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Abstract

In order to make a register transfer structure testable, it
is usually divided into functional blocks that can be tested
independently by various test methods. The test patterns
are shifted in or generated autonomously at the inputs of
each block. The test responses of a block are compacted or
observed at its output register. In this paper a unified
method for assembling all the single tests to a global
schedule is presented. It is compatible with a variety of
different test methods. The described scheduling procedures
reduce the overall test time and minimize the number of
internal registers that have to be made directly observable.

KEYWORDS: Built-in self-test, data path, synthesis for
testability, test scheduling

1. Introduction

Integrated circuits and systems usually require a divide
and conquer approach for testing. The circuit is divided
into subcircuits whose inputs and outputs are easily con-
trollable and observable, respectively, or can generate
patterns and compact test responses in a self-test mode.
The work presented here assumes that during high-level
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Figure 1: Example of test units at register transfer level
(with test registers T, ..., T7)
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synthesis or during top-down design test circuitry has
already been added at the register tranfer level, and the
circuit has been segmented into subcircuits that are
surrounded by test registers (e.g. [1, 16]). Figure 1 shows
an example.

The test registers can be shift registers included in a
(partial) scan path, or multifunctional registers for generat-
ing test patterns and compacting test responses in an auto-
nomous mode (BIST registers). Compaction is mostly
done by signature analysis whereas the generated patterns
may be random (BILBO [10]), weighted random (GURT
[20]), pseudo-exhaustive [2], or even deterministic patterns.

For test execution, the order of testing the subcircuits
has to be specified. The test schedule should achieve a
short test time, and its implementation should cause only
low additional hardware cost. In this paper a scheduling
approach for assembling a complete test is presented
which allows combining various test strategies, e. g.
(weighted) random, (pseudo-)exhaustive or deterministic,
and external scan-based or built-in test.

If only a scan-based external test is considered, the test
hardware overhead is independent of the test schedule. In
[7. 15], a segmentation approach for this situation is
described, all subcircuits are tested simultaneously. The
first test session lasts until the subcircuit with the
smallest test length has been tested completely. After-
wards, test patterns are applied only to the remaining
subcircuits. [15] proposed a procedure to order the registers
included in the scan chain such that the execution time of
this test schedule is minimized.

For self-testable circuits, a different segmentation is
appropriate. In order to test a portion of the circuit, at least
one test register must collect test responses. Thus the
smallest region that can be tested independently (test unit)
consists of one test register that can be configured as a test
response collector, the block of logic connected to the
inputs of this register, and a set of test registers to supply
test patterns for the inputs of the block.

In this way, every test unit u(T;) is uniquely determined
by the test register Tj at its outputs. In figure 1, the test
unit u(T4) includes test register T4 (collecting test
responses), logic block 1, and the test registers T} and T2
(supplying patterns). The block contained in the test unit
usually consists of combinational or pipeline structured
logic. Test units may overlap.



In this paper, we consider block tests as defined in [5].
A block test is a test of a test unit using one specific test
method. Block tests are regarded as indivisible entities for
scheduling. Generally not all block tests can be performed
simultaneously since they share some test resources that
can be used only exclusively. If for instance deterministic
patterns are applied, the block tests of test units u(T4) and
u(Ts) in figure 1 might have contradicting requirements on
the contents of register T,. These restrictions are described
in the test incompatibility graph Gj := (U, Ej) [5]. The
nodes ue U of this graph represent the block tests, the
edges connect pairs of block tests that cannot be performed
simultaneously (incompatible block tests).

If a test unit is tested by multiple test methods (e.g.
applying random patterns followed by some deterministic
patterns), there are multiple block tests for this test unit.
These block tests are pairwise incompatible and form a
complete subgraph of the test incompatibility graph. For
simplicity, we assume in the following that there is just
one block test for each test unit. Then we do not have to
distinguish between test units and their block tests
explicitly. But the scheduling procedures presented in this
paper can easily be extended to the general case of test
units with multiple block tests.

Based on test units, the test schedule can be structured
in the following way. A test session s is a set of pairwise
compatible test units that are processed simultaneously.
A test schedule S :=(s", E) is described by a sequence of
test sessions s := (sq, S, ..., S4-1), a repetition number r,
and a subset E of test registers whose contents are
evaluated at test end. The set E must include all the test
registers at the primary outputs since the signatures in
these test registers cannot influence any other signatures.
s' is a short hand notation for the sequence where s is
concatenated r times, s! =s, s2=ss, etc.

In order to minimize the number of test sessions, the
set of test units must be partitioned into a minimal
number of subsets with pairwise compatible test units.
This problem is equivalent to coloring the nodes of the
test incompatibility graph with a minimal number of
colors such that no edge connects two nodes of the same
color [5, 11]. The nodes with the same color represent a
set of compatible test units. If for each color one test
session is formed, the number of test sessions is
minimum. During test execution, all the test units of a
test session are started simultaneously, and the test session
continues until the test unit which requires the largest test
length has been finished.

The test schedule also has an impact on the number of
signatures that have to be evaluated. A BIST register that
operates in the signature analysis mode can get a faulty
signature if the processed test unit contains a detectable
fault, or if at least one of the involved pattern generating
BIST registers has got a faulty signature some time before
and thus produces a pattern sequence that differs from the
fault-free case. In this way faulty signatures can propagate
through the circuit provided that the test registers are not
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reinitialized during test execution [18]. If for instance in
figure 1 the test of unit u(Ts) produced a faulty signature
in test register Ts, and afterwards this register generates
patterns for u(T7), then u(T7) gets an entirely wrong
pattern sequence and the responses observed in Ty differ
from the fault-free situation.

In this paper the propagation of faulty signatures is
utilized to reduce the amount of self-test hardware. For
many circuits the scanning of test registers and the
evaluation of signatures can be restricted to a subset of the
test registers and must be done only once at the end of the
entire test. The advantages of this approach are short test
times, a simplified self-test control and savings in hard-
ware overhead by omitting the internal scan path.

The rest of this paper is organized as follows: The next
section introduces test units more formally and discusses
the compatibility of test units that are subject to different
test strategies. In section 3, the resulting test incompati-
bility graphs are constructed and test scheduling is reduced
to graph coloring. Furthermore, an algorithm is presented
which builds test schedules such that no internal signa-
tures need to be evaluated, an internal scan path is not
required, and the complete test information is available at
the primary outputs. Finally, in section 4 some experi-
mental results are discussed.

2.

2.1 Register transfer description

Test units

Test scheduling procedures require a description of the
circuit under test including BIST and scan registers.
A common description is the register graph that is
produced as an intermediate structure during high-level
synthesis or during top-down design (see figure 2).

The nodes of the register graph GR := (VR, ER)
represent the registers, and there is a directed edge between
two nodes if there exists a path of combinational elements
between the corresponding registers. The node set Vg
includes the subsets

N:
D:

Registers without any testability features

Directly accessible registers

(primary inputs I, primary outputs O, and registers
that are integrated into a partial or complete scan path)
BIST registers for generating test patterns and com-
pacting test responses in an autonomous mode

T

Some or all BIST registers are directly accessible. In a
fully self-testable design we have T 1w O.

The test register graph Gt := (VT, ET) has the node
set V1 := DUT, and for each path in Gg that connects
two nodes of VT only via nodes of N there is a correspond-
ing edge in ET. If for instance D = {R3, R4, R5) and T=@
(figure 2), then the test register graph is as shown in
figure 3.
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Figure 2: Register transfer structure and corresponding
register graph

The hardware overhead for testability reasons depends on
both the number of scannable registers and the number of
BIST registers, Including BIST registers in a (partial) scan
path increases the overhead as the BIST registers need an
extra shift mode, additional area is required for wiring, and
test control is more complex.

2.2 Placement of test registers

In order to obtain testable subcircuits, the scannable
registers and the BIST registers must be placed at appropri-
ate positions. Breaking all cycles in the circuit structure
by a partial scan path bounds the length of the required test
sequences to the sequential depth of the circuit [4,7,12,
14].

test unit u(T4") PZZZZATS

BL-

T4

T3

Figure 3: Test register graph and test units for scan-based
testing

The placement of test registers as shown in figure 3
breaks all cycles and is suited to scan-based testing. As Ts'
is not used for collecting test responses, we obtain two
test units.

For scan-based testing, the output register of a test unit
may also serve as one of its input registers. For BIST,
however, the circuit structure obtained from breaking all
cycles is not a priori suited to BIST since during self-
testing some registers may have to generate patterns and
compact test responses concurrently (e.g. T4'). This kind
of parallel self-test, where the signatures are used as test
patterns, is feasible in some cases [9, 19], but in general
the required properties of the test patterns (exhaustive,
random, etc.) cannot be guaranteed. So additional test
registers are required such that all cycles are broken at least
twice. Hence for BIST the set T must include Rj, .., Rs,
and we obtain the test register graph and the test units
shown in figure 4.
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Figure 4: Test register graph and test units for BIST

2.3 Compatibility of test units

Test units can be tested by deterministic, random,
weighted random or (pseudo-)exhaustive patterns. The
chosen test methods have an impact on the compatibility
of test units:

a) Scan-based test (patterns generated externally,
responses evaluated externally)

al: Random patterns: All test units can be processed
concurrently as all the input patterns are equally
distributed.

a2: Weighted random, pseudo-exhaustive or
deterministic patterns: Two test units are
compatible if their input registers are disjoint.
Otherwise they are incompatible since weights,
distributions, and pattern sets are specific to each
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test unit. In figure 1 only the test units u(T4) and
u(Ts) are incompatible.

b) BIST (patterns generated internally,

responses compacted internally)
Random patterns: Two test units are incompati-
ble if the output register of one is an input
register of the other. In this situation the register
would have to compact and generate patterns
simultaneously, and random properties could not
be guaranteed. In the example of figure 1, u(Ts)
and u(T7) are incompatible.
Weighted random, pseudo-exhaustive or determi-
nistic patterns: In addition to the condition of b1,
here also the input registers have to be disjoint.
Hence u(Ts) and u(T7) are incompatible, but also
u(T4) and u(Ts).

Using these conditions, the test incompatibility graph
Gy := (U, Ej) is constructed where the edges connect
incompatible test units. Depending on the test method
applied, figure 5 shows the resulting test incompatibility
graph for the circuit of figure 2.

bl:

b2:

u(T4) o—e u(Ty)

scan-based test with delerministic, weightad random or
pseudo-axhaustive pattems

o)
uT2) »—{Tﬂ
w(T3)

BIST with random patiems

oY)

u(T2) u(T4)

u(T3)
BIST with deterministic,
weighted random of
pssudo-exhaustive pattems.

Figure 5: Test incompatibility graphs for the structure of
figure 2

3. Test scheduling

In this section, general test scheduling procedures are
presented that can be applied to circuits with a variety of
different testing techniques. Let E be the set of all the test
registers that are used for collecting test responses. If the
only objective is a minimum number of test sessions,
then a test schedule S = ((sp, 1, .-, 54-1), E) has to be
constructed where d is minimum. This problem can be
solved by coloring the test incompatibility graph Gj.

In order to reduce the BIST hardware overhead, the
number of evaluated signatures should be minimized. The
signatures collected in the test registers at the primary
outputs must always be evaluated since they cannot
influence any other signatures. Usually these signatures
are sufficient. Only if some test registers at the primary
outputs have a relatively high aliasing probability, other
test registers must be added to the minimal set of test
registers, Epip, whose contents have to be evaluated at
test end. The following problem has to be solved.
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Test scheduling with a fixed (minimal) set of
evaluated signatures:

Given: e Test register graph, Gt (including aliasing
probabilities of all signature analyzers)

e Set of test registers whose signatures are
evaluated at test end, Epin
Test incompatibility graph, Gy
Set of faults, F
Required fault coverage, FCq
Number of different test sessions, d
Test schedule S = ((sq, $1, -» 5d-1)"» Emin)
where fault coverage is at least FCp and r is
minimum

Find:

It can be shown that the corresponding decision
problem contains the graph K-colorability problem [6] as
a special case and hence is NP-hard.

Each fault located in a nonredundant part of a test unit
u(Tj,) can cause a faulty signature in the corresponding
signature register Tj,. Propagating this faulty signature
along a path (Tj,, Tj,, ..., Tj,) of the test register graph
G requires the test units u(T;,), u(Tj,), ..., u(Tj,) to be
processed in the same order, and the test session sequence
must look like ( ... {(u(Tj). ..h oo (U(Tip)s o)y ey sy
{u(Tj,), ...}, ... ). Thus each required propagation imposes
a condition on the test session sequence.

For each test register used as a signature analyzer, it is
sufficient to consider a shortest path to a test register of
Emin- There always exists such a path since the informa-
tion in all nonredundant parts of the circuit has an effect
on the data at the primary outputs. The resulting con-
ditions can be summarized by a directed tree (precedence
tree) where the nodes represent the test units and an edge
(u(Tj), u(Tj)) means that the test unit u(Tj) must be
processed before the test unit u(Tj).

Each node u(Tj) of the tree is marked with a value
dist(u(T;)) that gives the length of the longest path leading
to u(T;j). In order to propagate the effects of all faults to
the signatures at the primary outputs, at least dist(u(Tp))
test sessions must be executed. Figure 7 shows the
precedence tree for the circuit of figure 6.

The test session sequence (S0, Si, - Sd—l)r that
satisfies all the conditions given by the test
incompatibility graph and the precedence tree is built in
reversed time order. Since the signatures at the primary
outputs cannot influence any other signatures, it is best to
collect them during the last test session. The signatures
that can influence the signatures at the primary outputs
should preferably be collected during the last but one test
session, and so on.

At the beginning, all the test sessions are empty, and
only the root of the precedence tree is marked as scheduled.
In each step, all nodes of the precedence tree that have not
yet been marked as scheduled, but whose immediate



successors have already been marked as scheduled, can be
included in the next test session. If not all of these
candidates are compatible to each other and to the test
units already included in the test session, the nodes with
higher distance values are preferred. These priorities help
to keep the test session sequence as short as possible. The
newly included nodes are also marked as scheduled. For the
example circuit of figure 6 and d=3, the resulting test
schedule is (({u(T3), u(Tg)}, (u(T4), u(T7)}, {u(T2),

u(Ts), u(Tg)})%, {Ts, To}).

primary inputs
™
T2 T6
13 7
S— |
T4 T8
I
T5 T8
primary outputs

Figure 6: Example circuit

u(T2)

u(T3) u(™7)
u(T4) u(Te)
u(Ts) u(Ts)

Figure 7: Test register graph (left), test incompatibility
graph (center), and precedence tree (right) for
the circuit of figure 6

If the constructed test schedule (s", Egin) does not
achieve the required fault coverage, the number of
repetitions must be increased until the value FCp is
reached (cf. [18]). Of course a fault coverage value greater
than the value obtained without test response compaction
(and fault masking) cannot be obtained.

The method described above is easily extended to
circuits containing some test units that are tested using a
scan path, The scannable registers that collect test
responses are added to the set Epip, before the precedence
tree is constructed. Then the procedure described above is
applied in the same way.

4. Experimental results

This section presents the results achieved on three
different designs. The circuit MU implements matrix
multiplication, and its register transfer structure was
generated by a high-level synthesis system [8]; the signal
processor SP is the result of a manual design as described
in [13]); and 535932 is one of the ISCAS'89 sequential
benchmark circuits [3] whose description at register
transfer level has been constructed using the method of
[17]. The other sequential benchmark circuits cannot serve
as examples since they seem to be control units with an
irregular structure, and their descriptions at register transfer
level are not known. Table 1 and table 2 list the
characteristic data of the considered circuits.

circuit || # primary | # primary | # gates # flip-
i outputs fl

26 879 183

55 1354 239

535932 35 320 16065 1728

Table |: Gate level characteristics of the circuits

circuit || # registers | # scan registers | # BIST registers
(original (design with (design with
desigﬂ} external r.esq internal lesl!
MU 24 14 19
SP 68 44 50
535932 67 40 67

Table 2: Registers, scannable registers, and BIST registers

For the external scan-based test using weighted random,
pseudo-exhaustive or deterministic patterns, all the regis-
ters at the primary inputs and outputs were included in
a scan chain and in addition a minimal number of registers
such that each cycle of the register graph contains at least
one scannable register. Then the test incompatibility
graphs were constructed, and the test schedules with
a minimal number of test sessions were determined using
the graph coloring method (table 3). Compared to sequen-
tially testing all the test units, the number of test sessions
is reduced by 50% (MU), 56% (SP) and 24% (s35932),
respectively.

circuit || # test units | scheduling method | # sessions
MU 10 graph coloring 5
SP 25 graph coloring 1l

535932 37 graph coloring 28

Table 3: Test scheduling for external test

For the internal test, multifunctional test registers were
placed at the primary inputs and outputs, and a minimal
number of additional BIST registers was inserted such that
each cycle of the register graph includes at least two of
them. In general, we get other test units than those ob-
tained in the scan designs. The test incompatibility graphs
differ for random patterns on the one hand and weighted
random, pseudo-exhaustive or deterministic patterns on the
other hand.



Table 4 and table 5 show the scheduling results of the
graph coloring method and the procedure described in
section 3 (called SEQUENCE). The graph coloring
method assumes that all test registers are observable,
whereas SEQUENCE drives the signatures to the primary
outputs and thus reduces the number of test registers that
must be observable from 15 to 4 (MU), from 31 to 13
(SP), and from 64 to 10 (s35932), respectively. d is the
number of different test sessions. r denotes how often
these test sessions must be executed so that the faults of
all test units can influence the signatures at the primary
outputs. The algorithm provides various solutions where a
larger d in general complicates test control, and a larger r
prolongs test time.

circuit scheduling # sessions (r*d)
method
MU graph coloring 2
(15 test units) SEQUENCE 3*2
. SEQUENCE 1 %5
sp graph coloring 3
(31 test units) SEQUENCE 1 *4
535932 graph coloring 2
(64 test units) SEQUENCE 4%2
SEQUENCE 1*7
Table 4: Test scheduling for internal test using random

patterns

Table 5 shows that using weighted random, (pseudo-)
exhaustive or deterministic patterns has a strong impact on
self-test control and test application time as both the
number of different test sessions, d, and the total number
of executed test sessions, r*d, increase.

circuit scheduling # sessions (r+d)
method

MU graph coloring 5
(15 test units) SEQUENCE 2%6
SEQUENCE {7
SP graph coloring 11
(31 test units) SEQUENCE %11
535932 graph coloring 28
(64 test units) SEQUENCE 1 %29

Table 5: Test scheduling for internal test using weighted
random, pseudo-exhaustive or deterministic patierns

5. Conclusions

A unified method for test scheduling is presented that
takes into account combinations of various test methods
as external, scan-based or built-in test, and random,
weighted random, (pseudo-)exhaustive or deterministic
patterns. In order to get a test schedule with a minimal
number of test sessions, a graph coloring approach is
applied. For BIST, the scheduling algorithm has been
extended such that a short test application time (compared
to testing all the test units sequentially) and reduced test
hardware overhead are obtained. It drives internal signatures
to the primary outputs of the circuit such that no shift
mode of the BIST registers and no internal scan path are
required for scanning signatures. Moreover, signatures need
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only be evaluated after completing the entire test, and self-
test control is simplified.
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