
Proceedings First European Design Automation Conference (EDAC), Glasgow, 1990

Tools and Devices Supporting the Pseudo-Exhaustive Test
Sybille Hellebrand, Hans-Joachim Wunderlich

Institute of Computer Design and Fault-Tolerance
(Prof. Dr. D. Schmid)

University of Karlsruhe
P. O. Box 6980

D-7500 Karlsruhe
Federal Republic of Germany

Abstract:
In this paper logical cells and algorithms are presented sup-
porting the design of pseudo-exhaustively testable circuits. The
approach is based on real hardware segmentation, instead of
path-sensitizing. The developed cells segment the entire circuits
into exhaustively testable parts, and the presented algorithms
place these cells, under the objective to minimize the hardware
overhead.
The approach is completely compatible with the usual LSSD-
rules. The analysis of the well-known benchmark circuits shows
only little additional hardware costs.
Keywords: Pseudo-exhaustive test, automatic design for testa-

bility.

1. Introduction
The pseudo-exhaustive test, sometimes called verification test,
retains almost all benefits of an exhaustive test, whereas the
complexity is reduced in many cases [McBo81].
For a primary output o of a combinational circuit, the cone Co is
the minimal subcircuit containing all nodes, which are on a path
to o (fig. 1).

i1
i2

i5
i6

i3

i4

i7

&

&

≥1

≥1

=1

=1 o1

o2

o1C

o2C

Figure 1: Cones of outputs o1 and o2.
A cone is tested by enumerating all patterns at its primary inputs.
The sum of all these patterns is smaller than an exhaustive test, if
the cones are sufficiently small. The total size t of a pseudo-
exhaustive test set is estimated by the inequation

2l ≤ t ≤ m · 2l, (1)
where l is the maximal number of inputs of the cones, and m is
the number of primary outputs. This test strategy is also appli-
cable to sequential circuits, if a scan path is integrated. An obvi-
ous advantage is the high fault coverage, within a cone all com-
binationally faulty functions are detected. A faulty sequential be-
havior induced by stuck-open faults can be detected by applying
special pattern sequences as described in [WuHe88].

The high fault coverage is obtained without an expensive test
pattern generation, optionally the number of necessary patterns
can be reduced by some compaction techniques [McCl84a],
[Aker85]. Unfortunately a pseudo-exhaustive test is not appli-
cable, if a primary output depends on a very large number of
primary inputs. This problem is solved by circuit segmentation,
where essentially two techniques are proposed: Sensitizing tech-
niques assign fixed values to some primary inputs, in order to
sensitize paths to some regions of the circuit which are exhaus-
tively tested [Udel86], [McBo81]. Hardware segmentation cuts
some circuit lines logically during a test mode by some additional
circuitry [McBo81].
In the presented approach, the hardware segmentation is sup-
ported. A uniform technique is presented integrating the scan
design and the segmentation of the combinational network, in a
similar way as proposed in [Bhat86]. The authors of this paper
propose to integrate LSSD-latches into the combinational net-
work, such that the circuit function is not altered. But the system
operation of the circuit is slowed down, and they have to inte-
grate additional latches only for timing reasons. This leads to a
considerable hardware-overhead.
In the presented approach, we use special segmentation cells,
which are compatible with the usual LSSD design styles, as e.g.
the L1/L2*-technique, and which do not alter the system mode
of the circuit in any way. Benefits are a less complex partitioning
problem, lower hardware-overhead, and minimal drawbacks
concerning the circuit speed. The cells are placed into the combi-
national network and can be used as pseudo-primary inputs or
outputs. In order to minimize the hardware overhead, several cell
placement algorithms based on hill-climbing and simulated
annealing techniques have been implemented.
In the second section of the paper, we discuss the classical hard-
ware segmentation techniques, sketch some rules of the LSSD-
technique and state some requirements the segmentation cells
have to meet. The new cells are presented in more detail in sec-
tion 3. Section 4 gives a graph-theoretic formulation of the cell
placement problem. Since this problem is np-complete, we use
some heuristics to obtain suboptimal solutions by hill-climbing
algorithms. The algorithms and results are discussed in section
5. In order to validate the quality of the obtained results a
simulated annealing procedure has been implemented addition-
ally.

2. Classical Segmentation Techniques
As the pseudo-exhaustive test in the classical sense is only ap-
plicable to combinational networks, a scan design is mandatory.
The classical LSSD-approach puts some restrictions on the net-
work, which are sketched in this section [EiWi77]. Finally, we
investigate some drawbacks of the classical multiplexer parti-
tioning technique to these LSSD-requirements.

2.1. LSSD-techniques
A detailed description of LSSD-techniques is found in survey
papers [McCl84b] or textbooks [Fuji85], [McCl86]. Therefore
we only discuss the principles, which are of importance to the
segmentation cells proposed in section 3. For the sake of simpli-
city, we only describe the 2-phase clock technique. But the
presented approach is compatible with a general LSSD-archi-
tecture. The basic storage device is a hazard-free polarity-hold
latch, which may be implemented by transmission gates as
shown in figure 2.

CLK

SDI

D

A

Q

SDO
≥1

11
1

11

Figure 2: Implementation of a polarity-hold latch.
This latch has the data input D clocked by system-clock CLK,
and the shift data input SDI clocked by A.
Design rules have to guarantee a stable behavior of the circuit
function. These rules are fulfilled if for example the circuit is or-
ganized in a so-called L1/L2*-configuration. Two non-over-
lapping system-clocks CLK1 and CLK2 control two disjoint sets
of latches. The latches controlled by CLK1 are called L1-, and
the latches controlled by CLK2 are called L2*-latches. The com-
binational network is partitioned into two disjoint sets N1 and
N2, such that the L1-latches receive their data from the N1-
network, but they do not give any data to N1. Analogously, the
L2*-latches receive their data from N2, but do not give data to
N2. Figure 3 shows the structure of a circuit designed in
L1/L2*-technique.

A B

SDI
SDO

CLK2CLK1

N1 N2

L1

L2*

PI2

PI1

PO2PO1

Figure 3: L1/L2*-technique.
During test mode the latches are combined to shift register
latches (SRLs) as shown in figure 4. All SRLs are inter-
connected into a scan path, which is controlled by the two non-
overlapping shift-clocks A and B.

latch
L2*

latch
L1

System data

Shift data/
System data

System data D1
System clock CLK1
Shift data SDI
Shift clock A

Shift clock B
System clock CLK2
System data D2

Figure 4: Shift register latch within an L1/L2*-configuration.
There are programs reported for checking a partitioning of the
circuit according to these rules, and supporting the partitioning
[GoFB77]. The rules are easily extended according to schemes
of multiple clocks, and any additional "design for testability"-
features have to be compatible with these LSSD-rules.

2.2. Multiplexer partitioning
One of the first papers describing the design of pseudo-exhaus-
tively testable circuits proposed multiplexer partitioning
[McBo81]. Figure 5 shows a partitioning into two parts by
multiplexers.

M
U
X

0

1

G1 G2

1B ,…,Bm

rC ,…,C1 s
D ,…,D

1

nA ,…,A1

M1

M2

M3 M4

0

1

M
U
X

01
MUX

10
MUX

Figure 5: Multiplexer partitioning.
During system operation, the 1-inputs of the multiplexers are
sensitized, and the subcircuits G1 and G2 are connected. During
the test of G2, at M1 and M3 the 0-inputs are sensitized, and at
M2 and M4 the 1-inputs are activated. The inverse controls test
subcircuit G1. This original technique has some disadvantages:
1) There is a large overhead due to wiring, since there are

multiple control lines for the multiplexers, and additional
lines are necessary to control and observe the node itself.

2) For every cut node, there are two multiplexers within the data
path.

3) If several segments have to be tested, a complex control of
the multiplexers is required. Moreover the segments can not
be tested in parallel, and the multiplexers are not tested ex-
haustively.

4) Some layout-dependent faults are not tested. These faults can
only be detected during the system mode.

5) The inputs A, B, and the outputs C, D are latches in the
LSSD design, where new dependences are introduced. This
may destroy a given partitioning according to the LSSD
rules.

3. Segmentation cells
The concept of segmentation cells integrates network partitioning
and scan design. The cells are placed into the combinational net-
work, where during system operation they are a simple con-
necting line, but during the test mode they are a latch within the
scan path (fig. 6).

SN

…

Figure 6: Integrating segmentation and scan design.
The additional test circuitry should fulfill the following require-
ments:
a) All faults within the segmentation cells are detectable during

the pseudo-exhaustive test.

b) The additional silicon area is minimized.
c) There are no serious impacts on the system behavior of the

circuit.
These requirements are met by the segmentation cell of fig. 7 to a
wide extent. Essentially the cell is a L1-latch, and two of them
form a L1/L2*-configuration. They may be part of a usual scan
path.

Q

SDO

≥1
D

CLK
S

A(B)
SDI

T1

T2 T3

1 11

≥1

1 1

Figure 7: Segmentation cell.
Signal S determines system and test modes. For S = 1, data-in-
put D and output Q are directly connected. During the test mode,
if S = 0, the cell works like a usual latch within the scan path.
The cell satisfies the segmentation function like the multiplexer
solution, but avoids the mentioned disadvantages:
1) Wiring: The segmentation cells are members of the scan

path, and they can be wired by a suitable program, auto-
matically after the design, regardless of their order. This very
high degree of freedom minimizes the overhead (see
[AgJS84]).

2) Delay: Only the transmission gate T1 is member of the data
path, in contrast to the multiplexer approach.

3) Control: For segmentation, only S := 0 is set, and all
cells are controlled by the same signal.

4) Fault coverage: Every part of the data path D-Q is used
during the test mode, and a pseudo-exhaustive test is an
exhaustive test of most parts of the segmentation cell. The
system signal S is easily tested, since CLK and S are
symmetric and directly accessible.

5) LSSD-compatibility: The placement of the segmentation
cells does not introduce any new dependences of state vari-
ables within the original circuit. For this reason a LSSD-
partitioning of a circuit remains valid after segmentation. But
additionally the segmentation cells have to be partitioned ac-
cording to the system clocks, too. In few cases, this may re-
quire a double-latch configuration of the segmentation cells.

4. A graph-theoretic formulation of the segmentation
problem

The additional costs of a pseudo-exhaustive test are directly
measured by the required number of segmentation cells. The
number should be minimal, but still ensuring a short test length.
This is expressed by the following problem:

Let C be a combinational circuit, and let l∈IN. Place a minimal
set of segmentation cells, such that every node depends on at
most l primary or pseudo-primary inputs.
This problem can regarded as a graph-theoretic problem. In the
following a combinational circuit is represented by an acyclic
directed graph G = (V,E) with vertices V and edges E ⊂ V2. The
vertices of G correspond to the nodes of the circuit, and there is
an edge (v,w) ∈ E, if and only if node v is input of a gate with
output w. If a segmentation cell is built in a circuit node, this can
be modeled as a "cut" of the corresponding vertex in G. Figure 8
shows a circuit with segmentation cells and the corresponding
circuit graph.

13

5

2
1

3

4

Segmentation
cell

7

10

8

9

6

11

12

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 8: Circuit with segmentation cells and its representation
as directed graph.

The cut of a vertex v∈V transforms G into a graph G{v}; v is
replaced by two new vertices vo and vi, such that vo represents
an additional output and vi an additional input of the circuit. As
illustrated in figure 9, vo has no successors, and its predecessors
are the predecessors of v, whereas vi has no predecessors and its
successors are the successors of v.

v vivo¯

Figure 9: Cut of a vertex v∈V.

One easily verifies that for v,w ∈ V the cuts are independent of
their order. Thus for a set W := {w1,…,wm}⊂V we define the
cut of G along W as GW := (VW,EW) := G{w1}…{wm}.

For a vertex v∈V the natural number d(v) denotes the number of
primary inputs which are connected to v by a path in G. With
this we can state our segmentation problem exactly:
Problem OCS (Optimal Circuit Segmentation):
Let G := (V,E) be an acyclic directed graph, and l∈IN. Is there a
set W⊂V of size k ≤ |V| such that all vertices v∈VW in GW :=
(VW,EW) have dependence level at most l, i. e. d(v) ≤ l in GW?

For any cut along W, d(v) ≤ l in GW can be checked in nearly
linear time. Generating and checking all 2|V| cuts would take ex-
ponential effort. Unfortunately we cannot expect an algorithm of
a better worst case complexity:
Theorem 1: OCS is np-complete for l > 2.
A complex proof of this theorem is found in [Bhat86], a shorter
reduction in [Hell90, Wu90].
Since OCS is np-complete, we refrain from looking for minimal
solutions, but present some efficient heuristics in the next
section.

5. Hill-Climbing procedures for OCS
In this section, we present an algorithm for the optimal solution
of OCS. Since it has an exponential worst-case complexity, the
algorithm is modified towards a hill-climbing procedure deriving
suboptimal solutions with higher efficiency. The results are com-
pared with an algorithm proposed in [RoLa84] having a similar
objective. OCS is an instance of a general combinatorial
optimizing problem:
CO (Combinatiorial Optimization):
LetZ be a set of states, Z*⊂Z be a set of admissible states,
and let k: Z → IR be a cost function. Find an admissible state

Z∈Z* with minimal costs k(Z) = min{k(X) | X∈Z*}.

For OCS the set of states is Z := P(V), since every Z ⊂ V
determines a cut. The admissible states are Z* := {Z∈Z |
∀v∈VZ : d(v) ≤ l in GZ}. The cost function k: Z → IR, k(Z) :=
| Z |, corresponds to the necessary number of segmentation cells.
In addition to that we define a heuristic function h: Z → IR to
evaluate states:

h(Z) := Σ
v∈V'

ln(d(v)), where V' := {v∈VZ | d(v) > l in GZ}.

This function is an estimation of the number of vertices which
have to be cut in addition to Z. We assume an enumeration
<v1,…,vn> of V with vi∈pd(vj) ⇒ i < j.
A global optimal solution of OCS can be obtained by the
procedure glob(G,l) for G := (V,E).

Procedure glob(G,l):

Z := {<vi1,…,vik>|k ≤ n, ij < ij+1} is the set of all ordered
tupels instead of sets. Z is organized as a tree TG, where the
root Z0 is the empty tupel, and the direct successors of Z∈Z are
sd(Z) := {<vi1,…,vik,vik+1> | Z = <vi1,…,vik>, ik < ik+1 ≤ n}.
We have to look for an admissible state having shortest distance
to the root. Of course W := <v1,…,vn> is admissible, and we
set current := n. We carry out a depth-first search within this
tree, but never go deeper than current. If we find a new admis-
sible state at depth k<n, we update current := k.
end-glob.
The procedure glob provides all admissible states of minimal
costs, but it has an exponential worst case complexity. More
efficiently problems of CO can be dealt with by hill-climbing
procedures [Rich83]. A hill-climbing procedure for OCS based
on a "divide-and-conquer"-principle can be built using the follo-
wing concepts.

Definition 1: Let G := (V,E) be a circuit graph, v∈V and let
p(v) denote the set of all predecessors of v. The cone C(v) of v
is the subgraph C(v) := (p(v) ∪ {v}, (p(v) ∪ {v})2 ∩ E).

Definition 2: Let G := (V,E) be a circuit graph, and l∈IN.
The first violation fv∈ V is the node fv=vi, where i :=
min{ j | d(vj) > l}.

We construct a search graph S =(Z ,E), where the nodes Z∈Z
=P(V) define cuts, and an edge (Z1,Z2)∈E exists if and only if
a) fv ∈ V \ Z1 is the first violation in GZ1 , and
b) W ⊂ p(fv) is an optimal solution for OCS of the subgraph

C(fv) in GZ1 and Z2 := Z1∪W
The search is started at Z0 = Ø, and until an admissible state Z is
reached, one branches from Z to a Z1 with (Z,Z1) ∈ E and h(Z1)
= min{ h(Z̃) | (Z,Z̃) ∈ E }.

Searching W ⊂ p(fv) in b) is done by the procedure glob. Let
pd(v) be the set of direct successors of a vertex v ∈ V. Then W :=
pd(fv) and current := |pd(fv)| form a (sub-) optimal solution.
Therefore the search space can be reduced drastically.
A further reduction of the search space is possible if not all
optimal solutions for OCS in C(fv) are taken into account.

Definition 3: Let G := (V,E) be an acyclic directed graph,
l∈IN, and let sd(v) denote the set of direct successors for v ∈
V. Moreover let fv∈V be the first violation in G, and v∈p(fv).

X := {x∈p(fv)| |sd(x)| > 1},
Y := {y∈p(fv)| (d(y) > l - |pd(fv)| + 1) ∧ (|pd(y)| > 1)}.

There is a uniquely determined path (v = ω0, … ,ωk = :v*) of
minimal length, such that

∀ i<k: (|sd(ωi)| = 1) ∧ (v* ∈ X ∪ pd(fv) ∪ ∪
y∈Y

 pd(y)).

v* is called the push-forward of v.

Theorem 2: Let fv ∈ V be the first violation in G and W :=
{w1,…,wm} ⊂ pf(fv) an optimal solution of OCS in C(fv).
Then the push-forward W* := {w1*,…,wm*} of W is an opti-
mal solution, too.
Proof: Left to the reader.
This basic hill-climbing procedure is augmented by back-
tracking and by an additional rule. If a certain number of sub-
sequent state transitions did not reduce the heuristic h, one re-
turns to an earlier state Z and selects another successor of Z. If
this back-tracking also fails in an improvement, one jumps to
another state U according to the following rule:

Let Z ⊂ V define a cut GZ := (VZ,EZ), let fv ∈VZ be the first
violation in GZ. Let v∈pd(fv) be selected such that d(v) =

max
w∈pd(fv)

d(w). Jump to the state U := Z ∪ {v}.

This defines the complete hill-climbing procedure, having a
worst-case complexity of O(2|pd(fv)|) · O(|V|2). The segmentation
algorithm named DC (divide and conquer) has been implemented
in PASCAL under the UNIX operation system. For reasons of
comparison, an algorithm CMP based on the paper [RoLa84]
has been implemented, too. Table 1 shows the required number
of segmentation cells for the well-known benchmark circuits.

l =16 l = 20
circuit DC CMP DC CMP

c432 27 56 20 44
c499 8 20 9 32
c880 19 34 14 48
c1355 8 20 9 32
c1908 21 51 18 53
c2670 45 108 37 77
c3540 87 138 63 105
c5315 52 96 42 82
c6288 93 115 65 74
c7552 100 118 79 75

Table 1: Number of segmentation cells by DC and CMP.
Although the divide and conquer algorithm does not completely
neglect the global effects of a cut, the main emphasis is put on
finding locally optimal solutions. Therefore it cannot be excluded
that a proceeding only relying on a good global heuristic might
come to better results. In order to investigate this question and to
avoid the complexity of DC, the search tree is modified into
S ' := (Z ,E'), where an edge (Z1,Z2)∈E' exists if and only if

a) fv ∈ V\Z1 is the first violation in GZ1, and

b) Z2 := Z1 ∪ {v*}, where v∈p(fv) is a node of VZ1 with
minimal h(Z1 ∪ {v}).

This proceeding uses the fact, that surely one of the predecessors
of the first violation must be cut, and this may be a

pushed-forward vertex. This restricts the search space, and a
vertex is cut minimizing the global heuristic. The algorithm
called GL has a worst case complexity of O(|pd(fv)|) · O(|V|2).
Table 2 shows for GL and for DC the necessary number of cells
and the computing time measured on a SUN 3/280 computer.

l =16 l = 20
circuit DC GL DC GL

c432 27 (4013) 27 (25) 20 (619) 21 (30)
c499 8 (104) 8 (10) 9 (6) 9 (12)
c880 19 (8) 16 (14) 14 (8) 14 (18)
c1355 8 (7455) 8 (85) 9 (7423) 9 (99)
c1908 21 (6326) 22 (140) 18 (6083) 17 (349)
c2670 45 (55267) 33 (123) 37 (3972) 29 (121)
c3540 87 (22438) 90 (858) 63 (3661) 68 (877)
c5315 52 (19637) 62 (411) 42 (27814) 46 (350)
c6288 93 (15390) 98 (4647) 65 (40916) 70 (6692)
c7552 100 (74316) 117 (1667) 79 (29379) 85 (1567)

Table 2: Number of segmentation cells and computing time (in
brackets) in sec for the hill-climbing procedures DC
and GL.

An analysis of table 2 shows that only for the circuits c7552 and
c5315 the faster global heuristic results in a distinct deterioration.
For the c2670-circuit even far better results are obtained.
Table 3 gives an idea of the hardware-overhead required for seg-
mentation. Column 1 denotes the necessary minimal number of
segmentation cells for l = 20, column 2 gives its percentage in
terms of primary inputs, and the last column is the percentage of
nodes to be cut.

circuit number percentage of percentage of
of cells primary inputs of nodes

c432 20 55.5 10.2
c499 9 22.0 3.7
c880 14 23.3 3.2
c1355 9 22.0 1.5
c1908 17 51.5 1.9
c2670 29 12.4 2.0
c3540 63 126.0 3.7
c5315 42 23.6 1.7
c6288 65 203.0 2.7
c7552 79 38.2 2.1

Table 3: Hardware-overhead for l = 20.
A common problem of hill-climbing procedures is the occurence
of local minima far apart from the global optimum. Such local,
suboptimal solutions have been reached by GL at circuits c6288
and c7552 for l = 20. Therefore a simulated annealing algorithm
has been implemented in order to validate the obtained solutions.
It tries to make use of the specific problem structure as far as
possible while preserving the necessary conditions for conver-
gence. A detailed description is found in [HeWu88].
Applying simulated annealing to the benchmark circuits we
obtained the following results. Starting with an initial state of
relatively high costs the algorithm came to results close to those
of DC, but in no case there was an improvement of the best re-
sults received by DC or GL respectively. For the c880-circuit for
example simulated annealing was started with the result
produced by CMP with costs 34. The final state of the annealing
procedure had costs 22, whereas DC resulted in costs 19. A
detailed analysis of the annealing process for this circuit showed
that for small values of c still about 1% of the generated transi-
tions where accepted. But although transitions increasing the
cost function were no longer accepted, a further improvement of
the result could not be achieved.

The behavior of the annealing algorithm validates the fact, that
the results obtained by the hill-climbing algorithm are very close
to a global optimal solution. On the other hand experiments with
simulated annealing have shown, that good tailored heuristics
often are superior to simulated annealing methods [NaSS86].
This statement seems to be confirmed by our experiments with
the OCS problem.

Conclusions
Hardware and software problems have been solved in order to
implement a pseudo-exhaustive test. Segmentation cells have
been developed compatible to the usual LSSD-rules. Efficient
segmentation algorithms have been proposed, resulting in a
minimal number of nodes to be cut. Combining the hardware
and the algorithms, a pseudo-exhaustive test can be implemented
automatically at low additional cost.

References
AgJS84 Agraval, V. D.; Jain, S. K.; Singer, D. M.: Automation in

Design for Testability, Proc. IEEE Custom Integrated Circuits
Conference, pp. 159 - 163, 1984

Aker85 Akers, S. B.: On the Use of Linear Sums in Exhaustive Testing,
Proc. 15th International Symposium on Fault-Tolerant
Computing, 1985

Bhat86 Bhatt, S. N.; Chung, F. R. K.; Rosenberg, A. L.: Partitioning
Circuits for Improved Testability, Advanced Research in VLSI:
proc. 4-th MIT conference, pp. 91 -106, April 7 - 9, 1986

EiWi77 Eichelberger, E.B.; Williams, T.W.: A logic design structure for
LSI testability, Proc. 14th Design Automation Conference, pp.
462-468, June1977

Fuji85 Fujiwara, H.: Logic Testing and Design for Testability, MIT
Press, 1985

GoFB77 Godoy, H. C.; Franklin, G. B.; Bottroff, P. S.: Automatic
checking of logic design structure for compliance with testability
groundrules, Proc. 14th Design Automation Conference, June
1977, pp.469 - 478

Hell90 Hellebrand, S: Synthese vollständig testbarer Schaltungen, Ph.
D. Thesis, University of Karlsruhe, 1990

HeWu88 Hellebrand, S.; Wunderlich, H.-J.: Automatisierung des Entwurfs
vollständig testbarer Schaltungen, Proc.18. Jahrestagung der
Gesellschaft für Informatik, Hamburg 1988, Informatik-
Fachberichte 188, Springer-Verlag

McBo81 McCluskey, E. J.; Bozorgui-Nesbat, S.: Design for Autonomous
Test, IEEE Transactions on Circuits and Systems, Vol. Cas-28,
No. 11, November 1981

McCl84a McCluskey, E. J.: Verification Testing - A Pseudoexhaustive
Test Technique, IEEE Transactions on Computers, Vol. c-33,
No.6, June 1984

McCl84b McCluskey, E.J.: A Survey of Design for Testability Scan
Techniques, VLSI Design, Dec. 1984

McCl86 McCluskey, E.J.: Logic Design Principles: With Emphasis on
Testable Semicustom Circuits, Prentice-Hall, 1986

NaSS86 Nahar, S.; Sahni, S.; Shragowitz, E.: Simulated Annealing and
Combinatorial Optimization, Proc. 23rd Design Automation
Conference, 1986

Rich83 Rich, E.: Artificial Intelligence, McGraw-Hill International
Editions, 1983

RoLa84 Roberts, M. W.; Lala, M. Sc.: An Algorithm for the Parti-
tioning of logic circuits, IEE Proceedings, Vol. 131, Pt.E.,
No.4,July 1984

Udel86 Udell, J.G.,Jr.: Test Set Generation for Pseudo-Exhaustive BIST,
Proc. International Conference on Computer Aided Design, 1986

Wu90 Wunderlich, H.-J.: Rechnergestützte Verfahren für den
prüfgerechten Entwurf hochintegrierter Schaltungen, University
of Karlsruhe, 1990

WuHe88 Wunderlich, H.-J.; Hellebrand, S.: Generating Pattern Sequences
for the Pseudo-Exhaustive Test of MOS-Circuits, Proc. 18th
International Symposium on Fault-Tolerant Computing, Tokyo
1988

