ERROR MASKING IN SELF-TESTABLE CIRCUITS

Albrecht P. Stroele, Hans-Joachim Wunderlich

University of Karlsruhe
Institute of Computer Design and Fault Tolerance
(Prof. Dr. D. Schmid)
P. 0. Box 6980, D-7500 Karlsruhe 1
Federal Republic of Germany

ABSTRACT:

In a self-test environment signature analysis is used to compact
the test responses. In large circuits the test execution is divided
into a number of subtasks each producing a signature in a self-
test register. Aliasing occurs, if a faulty response sequence leads
10 a correct signature in a signature register. Aliasing probabili-
ties for single signature registers are widely investigated.

In this paper the effects of error masking in a multitude of signa-
ture registers are analysed. It is shown that a self-test can always
be scheduled such that evaluating signatures only at the end of
the complete test execution is sufficient. A method is presented
to compute the probability that a fault leads to at least one faulty
signature in a set of self-test registers. This method allows the
computation of the fault coverage with respect to the complete
test execution. A minimal subset of all self-test registers can be
selected, so that only the signatures of these self-test registers
have to be evaluated and the fault coverage is almost not af-
fected.

The benefits of this approach are a smaller number of self-test
registers in the scan path, a smaller number of signatures to be
evaluated, a simplified test control unit, and hence a significant
reduction of the hardware required for built-in self-test struc-
tures.

Key words: Built-in self-test, error masking, fault coverage,
signature analysis.

1. INTRODUCTION

With increasing circuit complexity, self-test using pseudo-
random or (pseudo-)exhaustive test patterns is receiving more
and more attention and its importance is still growing due to its
well-known advantages [12]. One or more test pattern genera-
tors (TPGs), e.g. linear feedback shift registers (LFSRs), pro-
duce patterns that are applied to the inputs of the circuit under
test (CUT). The test responses of the CUT are fed to a multiple
input signature register (MISR) and compressed into a signature
(see figure 1). By comparing the signature obtained for the fault-

Paper 26.2

544 1990 International Test Conference

free circuit, it is decided if the tested circuit is faulty, However,
even false test responses may result in the correct signature.
This is called error masking or aliasing.

CuT

Figure 1: General test configuration (one test unit)

Larger and more complicated circuits cannot be dealt with in this
manner, but they can be made self-testable using multi-mode
self-test registers (STRs) like the well-known BILBO (built-in
logic block observer [8]) or GURT (generator of unequiprob-
able random tests [16]). In the test mode STRs generate patterns
or perform signature analysis. By an appropriate placement of
these STRs the circuit is subdivided into segments that are com-
pletely bounded by STRs as in figure 1. These segments are
called rest units. Each test unit contains exactly one STR, that is
configured as an MISR when the segment is tested, and a set of
STRs that generate test patterns for all the inputs of this seg-
ment. A test unit can be tested independently from the rest of the
circuit. Thus the test of the whole circuit (global test) consists of
processing all the test units. But up to now investigations of the
aliasing probability in signature analysis only deal with a single
signature register, as it is used within one single test unit (see
[31, [41, [7], [13], [14], and others).

To reduce the time required for the global test one tries to pro-
cess as many test units in parallel as possible. The problem of
test scheduling is to organize the execution of all the single test
units so that the available resources are optimally utilized.
Scheduling algorithms are presented in e.g. [2]. In order to
obtain a completely self-testable circuit, the test schedule must
be implemented by a test control unit. It is a common practice to
read out the contents of the STRs and evaluate the signature,

CH2910-6/0000/0544$01.00 © 1990 IEEE

every time the test of a test unit has been completed. This
usually implies that all STRs must be integrated into a scan path.
In addition, the task of the test control unit becomes quite
complex.

In this paper we discuss some conditions for the test registers
and the test schedule, which allow the contents of the STRs to
be read out just once, when the global test is completed. Fur-
thermore, it is shown that only the signatures in a subset of all
STRs have to be evaluated, in order to get sufficient fault cover-
age and a low fault masking probability. This yields important
advantages:

» Shorter scan path (only a subset of the set of STRs is
integrated into the scan path)

» Fewer signatures to evaluate

® Simple test control

All three points contribute to a significant reduction of the addi-
tional hardware needed for a built-in self-test.

To achieve these results, we analyse the effects that a faulty sig-
nature, occuring at some time during the test, can have in the
further course of the test execution. In particular, we investigate
how faulty signatures are propagated through a circuit. We pre-
sent a method for computing the probabilities of faulty signa-
tures in the STRs in these situations. We assume that each test
unit is processed exactly once (without interruption). Then each
STR is used as an MISR just once in the test schedule. This
restriction eases clarity of presentation and the extension to the
general case is straightforward.

In section 2, we analyse what effects a faulty signature can have
during test execution. Section 3 establishes a formalization of
the problem by means of a system of boolean equations. There
is a unique solution for this system of equations and a method
for computing the probabilities of faulty signatures is presented
in section 4. Section 5 extends these ideas to the computation of
fault coverage and the selection of a minimal set of STRs whose
signatures have to be evaluated. Section 6 demonstrates the
method with an example and some simulation results that con-
firm the computed values. In section 7, some extensions of the
presented method and subjects of further research are briefly
discussed. The paper concludes with a summary in section 8.

2. PROPAGATION OF FAULTY SIGNATURES

Generally an LFSR with primitive feedback polynomial is used
as signature regisier. With increasing test length the aliasing
probability asymptotically converges to the value 2%, where k
is the length of the LFSR that is used as signature register [14].
The authors of that paper assume that consecutive bit errors
(differences from the fault-free case) at the inputs of the signa-

ture register are statistically independent. However, depend-
ences may exist between the bit errors, simultaneously occuring
at different inputs of the signature register. This result is valid
not only for LFSRs, but also for cellular automata with linear
state transition functions.

If a fault is detectable by the generated pattern sequences, in at
least one test unit a bit error will occur at the inputs of the signa-
ture register. Without aliasing, a faulty signature will be pro-
duced in this signature register. Let us assume that this STR is
not initialized again. If the STR with incorrect contents is used
in one of the following test units to generate a test pattern
sequence, this sequence will not be the same as the sequence
produced with the correct starting value. In this case the STR
will retain a faulty signature and with a high probability (see
section 4) the new pattern sequence will cause a faulty signature
in the signature register of the second test unit, too. In this way
faulty signatures may propagate through the circuit.

Figure 2 illustrates this with an example. The combinational
logic block CLB is tested first, then CLB9. The combinational
logic block CLBj contains a fault. S1, Sz, S3, and S4 are self-
test registers. Provided that error masking does not occur,
a faulty signature will be in S; after processing the first test unit
(test of CLB}), and after the second test unit (test of CLB2,
using S1 and S4 as test pattern generators) a faulty signature will
be in S1, too, although there is no fault in CLB.

fault

CLB2 |

faulty signature

Figure 2: Propagation of faulty signatures

A faulty signature that occurs during test execution may cause
further faulty signatures, even in parts of the circuit that are
fault-free. Faulty signatures can propagate only in the direction
of the data flow. Furthermore, the propagation depends on the
test schedule that specifies the succession of the test units when
the test is executed.

Paper 26.2

In the subsequent sections we make the following assumptions:
a) All STRs are initialized correctly before test execution
begins. (The ecxtension to the general case is

straightforward.)

b) When an STR is operating in signature analysis mode its
contents are not used at the same time as test patterns.

¢) When an STR is operating in pattern generation mode its
function is not affected by the incoming data sequence.

d) No faulty signature is lost by clocking the STR in normal
mode (system mode) or by initializing it at an inappropriate
time. (The extension to the general case is straightforward.)

€) Every STR is scheduled only once for signature analysis.

The conditions b) and ¢) ensure that the generated patterns do

not depend on the circuit function and are pseudo-random or

pseudo-cxhaustive.

Affter the processing of a test unit an STR is in one of two differ-
ent states:

State "0": The contents of the STR correspond 1o that of the
fault-free case.
State "1": The contents of the STR differ from that of the

fault-free case, i.e. the STR contains a faulty signa-
ture,

The state of an STR operating in TPG-mode will remain
unchanged. A correct/false starting value will always lead to
a correct/false final value (last pattern of the generated pattern
sequence). This is true for all self-test registers based on LFSRs
and cellular automata with linear state transition functions,
However, when an STR is operating as a signature register, its
state may change if the processed test unit contains a detectable
fault or at least one of the involved pattern generating STRs has
Bot an incorrect starting value and consequently produces a dif-
ferent pattern sequence. Due to conditions d) and e), the state of
the STR does not change any more afterwards. Thus the prob-
ability for error masking is the same if the signature is read
immediately after the signature analysis phase and after the
completion of the global test, respectively.

3. MODELING AND FORMAL REPRESENTATION

In this section the generation and propagation of faulty signa-
tures (incorrect STR-contents) during test execution is modeled
by means of a graph. Then a method is presented for generating
a system of boolean equations to describe the conditions for the
occurrence of faulty signatures. We are using the following
notations:

Test units: Uj, U2, .o U
Sclf-test registers (STRs): 81, 82,....Sn, B2m
Length of self-test register Si; k;

Self-test registers used in test unit u;:
TPG(uj) = [Sg! Sy is used for test patiern
generation in test unit u;),
§; is used for signature analysis in test unit u;.
(Primary inputs and primary outputs are treated in the same way
as STRs.)

3.1 Graph representation

For u self-test configuration which satisfies the conditions a) to
¢), a graph can be constructed for modeling the generation and
propagation of faulty signatures, if the following informations
are given:
* Circuit structure (including built-in STRs)
» Test schedule as a ordered set of wst units
(uy, vy, ..., Um)
* Location of a single or multiple fault F in the circuit, repre-
sented as a set of test units
Ug = (uj | Fis located in test unit uj)

The paths of the signature graph G = (V, E) model how faulty
signatures caused by the fault F can propagate to other STRs
while the test units are processed. The graph contains nodes
vEji €V representing the fault F in test unit u; and nodes v; eV,
representing STRs S;, that can get incorrect contents. STRs that
can never get incorrect contents during test execution do not
appear in the signature graph. If the fault F is located in test unit
uj and thus may cause STR S; to get incorrect contents, the cor-
responding nodes of the graph are connected by a directed edge
(vrj, vi) € E. Similarly if an STR §; is operating in TPG-mode
with an incorrect starting value and thus can cause another STR
§j to get incorrect contents, the corresponding nodes are
connected by a directed edge (vj, vj) € E.

The signature graph G is formally described by:

V= [viilueUr}
U {vil uieUr v3glvgeV A SgeTPG(uj)])

E = ((vpivi)| ugUg)
U {{vg, vi) | vgeV A Sge TPG(u))

We clarify this definition by using the matrix multiplication cir-
cuit of figure 3 as an example [5]. The circuit contains combina-
tional logic blocks (CLB), pipeline-structured sequential logic
blocks, and self-test registers (Sj).

fault F

primary outputs

Figurg 3; Circuit for matrix multiplication with built-in self-

test registers S;
Test pattem signature | starting | terminating
unit | generating | register time time
register(s)
ug S4, Ss S 0 f
u Ss 82 0 u
u3 Ss S3 0 8]
ug S6 Sy] 2
us 51, 82 Ss 1 2

Table 1; Test units for the multiplication circuit of figure 3
(t3: termination of test units uj, uz, u3
t3: termination of test units uy4, us)

The global test is composed of the test units listed in table 1.
First, test units uj, u2, and u3 are processed, then test units ug
and us. The fault F marked in figure 3 is located in the set of test
units Ug = {uy, ug, u3}.

The circuit structure of figure 3, the test schedule of table 1, and
the marked fault F, lead to a signature graph as shown in fig-
ure 4.

VEa VE2 VE3
v va I
b
Vs

Figurc 4; Signature graph G for the multiplication circuit of
figure 3

The signature graph can be automatically constructed by the
algorithm of appendix A. This algorithm guarantees that the
signature graph does not contain any cycles.

3.2 System of boolean equations

Each node v; of the graph G corresponds to a test unit u; whose
processing can result in a faulty signature in STR S;. To de-
scribe the conditions for the generation and propagation of faulty
signatures we use the following boolean variables with values
0 (false) and 1 (true):

bi: STR S; (used in test unit uj as signature register) con-
tains a faulty signature after the processing of test unit
uj.

bgi: The fault F is located in test unit uj and can be observed
at the inputs of signature register Sj, when test unit u; is
processed.

e Provided that there were bit errors at the inputs of
signature register S;, then signature register S; contains
a faulty signawre after the processing of test unit uj.
(ci models aliasing.)

For each node vj of the graph G we set up one equation

bi=(V bvbgi)ac if veieV m
jeMrpg(vi)

and

bi=(V b)ac if vejeV
j eMrPG(VD)

where Mrpg (vi) = {gl(vg. v € E)

Paper 26.2

The equation characterizes the situation in test unit u;. If at least
one of the pattern generating STRs starts with incorrect contents
or the fault F is detectable in this test unit, then bit errors occur
at the inputs of STR S; and this STR may get incorrect contents.

4. COMPUTING THE PROBABILITIES OF
FAULTY SIGNATURES

To determine the probability that a fault F causes a faulty signa-
ture in a STR §j during the the global test, we have to compute
the probability that the boolean variable b; in the system of
boolean equations gets the value 1. We assume that the test
length for each test unit is long enough for the ransient part of
the aliasing probability to die down so that the steady state value
of 2% for the aliasing probability is sufficiently exact [14]. The
calculations of [7] and the simulation results of [13] and [14]
show that the aliasing probability converges fast to its steady
state when a LFSR with primitive feedback polynomial is used.
In general this condition holds as the test lengths increase with
the reciprocal of the lowest detection probabilities ([11], [17]).

The system of boolean equations is transformed into a system of
arithmetic equations by using the following substitions:
Boolean constantbg; — pf;j = P(bgi=1):
probability of detecting the fault F
at the inputs of signature register
S;, while test unit u; is processed
(e.g. estimated by PROTEST
(15D

Boolean constantc; — P(cj=1)=1-2%ki

Boolean variable by — pj = P(bj=1):
probability of a faulty signature in
STR §;, after test unit u; has been
processed

In [10] a method for creating the system of arithmetic equations
was proposed and in [1] an operator ® was introduced as an
abbreviation. The operator ® takes into account the dependences
among events,

Using these notations, the boolean operators are also substi-
tuted:

=bj - l-pi
bgabi — pg@pi
bgvby — 1-(l1-pg@(1-p)

Let be Mrpg (vi) = {gl(vg vid € E) ={g1, 82, .. &)
Then the arithmetic equations corresponding to the boolean
equations (1) are

pi = [1-(1-pgy) ®...® (1-pg) ®(1-pg)] ()
® (1-2%) if vejeV
and

pi=M-(1-pg)®..8(1-pg)]

® (1-2K) if vEjeV
The solution of this system of arithmetic equations can now be
determined by a procedure for computing signal probabilities as
described in e.g. [10], [15], [1]. Since the signature graph does
not contain any cycles, and the signal probabilities of all inputs
are known, each variable can be expressed as a sum of products
containing only known quantities. So the solution is unique.

The procedure described in appendix B gives an exact solution,
It is well-known that an exact computation of this kind is an NP-
hard problem. But test planning and scheduling aim at
a moderate number of STRs. The number of test units and the
number of reconvergent fanout stems in G are moderate, 100.
Hence the size of the problem is quite small, and an exact com-
putation is feasible.

5. SELECTING AN OPTIMAL SET OF
SIGNATURES

In sections 3 and 4 a method was shown for computing the
probability that a single fault F leads to a faulty signature in a
specific STR. In order to determine the probability that a single
fault leads to at least one faulty signature in a set S of STRs,
anew equation

jeA

where A={glSeS A vgeV)

is added to the system of boolean equations, and the probability
PF detected = P(Op geecied = 1) 15 computed using the proce-
dure of appendix B,

Fault coverage can be defined as the average probability for
detecting a fault [9]. Usually error masking is ignored when the
fault coverage of a self-test procedure is computed. In order to
determine the fault coverage with respect to error masking, the
probabilities Pg geecieq for all faults of the circuit are needed. All
faults located in the same test unit(s) lead to the same graph G
and the same system of equations. Thus it is sufficient to solve
the equations just once with symbolic values pg; and then insert
the actual values of pg into this solution for all these faults.

Finally we have to choose the set of STRs whose contents
(signatures) are read out at the end of the global test. Of course
evaluating all the signatures yields maximum fault coverage, but

many signatures can be omitted without a significant impact on
the fault coverage. Using the method presented above it is pos-
sible to select a minimal set of STRs, such that the fault
coverage does not drop below a given value. Certainly this set
must include the STRs whose signatures cannot propagate to
other STRs. Then the STRs that are most affected by error
masking are added to the set, until the resulting fault coverage is
sufficient. All other STRs can be implemented with less
hardware because they do not have to be readable. The test
control unit becomes simpler and also needs less hardware,
since the number of signatures to evaluate is reduced. The next
section will demonstrate these benefits.

6. RESULTS

The analysis of error masking probabilities will be demonstrated
using the example of figure 3. According to section 3.2 we get
the following system of boolean equations:

@@ b1 =br1Ack
() b2 =br2 AC2
(iii) b3 =bg3 A c3
(iv) bs = (byvby) A c5

With the probabilities of faulty signatures

P(c1=1) = P(cs=1) = 1-2-16 = 0.999985
P(cz=1) = P(c3=1) = 1-28 = 0.996094

a system of arithmetic equations is obtained (see section 4)

® p1 = pr1 @ 0.999985
(i) p2 = pr2® 0.996094
@iii) p3 = pr3 ® 0.996094
@) ps = (p1+p2—-p1®p2) @ 0.999985

and the solution with symbolic values pr,1, pF2, PF3 is

p1 = 0.999985 - pr1
p2 = 0.996094 - pr2
p3 = 0.996094 - pp3
ps = 0.999969 - pr,1
+ 0.996079 - pr2
= 0.996063 - pr,1 - pF2

For pr1=pPF2=pF3=1 we have

p1 = 0.999985
p2 = 0.996094
p3 = 0.996094
ps = 0.999985

Using the additional equation (3), we can compute the probabili-
ties for a faulty signature in at least one STR of a set of STRs.

In table 2 these values are compared with results of fanlt simula-
tion for the same circuit. In each of the independent simulation
runs a complete execution of the global test was simulated
including all test units. After each run it was checked, which
STRs contained faulty signatures.

There is no significant difference between the precomputed
values and the actually obtained frequency. For several other cir-
cuits, especially with complicated reconvergent paths in the
graph G, the computed probabilities for faulty signatures were
also validated by simulation.

Set of frequency computed probability
self-test registers | of faulty signatures | of faulty signatures
S 0.999984 0.999985
S2 0.996106 0.996094
S3 0.996074 0.996094
Sa 0 0
Ss 0.999985 0.999985
Se 0 0
S3, S5 1.000000 0.999999
Sy, 82, 83, 85 1.000000 0.999999

Table 2: Frequency (107 simulation runs) and probabilities of
faulty signatures

The results for the multiplication circuit show some remarkable
points. Although the fault F is not located in test unit us, error
masking in STR Ss is almost the same as error masking in Sj.
As a consequence one has the choice to either evaluate the signa-
ture of S; or Ss. When all potential fault locations in the multi-
plication circuit are examined in the same way as above (using
the same test schedule), it can be shown that it is sufficient to
evaluate the signatures in S3, S4, and S5 at the end of the global
test. The decrease of the expected fault coverage due to ignoring
the signatures in S and S is less than 10-5, Table 2 confirms
this for the fault F by simulation.

In this case STRs S and S can be implemented with less
hardware, because they do not have to be readable. The routing
area required for the scan path is also reduced, since only S3,
S4. S5 (and perhaps Sg) have to be integrated into the scan path.
With respect to the test control unit we have benefits, too.
Firstly, the contents of the STRs are read only once at the end of
the global test. Secondly, only the contents of a subset of all
STRs are read. And thirdly, fewer reference values for the eval-
uation of the resulting signatures are needed.

In [6] a microprogrammed control unit is proposed. The parts of

this control unit that require most silicon area are the microcode
ROM and the constant data ROM. Using our method to simplify

Paper 26.2
549

the task of the test control unit, we can reduce the length of the
microcode from 17 to 9 words, and the number of words in the
constant data ROM from 7 10 3 words. Altogether we can
implement a built-in self-test with substantially less test hard-
ware,

The circuit of figure 5 is 2 more difficult problem for the
analysis of error masking, since it contains nested cycles and
reconvergent paths, All STRs are 16 bit registers. Table 3 lists
the test units, and figure 6 shows the signature graph for the
fault F.

primary outputs

Figure 5: Circuit with built-in self-test registers S;

Again, if all potential fault locations are considered, it is suffi-
cient to evaluate only the signatures in a small subset of STRs,
namely in Sg, Syp, and S;. The length of the microcode for the
control unit is reduced from 29 to 13 words, and the number of
words in the constant data ROM from 9 to 5 words.

Test pattern signature | starting | terminating
unit | generating | register time time
register(s)
ug S S 0 1
u2 Si2 S2 0 t
u3 Se S3 0 1
g S S4] 2
us Si Ss 1 ©
us | S0 513 Sg 1 t
uy 51,82, 83 S7 1y 12
ug 81,54 Sg © s}
ug S4, S5 Sy) 13
uio 83, 87 Si0 t 13
un | S2, 86, So Su 5] Yy

Table 3: Test units for the circuit of figure 5

VE1

Eigure 6: Signature graph G for the circuit of figure 5 and
fault F

7. EXTENSIONS AND FURTHER RESEARCH

Looking back at the conditions a) to e) in section 2, the restric-
tions b) and c) are essential for all self-test strategies using
pseudo-random or pseudo-exhaustive patterns. The conditions
a) and d) can be dropped, if the signature graph is slightly
modified. STRs that are not initialized correctly are handled like
faults at the inputs and outputs of the combinational parts under
test, respectively. Initializing an STR at some time during test
execution means that this STR is forced into the correct state.
This is modeled by deleting all edges in the signature graph that
stant from the node corresponding to the initialized STR and lead
to nodes corresponding to STRs that are used as signature regis-
ters after that time.

Even condition ¢) can be dropped. STRs that are repeatedly
scheduled for signature analysis are represented in the signature
graph by one node for each signature analysis phase. These

nodes are connected by edges. This makes the equations (1),
(2), and (3) more complex. But the procedure of appendix B
still gives a unique solution,

In this paper we used the steady state aliasing probabilities.
These are very good estimates for the random and (pseudo-)
exhaustive case. But deterministic test lengths are shorter and
then the aliasing probabilities can differ from the steady state.
For this reason our approach is not generally applicable to
deterministic test strategies. The situation when the steady state
is not reached is a subject of further research. Another inter-
esting point not considered so far, is the influence of correlated
consecutive bit errors, as they are caused by faulty sequential
circuits.

On the other hand, the presented method gives a new optimiza-
tion objective for test scheduling. The test schedule should
minimize the number of signatures which must be evaluated. An
obvious heuristic for this goal is a schedule, where the order of
the test units uj corresponds to the data flow. An exact formula-
tion and solution for this problem is currently under research.

8. CONCLUSIONS

The effects of faulty signatures occuring at some time during test
execution have been analysed. The generation and the propaga-
tion of faulty signatures have been modeled by means of a graph
and a system of equations. To determine the probability that
a fault leads to at least one faulty signature in a set of STRs,
a method has been presented that gives an exact solution. This
is the basic instrument to compute the fault coverage with
respect to the global test and also to determine a minimal set of
STRs whose signatures have to be evaluated after the
completion of the global test. The presented method has been
demonstrated with an example and validated by simulation.

The benefits of this approach are threefold: fewer signatures
have to be evaluated, the number of self-test registers to be inte-
grated into the scan path is smaller, and the test control unit is
simplified. In consequence the amount of hardware required for
a built-in self-test is substantially reduced.

REFERENCES

[1] E.J. Aas, M. R. Mercer, "Algebraic and Structural Com-
putation of Signal Probability and Fault Detectability in
Combinational Circuits", Proc. International Symposium
on Fault-Tolerant Computing FTCS-17, pp. 72-77,
Pittsburgh 1987

(21

(3]

(4]

(5]

(6]

7]

[8]

1

(101

(1

[12]

[13]

G. L. Craig, C. R. Kime, K. K. Saluja, "Test Scheduling
and Control for VLSI Built-In Self-Test", IEEE Transac-
tions on Computers, Vol. 39, No. 9, September 1988,
pp. 1099-1109

M. Damiani et al., "Aliasing in Signature Analysis Testing
with Multiple-Input Shift-Registers”, Proc. 1st European
Test Conference ETC-89, pp. 346-353, Paris 1989

S. K. Gupta, D. K. Pradhan, "A New Framework for
Designing and Analyzing BIST Techniques: Computation
of Exact Aliasing Probability”, Proc. International Test
Conference ITC-88, Washington, 1988, pp. 329-342

P. Gutberlet, "Entwurf eines schnellen Matrizenmultipli-
zierers”, Studienarbeit Fakultiit Informatik, Universitiit
Karlsruhe, 1988

O. F. Haberl, H.-J. Wunderlich, "The Synthesis of Self-
Test Control Logic", Proc. COMPEURO-89, pp. 5.134-
5.136, Hamburg 1989

A. Ivanov, V. K. Agarwal, "An Iterative Technique for
Calculating Aliasing Probability of Linear Feedback
Signature Registers”, Proc. 18th Intemnational Symposium
on Fault-Tolerant Computing FTCS-18, pp. 70-75,
Tokyo 1988

B. Koenemann, J. Mucha, G. Zwiehoff, "Built-In Logic
Block Observation Techniques"”, Proc. IEEE Test Con-
ference, pp. 37-41, Cherry Hill, New Jersey, 1979

Y. K. Malaiya, S. Yang, "The Coverage Problem for
Random Testing", Proc. International Test Conference
ITC-84, pp. 237-245, 1984

K. P. Parker, E. J. McCluskey, "Probabilistic Treatment
of General Combinational Networks”, IEEE Transactions
on Computers, Vol. 26, No. 6, June 1973, pp. 668-670

J. Savir, P. H. Bardell, "On Random Pattern Test
Length", IEEE Transactions on Computers, Vol. C-33,
No. 6, June 1984, pp. 467-474

D. Schmid, H.-J. Wunderlich et al., "Integrated Tools for
Automatic Design for Testability", Proc. IFIP WG 10.2
Workshop on Tool Integration and Design Environments,
Pp. 233-258, Paderborn, FRG, 1987

T. W. Williams, W. Daehn, "Aliasing Errors in Multiple
Input Signature Analysis Registers”, Proc. 1st European
Test Conference ETC-89, pp. 338-345, Paris 1989

Paper 26.2
551

[14] T. W. Williams, W. Daehn, "Aliasing Probability for
Multiple Input Signature Analysers with Dependent
Inputs”, Proc. COMPEURO-89, pp. 5.120-5.127, Ham-
burg 1989

[15] H.-J. Wunderlich, "PROTEST: A Tool for Probabilistic
Testability Analysis”, Proc. 22nd Design Automation
Conference, pp. 204-211, Las Vegas 1985

[16] H.-J. Wunderlich, "Self-Test Using Unequiprobable
Random Patterns”, Proc. International Symposium on
Fault-Tolerant Computing FTCS-17, pp. 258-263,
Pittsburgh 1987

[17] H.-J. Wunderlich, "Multiple Distributions for Biased
Random Test Patterns”, Proc. International Test Con-
ference ITC-88, pp. 236-244, Washington 1988

Appendix A: Algorithm to construct the signature
graph of section 3.1

begin
V=0
E=02;
for i=1,2,...,m
begin
/* if a faulty signature may result */
if (uieUr v 3g[vgeV A SgeTPG(y)])
begin
/* add new node (signature register) */
V=Vu {vil;
if (ujeUg)
begin
/* add new node (fault) */
V=Vu {vgi}i
/* add edge from fault node */

E=EuU {(vr; vi)}
end

for all vge{vplvheV A Spe TPG(uy))
/* add edges from other nodes (TPGs) */
E=EuU {(vg vi}

end

end.

Paper 26.2
552

Appendix B: Procedure to compute the probabilities

1)

2)

3)

4)

of faulty signatures (see section 4)

Determine the set of all reconvergent fanout stems in the
signature graph G:
Mg = {ilvjis areconvergent fanout stemin G) .

Order the equations of the system with respect to increas-
ing indices i of the variables p; on the left side of the equa-
tions. (This is the chronological order of the correspond-
ing test units in the test schedule and also agrees with
traversing the graph G from the roots to the leaves.)

Process all the equations in this order one by one:

Let Q; be the next equation. In the order of decreasing
indices i substitute all variables p; with ig Mg on the right
side of Qj by the right side of the equation for p;. After
each substitution step:

. Execute multiplication operations and use distribu-
tivity until the right side of the equation consists
only of a sum of products (including ®)

collect constant values
reduce p; ® p; = p; as far as possible using associa-
tivity

Process all the equations in reversed order (beginning with
the last equation) and step by step substitute all variables
pi with ie MR. The substitutions are done in the same way
as in 3).

