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Abstract — Most self-test techniques are implemen-
ted with so-called multifunctional test registers at
any specific time either used for pattern generation
or for response analysis. In a parallel self-test, how-
ever, test registers are used for pattern generation
and rcsponse analysis simultaneously., In this
paper a novel circuit structure for controllers with
parallel self-test is presented, which does not result
in a loss of fault coverage. By using a dedicated syn-
thesis procedure, which considers the self-test
hardware while generating the circuit structure in-
stead of adding it after the design is completed
("synthesis for testability”), the self-test overhead
can be kept low. The structure also facilitates real-
istic dynamic tests. As an example to illustrate the
approach, the IEEE boundary scan controller is
used.

Introduction

Digital circuits are usually partitioned into data
path and control unit portions. A control unit’s
behavior is typically modelled by a finite state
machine (FSM) description, its structure by an
interconnection of combinational logic and storage
elements (see Fig. 1).
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Fig. 1: General structure of control units.

One characteristic of controllers is a strong mu-
tual dependence of state variables, which leads to a
high sequential depth of these circuits. It makes
testing harder compared to data paths and becomes
particularly critical for self-testable designs. If the
state register is replaced by a single multifunctional

self-test register [BeMa B84], e. g. a BILBO
[K8MZ 79), the direct feedback lines imply that the
signatures of the test responses have to be used as
test patterns for the state variables (see Fig. 2).
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Fig. 2: Structure of controllers with parallel self-test.

In [KiHT 88] the use of a parallel self-test for data
paths without such direct feedbacks was investi-
gated. Empirical results indicated that for certain
examples the concurrent use of MISR’s (multiple
input signature registers) for pattern generation
and signature analysis does not cause a significant
loss of fault coverage. Similar results were pub-
lished for the circular self-test path approach, with
which BIST overheads can be reduced [KrPi 89]. But
both techniques cannot guarantee a high enough
fault coverage and require extensive fault simula-
tion. Moreover, in structures with direct feedbacks
it might even be completely impossible to set the
next state lines to all the values needed to detect cer-
tain faults [ChGu 89].

Several approaches are offered to overcome this
problem. In [WaMc 87] the direct feedback path
from storage elements to storage elements via the
combinational logic is broken by doubling the num-
ber of flipflops and adding an additional self-test
register only responsible for compacting the test
responses. The state register itself is reconfigured
as a pure pattern generator in self-test mode. In
[HuPe 87] the same problem is treated for data
paths, in which such "self-adjacent” registers also
occur, by supplying test patterns through the scan
path from an external pattern generator.
Unfortunately both approaches result in significant
hardware overheads.



In [ChGu 89) a special state assignment strategy
is proposed, which guarantees that all the states
are reachable in self-test mode. However, the state
assignment is very restricted and cannot take the
minimizability of the combinational logic into
account. The additional amount of combinational
logic thus might cost more than duplicating the
number of storage elements, where it is possible to
use optimized synthesis and state assignment
techniques.

In this paper we present a novel circuit structure
for parallel self-testable controllers. It avoids
register duplication and in some cases even
requires less combinational logic than the opti-
mized synthesis techniques, while guaranteeing
that all states of the circuit stay reachable in self-
test mode. It decreases the speed disadvantage of
sell-testable designs and the self-test control effort
by simplifying the self-test register. At the same
time it makes it possible to perform a dynamic test
to detect e. g. delay faults, which becomes more and
more important. The goal is reached by explicitly
considering the self-test structure during the syn-
thesis process, instead of adding it in a special
design for testability step as an afterthought, a
strategy already successful in optimizing self-
testable controller structures with separate pattern
generators and response analyzers [EsWu 90].

In the next section we introduce some back-
ground material useful later on, before describing
the target structure in section 3. In section 4 the
testability of this structure is discussed and upper
bounds on the aliasing probabilities are derived, as
well as estimates of test length and test confidence.
In section 5 we present a technique for synthesizing
such a structure starting from a behavioral descrip-
tion. Finally, the concept is illustrated using the
TAP controller of the IEEE boundary scan architec-
ture [IEEE 90] as an example.

Background

A testable circuit has to be both controllable and
observable. The observability of a sequential circuit
can be increased by including its storage elements
into a signature register. For the circuit to be
controllable, one has to be able to force it into
arbitrary states. These properties can be analyzed
probabilistically by modelling the circuit as a
Markov chain [Boot 67]. In the sequel we shortly
summarize the used notations and facts, more
details about Markov theory can be found in
standard textbooks like [Fell 57].
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For a sequence of random inputs 10, I1, ... It, the
sequence of FSM states SO, S, ... St can be described
as a homogeneous Markov process with stationary
transition probabilities

pik = prob[St = Sk | S+1 = §j]. (1)
These probabilities depend on the probability of
primary inputs and the FSM specification. Let
(iy ... ip) be the vector of binary input variables and
pk = problix = 1] = 1 ~ prob[iy = 0. Then an input I =
(i1, ... ip) has the probability

pl=[Trx* 1O -px) ()
ix=1 ix=0
and the state transition probabilities are
pik= 2, Pl &)

Sksfell},Sp)

where [, is the next state function of the FSM. If the
probability of all the states is known for a certain
time tg, the state probabilities can be computed for
all t > to with the Chapman-Kolmogorov equality

pSt=pSto . pt-to, (4)
where pSt represents the row vector of state proba-
bilities pSt = (prob[S;!] ... prob{Sy']) und P the matrix
of transition probabilities P = (pjx). The elements of
the t-th power of P are denoted pix*). P is a stochas-
tic matrix, i. e. all the rows sum up to 1, whereas in
general P is not doubly stochastic, i. e. the columns
do not sum up to 1. A state S is called reachable
from S;, if a t 2 0 exists, such that pixt) > 0. If Sk is
reachable from S;, in the state tramsition graph
there is a directed path from S; to Sk. Two states S;
and Sy are called mutually reachable, S; ~ Sk, if S,
is reachable from Sg and Sy is reachable from S;.
The relation "~" partitions the state set into equiva-
lence classes. If every state is reachable from every
other state, there exists only one equivalence class
containing all the states. A Markov chain is called
irreducible if its state set consists of a single equiva-
lence class with respect to mutual reachability. A
set C of states is called closed, il no state outside of C
can be reached from a state S; e C.

Definition 1: A sequential circuit is called
controllable, if for every single stuck-at fault
there exists an input sequence, which, starting
from a specified state, leads to an incorrect next
state or output.

When a circuit is controllable, the corresponding
Markov chain has to be irreducible. If r memory
elements are used to store n < 27 specified states, not
all the 2r - n (invalid) states added in the implemen-
tation necessarily satisfy this condition.



Theorem 2: If the combinational logic of a sequen-
tial circuit is irredundant and the state transition
graph is strongly connected, the circuit is con-
trollable.

Proof: Since the combinational logic is irredundant,
for every single stuck-at fault there exists an in-
put and a present state, which expose the fault, i.
e. lead to a faulty next state or output. In particu-
lar there has to be a present state contained in the
n states of the circuit specification [DMNS 90,
Lemma 3]. If the state transition graph is
strongly connected, there exists an equivalence
class for "~" containing all the specified states.
This state set is closed, the corresponding
Markov chain irreducible. Therefore all the spec-
ified states are reachable from a given valid state
and there exists an input sequence, such that the
sensitizing state is reached. |

Since control units in system mode usually have
strongly connected state transition graphs, they are
controllable, provided that the combinational logic
was made irredundant, which is necessary anyway
to guarantee the detection of faults in the combina-
tional logic.

A general problem of self-test registers is caused
by dividing their functionality into a system mode
and a self-test mode. In the test mode additional
XOR-gates have to be in the data path, whereas in
system mode these gates have to be disabled by some
form of mode control logic, for which the control
signals have to be provided externally. Moreover,
the controllability of the circuit can be reduced in
self-test mode, since the excitation function of the
flipflops is changed. By switching to self-test mode,
it becomes possible that a subset of states is no
longer reachable, although it would be necessary to
enter these states to sensitize certain faults. System
mode and self-test mode give rise to two very differ-
ent Markov processes.

Let M(s) be the next state of an MISR in au-
tonomous mode. For a conventional state register
consisting of D-flipflops, the next state is equal to
the excitation variable (cf. Fig. 1)

s+ =y = fi(i, 8), (5)
whereas for a MISR state register the next state is
generated by!

s* = y @ M(s) = fy(i, 5) @ M(s), (6)
similar to T-flipflops, where the next state is 8t =
y @ s = fg(i, 8) ® s. If the Markov matrix in system
mode is denoted P, this corresponds to a new

1 The variables denote bit vectors, @ denotes a bitwise
XOR-operation on these vectors.
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Markov matrix in self-test mode Q = (qgj;) with p;j =
Qi joM(i). Only in special cases is Q irreducible,
such that the controllability is secured. One of these
cases can be systematically utilized for a given FSM
by assigning the state codes in a unique way
[ChGu 89]. The approach also makes it necessary to
assign a special behavior to the 2 - n invalid state
codes not necessary to obtain the required system
functionality. This way the symptoms of reduced
controllability by switching to self-test mode are
hidden, but the original cause is not removed.

3 Target Structure

To remove the cause of the controllability prob-
lem, it is necessary to avoid a second mode of opera-
tion with different state transition probabilities.
This can be achieved by implementing the system
functionality using the MISR in its signature
analysis mode as state register. Because of the lin-
earity of the operations involved, the necessary exci-
tation variable y to produce a state transition from
state s to state s* can be computed easily and is

y = s* @& M(s) = f3(i, 8) ® M(s) = fm(i, 8) (N
compared with y = f;(i, 8) ® 8 = f(i, s) for T-flipflops
and y = f,@, 8) for D-flipflops (see Fig. 3). By imple-
menting a pertinent next state function fym(i, 8) in
the combinational logic, arbitrary controllers can be
implemented with MISRs as state registers, which
makes it unnecessary to provide a special system
mode.

input vector i S— l:gm output veclor o
slata vockonr & K:;I‘- excitation vector y
LM |
1
signature register (MISR)
Y ‘g-z n
.EI..A;..
8¢ - i M
|

Fig. 3: Controller target structure.

The circuit structure for a parallel self-test with-
out disjoint system and test modes has several ad-
vantages: Eliminating the D-flipflop mode reduces
both the area of the self-test register and the num-
ber of signals to control it. Besides signature analy-
sis the only other mode needed is a scan mode to ini-
tialize the flipflops and to shift out the resulting
signature. As there is no reconfiguration of the



fMipflops in self-test mode, a test at the full clock fre-
quency can be performed in order to detect dynamic
faults relevant to system operation, e. g. delay
faults, if only the test patterns for the primary in-
puts are supplied fast enough. By targeting the state
assignment algorithm towards MISR state regis-
ters, the combinational logic needed to implement
the system function can be optimized in the same
way a controller with D-flipflops can be optimized.
This way the overhead for parallel self-testable con-
trollers is greatly reduced.

If the MISR is too short to achieve a reasonably
low aliasing probability, it can be extended by com-
bining it with other conventional signature regis-
ters or a circular self test path. This is illustrated in
Fig. 4. During the test mode the multiplexer
connects the registers to form one long signature
register, In system mode it disconnects the state
register of the controller from the rest of the circuit.
With this solution the advantages of the parallel
self-test structure of Fig. 3 are retained, because
switching between the two modes does not require
additional circuitry in the data path, the critical
path is not changed, and the controllability of the
parallel self-testable circuit is not reduced, provided
that the gontanta of the signature reglilérs come
bined are independent of each other.

other parts parallel sell-testable  other parts
of the circuit controller of the circuit
! }’ b
4 L
L. -e 5 r LX) ll 5 ann
)
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Fig. 4: Extended signature register to reduce aliasing.

4  Testability Analysis

Since the state transition graph of the controller
of Fig. 3 in self-test operation is identical to the
system state transition graph, the corresponding
Markov process contains an irreducible chain with
all the specified states. If the combinational logic is
irredundant, it is in principle controllable because
of Theorem 1. The same fact obviously holds for the
extended signature register of Fig. 4, if the values in
the different parts of the signature register are in-
dependent. To use this controllability in practice, a
pertinent sequence of input signals has to be
supplied. This can be done by a circuit producing
precomputed deterministic patterns [e.g. Daeh 83,
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AkJa 89] or pseudorandom patterns with optimized
input probabilities [e.g. Wund 87]. The test with
pseudorandom patterns is analyzed in more detail
later this section. All dynamic faults occuring in
system mode can be excited in the structures of Fig.
3/4, since all the possible state pairs (s, 8*) occuring
during system operation can also be produced in
test mode given a pertinent input sequence.

A further question for parallel self-test gtructures
is, whether the observability to be provided by
replacing the state register with a signature
register is not impaired because of increased fault
masgking. Let f be a fault which causes the circuit to
enter a faulty state S@. Assume that no more fault
occurs after that point. The fault is masked after
exactly L test patterns, if for the first L. - 1 patterns
Ti, 1 €i < L, the circuit was in a faulty state S¢
while producing correct outputs O! and returns to
the correct state SU after pattern TL (see Fig. 5).

fault masked

gl gl b @
nll

Fig. 5: Correct and faully state sequence and fault masking.

Let the probability to produce the correct output in
a faulty state be pp, the probability to reach the
correct next state from a faulty state pg and let these
probabilities be statistically independent. The
probability Pg to go from a faulty state S¢i to a faulty
next state Sg+l while asserting the correct output O;
then is
Pr=(1-ps)*po. (8)
The probability of fault masking after exactly L
patterns Pp(L) is

Pp(L) =Pl . pg e po = i Esps « (1 - ps)L - pol. (9)

If after a fault was exposed N additional test

patterns are applied, the fault can be masked by any

of the patterns T!, ... TN, The overall fault masking

probability Py then is
N

N

Pus Y Pyl = 22— $ 11 <ps)epolk
LE_:I Tove Ei ps) * PO

PS _[I—I(l—ps)-po]”*l ]
1-ps I-(0-ps)*po ~

A

PS [ 1 1]
l1-ps [1-(-pg)epo ~

PS * PO
=557 76

(10)
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Example: The following derivation is not necessa-
rily applicable to concrete circuits, but should
give an estimate of the order of magnitude fault
masking probabilities would have. If the proba-
bility to assert the correct output in a faulty state
is equal to the probability of obtaining any other
output, we get po = 2°9, where q is the number of
output variables. If the probability to reach the
correct next state is equal to the probability to
reach any other state, we additionally have pg =2,
where r is the number of state variables. For an
extended signature register (Fig. 4) r is increased
accordingly. Thus we get

- 2-r+q) (11)

o
M< or2e-1)+1
For r = b state variables und q = 20 output vari-

ables, this formula gives a bound on the fault
masking probability of Py < 2,98 - 108,

In the sequel we analyze the dependence of input
probabilities, test length and test confidence in the
structure of Fig. 6, where weighted pseudorandom
patterns are supplied at the primary inputs of the
parallel self-testable circuit structure by a generator
of unequiprobable random tests (GURT, [Wund 87]).
For that purpose some more background about
Markov processes is needed.

corl_'lbinal.ioml

N logic

S3cD
=

signature register

Fig. 6: Parallel self-test with pseudorandom patterns.

A vector of state probabilitis pS® in a Markov pro-
cess with transition probability matrix P is called
stationary, if pS® = pS* « P. A state S; has a period tp,
ifpii® =0 for all t # k+tp, ke IN, and t; is the small-
est such number. If there exists a state S; with p;; =
0 and the Markov chain is irreducible, every state of
the chain has the period t; = 1 [FrHW 79). The chain
is then called aperiodic. A Markov chain is called
ergodic, if there exists a t such that for all state
pairs S;, Sk pik(!! > 0. Every irreducible and aperi-
odic Markov chain with finite state set is ergodic.
For every irreducible and ergodic Markov chain the
value lim pSt exists and is identical with the unique
stationary vector of state probabilities pS* with

; prob[S;] = 1 [Fell 57). Using the Jordan normal
1]

form of matrix P and sorting the eigenvalues in de-
scending order 1 = 43 > IA2l 2 ... 2 14,1 > 0, we
have
B
lim Pt = 135_:.2 At-P; =Py. (12)
i=1
Hence the speed with which the stationary distribu-
tion pS® = lim pSO « Pt = pSO « P, of state probabilities
is reached mainly depends on the second largest
eigenvalue 1421 of the Markov-Matrix P.

Since most state transition graphs of controllers
contain a transition from a state to itself, e. g. from
the reset state back to the reset state with a reset
signal, the corresponding Markov chain is aperi-
odic. As it is also irreducible, instead of time-vari-
able state probabilities after a certain number of test
patterns the stationary probability distribution pSs
may be used. Finding pS* only requires solving a
system of linear equations, whose parameters are
determined by equation (3).

The confidence of a random pattern test of length
N corresponding to the input probabilities pl is the
probability to detect all possible faults of a fault set f;
€ F by applying N patterns. Let pg(pl, pS) be the
probability that fault f; is exposed at the primary
outputs o or the flipflop excitation outputs y of the
combinational logic if a random vector correspond-
ing to pl is applied to the primary inputs and one
corresponding to pS is applied to the state inputs.
Formula (3) shows that the stationary distribution
pS*(pl) depends on the input probabilities, so does
the fault exposure at the output and next state
signals pa(pl, pS#(pI)). Hence the probability that N
random patterns according to pI do not expose fj is
(1 - pe(pl, pS*(pINN, and in [Wund 90] it is shown
that all faults are exposed at least once with a
probability very close to
INGD = [T (1 - - p(pl, pSHPDHN).
fieF
In addition we have to consider fault masking and
obtain a test confidence Cn(pl) of
Cn(pI) = (1 — Pp) - IN(pI). (14)

From (13/14) the necessary test length N to achieve a
given test confidence C can be computed. A fault-
free simulation has to be performed to make sure
that after the pattern generator for the primary in-
puts returns to its initial state the state of the circuit
under test is different from its initial state.
Otherwise the same input / state combinations
occur again and no new faults can be detected.

(13)



5 Synthesis Process

Until now we have shown that the circuit struc-
ture for a parallel sell-test without disjoint system
and test modes has several advantages and that the
test can be performed with high fault coverage and
low aliasing. In this section it is shown that by tar-
geting the state assignment towards MISR state
registers, the combinational logic to implement the
system functionality can be optimized in the same
way a controller with D-flipflops can be optimized.

If a MISR instead of D-flipflops is used as state
memory, a function fpm(i, 8) has to be implemented,
which is different from the next state function
fs(i, 8). For the minimization of the combinational
logic this difference is not very important, since the
flipflop excitation function can be easily obtained
from the current and next state codes and a MISR
description with equation (7). This function together
with the output function fu(i, s) can then be mini-
mized with conventional programs for combina-
tional logic synthesis.

Further optimization requires an adaptation of
the state assignment procedure to the modified tar-
get structure. If a conventional procedure is used,
the state assignment is optimized such that y =
fs(i, s) is well minimizable. The same state assign-
ment used for MISRs gives results, which do not
differ significantly from random state assignments
(see Table 1 for a PLA target). With a state assign-
ment targeted to make fyq(i, 8) well minimizable,
the combinational logic can be implemented much
more efficiently. This is also shown in Table 1 for
some examples from the sequential synthesis
benchmark set [MCNC 88).

MISR solution / state assignment ...

example ... optimized® ... random ... optimal
for D-FF's _ {© 50 tries) for MISR's

bbtas 14 13.6 6

beecount b 19.9 14

dk14 4 448 =

dk15 p+] 26.5 b1

dk17 - 24.7 19

dk27 12 11.2 1

ex6 n 3317 20

lion 7 15 7

me 9 9.8 9

s8 11 10.7 B

shiftreg 9 73 3

tav 11 10.2 9

traind 9 7.0 i 4

Table 1: Number of product terms for f\{(i, ) and foli, ).

2 State assignment was done with the program nova
[ViSa 89].
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The sequence of code bits influences the combina-
tional logic for MISR state registers because of the
direct dependence of excitation variables on the con-
tents of other flipflops in the MISR. For r state vari-
ables and n states the number of non-equivalent
state assignments is

27

SA(r, n) = @-ni
It exceeds the number relevant to D-flipflops by a
factor of rl. Conventional state assignment algo-
rithms cannot cope with the complex dependences
in MISR state registers. Algorithms for T- and JK-
flipflops [WeDo 69, TuBr 74] have been published,
but do not help since in these cases the value of the
i-th excitation variable y; only depends on the con-
tents s8; of the i-th flipflop. Consequently it is
necessary to develop a new state assignment algo-
rithm for this application. Since state assignment is
NP-hard [WoKA 88), heuristics have to be employed.

The goal is to devise a divide-and-conquer strate-
gy, in which the set of states is recursively parti-
tioned into two sets, one encoded with a code bit 0,
the other with a 1. When only one state is left in a
partition, its encoding is different from the
encoding of all other states. The partitioning and
assignment is done such that a cost function
reflecting the complexity of realizing the next state
and output logic is minimized. To obtain such a cost
function, however, is more difficult than for D-
flipflops because the values of the excitation vari-
ables depend on other state variables. The idea used
is that once an encoding for one state variable s; is
fixed, the excitation variable y; can be derived from
8i.1 and the code of the next state variable s;*.
Alternatively, s;* can be chosen such that y; be-
comes as simple to implement as possible, so at any
point in the state assignment process the cost of the
next assignment can be estimated. In this column-
based approach one state variable is assigned after
the other for all the states (see Fig. 7).

(15)
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]

Fig. 7: FSM transition/excitation table with state assignment
dependences.

l.:)nly the determination of the first state variable
8] is problematic, as the implementation effort for Y1



cannot be estimated before all the other coding
columns are known. However, it is possible to esti-
mate its effect on the complexity of the output func-
tion f,(i, 8) and to use this information to choose 8.
After the state assignment is completed, an addi-
tional degree of freedom can be used to reduce the
amount of logic for y1 by choosing the MISR
feedback function M(g) in such a way that y; =
81* @ M(s) is minimized. Even if a primitive
feedback polynomial is required, in general there
are still several choices. The synthesis process for
controllers using the target structure of Fig. 3/4 is
summarized in Fig. 8.

procedure MISR_stale_assignment
read FSM description;
for a sal of feasibla encodings of variable sq:
eslimate the cost lor implementing 15(i, 5):
choose the encoding s1°F* with least cost;
for all state variables §;, I=2, ..
for a set of leasible encodings of variable s;:
compuie yj = §i.1 B §5*;
eslimate the cost for implementing Io(l, ) and y2, ... yi:
choose the encoding s with leas! cosl;
for af possible MISR leedback functions M(s):
compute yy = M(s) @ s1*;
eslimale the cosl for implementing Io(i, s) and Il s):
choose the function MOP!(s) with least cost;
minimize 1o(i, s) and i, s):
return the oplimized FSM implementation;
end,

Fig. 8: Synthesis process for controllers with MISR state
registers.

Example: Boundary Scan Controller

For implementing a chip conforming to the IEEE
P1149.1 Boundary Scan Standard [IEEE 90}, a
standardized test interface for controlling the on-
chip test equipment has to be provided. The test
interface consists of an instruction register,
boundary scan registers and a control unit to
coordinate different test actions. Obviously it is
desirable for this test access port (TAP) to be tested
as well. An external functional test of the TAP
controller requires 589 + 23 N; + 12 N4 test patterns,
where N;j is the width of the instruction register and
Ng the width of the data register [DaUY 89]. A
structural test requires a scan path to be incorpo-
rated, e. g. an LSSD solution like the one proposed
in [IEEE 90]. Since the boundary scan pins may not
be used to test the TAP itself, additional pins would
be necessary for that purpose.
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The circuit structure of Fig. 3/4 allows to imple-
ment a self-testable TAP controller without addi-
tional pins, which tests itself while it is used with-
out requiring a separate test phase. Using the opti-
mized synthesis procedure it can be realized with a
low hardware overhead (see Fig. 9). Since the con-
troller is a Moore automaton, output and next state
logic are realized separately, MISR; is used as state
register. Like in [DaUY 89] the instruction register
is included in the test. Some outputs of the con-
troller as well as the instructions are observed in an
additional signature register MISR3.

to boundary sean 4
data registers 1
instr. latches | £3%
from o o
o1 nstr. reg DO
Ni* [y

p

logic

Fig. 9: Parallel self-testable boundary scan TAP controller.

While used, the circuit is controlled by the pri-
mary inputs TRST (Test Reset), TDI (Test Data In)
and TMS (Test Mode Select). These inputs concur-
rently serve as test patterns; additional test patterns
for the output logic and the next state lines are
automatically produced by MISR;. The test re-
sponses of the controller’s next state and output
logic as well as the contents of the instruction regis-
ter are compacted in the signature registers MISR;
and MISRg, which are connected according to Fig.
10 to reduce the probability of aliasing.
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H i
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Fig. 10; Signature analysis in the TAP controller.



In order to determine the aliasing properties of
these registers we use a result of [WiDa89]:

Lemma 3: If the transition matrix of a signature
register of length R is nonsingular, its aliasing
probability for long test sequences converges to-
wards 2R,

Theorem 4: For long test sequences the fault
masking probability of two signature registers
connected according to Fig. 10 converges to 2R,
where R is the sum of the lengths of both
signature registers, if none of the signature
registers is degenerated.

Proof: The combined signature register is described
by the equation 8* = M+s @ y, where the transition
matrix M depends on the feedback polynomials
ml(x) =1 + myx + ... + mx" of MISR; and m%(x) =
1 + Mr4iX + ... + mpxP of MISR9:

-m| “1-! s me m' 0 sss  mes mas 0

1 0 «wwn 0 : 3

0 1 ° I :
M 0 01 0 0 wiw i 0

m, m, - M, M, M, =

0 - w0 1 0 e 0

: 0 1 i

..D sea N e s 0 D ]

If none of the registers is degenerated, m; = mp =
1. Then the determinant of M is different from 0,
i. e. M is nonsingular. Therefore with Lemma 3
we get Theorem 4. (i8]

Most of the output signals of the controller can be
observed indirectly via the instruction register, so
they can be excluded from the signature analysis
process. The resulting signature can be checked via
the boundary scan path by connecting MISRg2 to the
boundary scan data registers, The interface to the
self-test control on the next higher hierarchical
level stays the same, the test of the TAP controller

only extends the length of the signature to be shifted
out.

design alternative total area crit. path (comb. logic) in ns

in A2 next state logic output logic
conv, self-test 768 %683 524544 45 a
parallel self-test 659 x616 405544 3 ]

Table 2: Layout results for the TAP controller.

In Table 2 we compare two standard cell designs
of the TAP controller, one with separate pattern
generation and signature analysis registers
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(conventional self-test) and the combinational logic
from [IEEE 90), the other with MISR state register
and parallel self-test. The savings both in area and
in delay are significant. (The signature register
MISR2 for observing the primary outputs, which
would be necessary in both cases, was not included
in the comparison shown below.) The state en-
coding used to obtain these results for the state
register in Fig. 10 is given in Table 3.

Test-Logic-Reset 0000 Update-DR 1000
Run-Test/Idle 0010 Select-IR-Scan 0110
Select-DR-Scan 0100 Capture-IR 1110
Capture-DR 1010 Shin-IR 1111
Shift-DR 1011 Exitl-IR on
Exitl-DR 0001 Pause-IR 0111
Pause-DR 0011 Exit2-IR 1101
Exit2-DR 1001 Update-IR 1100

Table 3: State encoding for the TAP controller.

For a complete test of the instruction register it is
suflicient to exercise the 4 possible state transitions
0-0,0-1,1-0,1- 1 for each register cell.
While using the boundary scan hardware of a chip,
this will generally be ensured. To obtain a simple
model of TAP usage, we assumed an input se-
quence, in which the instruction EXTEST
(instruction code 00...0) and the instruction
BYPASS (instruction code 11...1) are read in. In be-
tween data are shifted into the boundary scan data
register, are enabled, and test responses are shifted
out again. This roughly corresponds to a connection
test using boundary scan.

With this short input sequence it is already
possible to detect over 99% of all single stuck-at
faults in the circuit (controller + instruction regis-
ter) including the memory elements by comparing
the resulting signature with the correct signature.
The other faults are potential detects and corre-
spond to stuck-at faults of the reset signals (e. g.
TRST). They can only be safely detected, if the
flipflop contents are defined before the reset.

In summary a boundary scan controller with the
parallel gelf-test structure of Fig. 3/4 was designed,
which is automatically tested during the normal
usage of the boundary scan facilities. Neither have
special test patterns to be applied, nor are special
test control signals necessary, The solution only re-
quires moderate hardware overheads and does not
slow down system operation. It facilitates the detec-
tion not only of static faults but also of dynamic and

even transient faults occuring while the circuit is
working.



We also validated the results concerning a test
with random patterns. For a random test of the
TAP controller with pl = prob[TMS = 1] = 3 the
second largest eigenvalue ig A2 = 0.809 and starting
in the state "Test-Logic-Reset” the vector of state
probabilities pSt satisfies the condition || pS® - pStf <
0.001 already after 15 test patterns. To obtain a
probability of 99.9 % for a detection of all faults, N =
1349 random test patterns are needed. This number
is only 30 % larger than the 1057 patterns that
would be needed if the 1-probabilitieg of all state
variables could be independently set to 5. A detailed
fault simulation shows that the proposed parallel
self-test technique is able to achieve a 100 %
coverage of all stuck-at faults and aliasing can be
greatly reduced by connecting the MISR state
register to the signature register for the outputs,
whereas for a state register implementation with D-
fMipflops fault masking would cause serious
problems (see Fig. 11).

faults detected (%)
100 -

0 1

\_

: 't
o without fault masking
® with fault masking

# D-FFe instead of MISR
test length N

Fig. 11: Fault coverage as obtained from fault simulation.

7 Conclusions

A novel circuit structure for sequential circuits
with parallel self-test was presented, in which the
signatures can be safely used as test patterns. With
this structure the self-test register is simplified as
well as the self-test control. Testing for dynamic
faults, e. g. delay faults, becomes possible.

The best self-test solution is to apply weighted
pseudorandom patterns at the primary inputs of the
circuit to sensitize possible faults. To optimally uti-
lize the ensured controllability of the novel circuit
structure then requires new algorithms, with
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which the weight distributions of pseudorandom
patterns can be determined such that for a given
test confidence level the test length is minimized.
More work is also needed to efficiently obtain closer
estimates of the fault masking probability based on
the structure of the circuit under test.

Hardware overheads can, however, be kept low by
explicitly considering the self-test structure during
the optimization steps of the synthesis process. As
example application the design of a parallel self-
testable boundary scan controller was presented
and the possible savings were shown.
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