
Int . Test Conference. Washington D.C .. 1985. pp. 362·
371

(]2] A. Kunzmann, H.-J. Wunderlich : "An analytical
approach to the partial scan problem". J. of Electronic
Testing: Theory and ApplicatiOnS. 1990. pp. 163·174

{131 I. LeBlanc: "LOCST: A Built-In Self-Test Technique",
IEEE Design&Test. Nov. 1984. pp. 45·52

(]4] D. H. Lee, S. M. Reddy: ' On Determining Scan Aip-
Flops in Panial-Scan Designs". Int. Conference on
CAD, 1990. pp. 322-325

(15\ S. Narayanan, C. Njinda, . M. Breuer: "Optimal
Sequencing of Scan RegisteT!l". Int . Test Conrerence.
Baltimore MD. 1992. PP_ 293-302

(16\ C. Papachristou. S. Chiou, H. Harmanani:"A dala path
synthesis mcthod for self-testable designs". Design
Automation Conference, 1991. pp_ 378·384

{] 7\ A. P. Stroele: "Partitioning and Hierarchical Descrip-
tion of Self-Tcstable Designs·. lAP Transaclions. Vol.
A-42 (VLSI'93), 1994. pp. 113·122

(18] A. P. Stroele. H.-J. Wunderlich: "Sign3lUre Analysis
and Test Scheduling for Self-Testable CircuiIS", Int.
Symposium on Fault-Toleranl Compuling. Montreal,
1991. pp. 96-103

{19] L. T. Wang, E. J. McCluskey: "Concurrent Built-in
Logic Block Observer (CBILBO)". 1m. Symposium on
Circuits and Systems, 1986. pp. 1054-1057

(20] H.-J. Wunderlich: "Sclf Test Using Unequiprobable
Random Pallerns". Int. Symp. on Fault-Tolerant
Computing, Pittsburgh. 1987. pp. 258-263

