THE SYNTHESIS OF SELF-TEST CONTROL LOGIC
Oliver F. Haberl, Hans-Joachim Wunderlich

Institute of Computer Desi
(Prof. Dr.-Ing.

%1 and Fault Tolerance
. Schmid)

University of Karlsruhe
Haid-und-Neu-Strale 7, D-7500 Karlsruhe 1

Absiract: In recent years, many buill-in self-test techniques have been
proposed based on feedback shifi-registers for pattern generation and
signature analysis. But in general, these test-registers cannol test several
modules of the chip concurrently, and they have to be controlled by an
extemal automatic test equi

The presented paper proposes a method to integrate the additional test
control logic into the chip. Based on a register transfer description of the
circuit, the test control is derived and an according finite automalton is
synthesized. A hardware implementation is proposed, resulting in circuits,
where the entire self-test only consists in activating the test mode, clocking
and evaluating the overall signature.

1) Introduction

Most self-test technigues are implemented by multi-functional registers,
which generate test patterns and compress test responses during special
operation modes. The so-called BILBO (built-in logic block observer)
based on standard linear feedback shift-registers (LFSR) generates pseudo-
random pattemns according to a uniform distribution [1]. Weighted pattems
can be generated by a so-called GURT (generator of unequiprobable
random tests) using modular LESRs [2], providing a higher fault coverage
by shorter test lengths. Many other BIST (built-in self-test)-registers have
been proposed supporting a pseudo-random, deterministic or a (pseudo-)
exhaustive (est.

The benefits of a self-test are retained, if the resulting test schedule is
not be controlled by an external test equipment, but the test control logic is
integrated into the chip. Then the entire self-test will only consist in
activating the test mode, clocking, and evaluating the signature.

The control logic initializes the involved test-registers for each sub-test,
selects test-registers for pattermn generation and for compressing test
responses and unloads the signatures. Hence the necessary external test
equipment only consists in an external shift-register and a clock generator.

CT j———— slart lest
Lotk
sell-testable

: SDO ::l 51 . :
circuit SIG EN shift-register 1
TEND & 1est end
Figure 1: Self-test configuration

In this paper, we discuss the logic synthesis of the test control. We as-
sume that the BIST-registers are already placed by methods descnibed in
(3], [4], or [5] e. g., and that a test schedule is already derived for instance
by [6], [7] or [8]. Somc implementations of an according test control unit
have been discussed in [9]. Our approach synthesizes such a unit
automatically, and it concentrates on an integrated self-test.

In section 2, the design restrictions of the proposed approach are
discussed. They include the clocking scheme and the design style, and
some requirements on the test-register placement are sketched.

In section 3, a method for test scheduling is discussed. It is shown,
how a general test schedule can be described by a matrix. )

Based on this matrix, in section 4 a microprogrammable control unit is
synthesized, The test control logic generates all necessary control signals
for the test-registers during the entire test phase. It will also indicate that the
signature is available at a special output.

In section 5, alternatives to synthesize the hardware structure are
discussed. Finally the entire approach is explained with the help of an
example. For a circuit description at register-transfer level the test matrix is
generated, and the control is synthesized.

2) Desi =

The presented approach can be applied 1o fully synchronous circuits.
The circuit may be controlled by multiple, non-overiapping clock-phases,
but we have to assume that all test-registers are clocked by the same phase.

There is no restriction on the test strategy (random [1], weighted
random [2,10] or pseudo-exhaustive patterns [11,12]) implemented by the
BIST-registers, but they have to work within four operation modes: In the
system mode they are working as parallel registers, during the self-test
either they generate test patterns or they evaluate the test responses, and
they have to work like a shift-register. It is assumed that the test-registers
have two control inputs bg and by to select the operation modes given by
the table 1,

by b | mode
0 0
0 1 shift
1 0 generate
1 1 signature

Table 1: Operation modes of a test-register

At register-transfer level, these test-registers are placed dividing the
design into partitions, which are tested by a set of test-registers generating
the test patterns and by a disjoint set of test-registers evaluating the lest
responses. An obvious consequence is that every feedback loop of the data
flow graph must be cuL.

For board testing the approach can be augmented by a boundary scan.
If no boundary scan is implemented, test-registers at the inputs and outputs
are required.

3) Test scheduling

The self-test of the entire circuit is a collection of single tests, which are

described by three parameters:
- asubset of registers generating test pattems;
- adisjoint subsel of registers evaluating test responses;
- the number of patterns.

The overall test time is reduced, if several single tests are running
concurrently. In general, the division of the global test into single tests is
not unique, it is rather a complex optimizing problem to be solved during
the placement of the test-registers. The single tests are collected to test
sessions, consisting of compatible single tests without any inconsistent
requirements on the operation modes of the involved test-registers.

Various scheduling techniques have been proposed ([3], [8] e.g.), all of
them lead to a result that may be described by a matrix A = (a; ;). It
describes the operation modes of test-register i := 1,...,t during the test
session j := 1,...,§

1, if register i compresses responses during test session j
x, if register i is not active during test session j
Each column of A corresponds to a weight a(j), j := 1,....s denoting the
number of pattermns during test session j.
During the entire test all test-registers receive bg= 1, and only the
signals at the by inputs might differ. Table 2 describes whether two control
values are compatible.

{ 0, if register i generates patterns during test session j
3=

iy 0]1]x
0 0|~-]0
1 - 1 1
X 0 1] =

Table 2; Compatibility table; ~ denotes incompatibility

In matrix A each row corresponds 10 a test-register, and two rows can
be merged if all pairwise components are compatible. The number q of
rows in the new matrix B := (b; ;) is the necessary number of control lines
al the by inputs. OF course, the objective function is a minimal number g of
rows. ‘llhl: matrix B with according weights B(j) := a(j) completely
describes the control flow during the entire test.

Each column b(j) describes a test session of length B(j), and test-
registers have a valid signature, if the corresponding control lines have a 1.
These signatures can be shifted out either immediately after each session,
or only once after the entire test. The latter simplifies the control logic, but
it increases the aliasing probability slightly:

- If a register contains a valid signature, and if it is switched into the
pattem generation mode, then no further aliasing can occur, since no
further data is received;

- but if this register is switched into the data compression mode, then
the data input sequence is prolonged, and the known estimations on
aliasing probabilities [13], [14] are valid.

It should be noted, that this reasoning is only valid, if no register is

doing patter generation and signature analysis concurrently.

5-134

CH2704-5/89/0000/5134/301.00 © 1989 IEEE



4) The congrol unit
The behavior described by B can be implemented by a control unit,
providing a self-test architecture shown in figure 2.
l i 5

TEST — CT
_» control unit — SIG
§ L~ TEND

SDO  outputs

Figure 2: Self-test architecture

The signal CT (chip test) selects the self-test mode. The test-registers
are connected in series by the SDI (scan data in) and SDO (scan data out)
nodes. The scan data output of the last test-register feeds an additional
primary pin SDO of the design, where the signature strings are shifted out.
The signal SIG (signature) indicates that valid signatures are available, and
the end of the entire self-test is marked by the signal TEND.

The test control unit of figure 2 communicates to the test-registers by

the signal TEST connected to all by inputs, and by the set of lines S . The

output of ? during test session j is determined by the matrix B: ?(j) =
(by jubgyj). This is implemented by a microprogrammable structure:
()

—_
8
load counter
l— loop _J
| 21 I a
enable  micro- ? micro- L TEST
program- program- -+
o= R
H
——TEND

Figure 3; Microprogrammable implementation of the control unit
The loop-counter initializes the test-registers if necessary, controls the
output of signatures and determines the duration of a test session. The
variable c is the number of different constants, which are selected by the

aigmls?.“wsigmllocpwnmlslhlﬁningofalwp: with loop =1 the

loop-counter is initialized with a constant selected by g , and with loop = 0
the microprogram counter stops, until the loop-counter reaches zero.

Table 3 gives an overview of the instruction set. The parameter i is the
address of a constant for initializing the loop-counter. The parameter j is
the number of the test session.

instraction [loop g TEST S SIG TEND
P_ggin 0 0 0
testliy) i
o= A
0 x 1 S® o 0
1 SG o0
SR % 0
0 x 0 1 0 0
0 ] 0 ]
sigQi 1 i
o 0 x 0 1 1 0
0 1 1
end 1 X 0
X X X X x 1
Table 3; Instruction set

At the first address, the instruction begin controls the chip during the
&ormal mode. Tr?nrm sessions are mnmi by the instruction fest. It selects
e test-registers for generating test patiems or compressing test responses,
The instructions shift and sig control shift operation, sig additionally in-
-‘}jé?q%‘ a valid signature at the pin SDO. The instruction end sets the signal

Each test session described by b(j) and B(j) can be realized by the
instruction test. If a session is terminated by checking the signatures, the
instructions shift and sig are used. Hence the microprogram, the necessary
number ¢ of constants const(i), and the constants can be created
automatically by a straightforward algorithm GEN. The input of GEN are
the matrices A and B, the number of test patterns for each test session and

the length of each test-register (figure 4).
length of each
test-register

number ¢ of constants
const(i), i = 1,....c
microprogram
Figure 4; Generation of a microprogrammable structure

The output of GEN is now used to synthesize the control automaton.
More efficient solutions are obtained by structures based on random logic
or PLAs rather than by ROM-based solutions.

Effici wi ion

In addition to the trade-off between hardware-overhead and aliasing
}Jm:;]bllily. there is another trade-off between hardware-overhead and test

ength.

Many different constants control the shift and test operations. If we use
only two integers determining upper bounds of these constants, the
hardware is diminished drastically. Then the test control unloads the entire
scan path for checking the signature, regardless of the operation modes of
the respective test-registers, and the shifting clocks are extended until a
power of 2 is reached. Moreover, we assign the same length to each test
session, which should also be augmented to a power of 2.

We set v{i) == length of test-register i, and we assume that the entire scan

8 L
path at least has a length 2;‘ u(i) 2 3. We define o :=[log, (E; v(i)-2)1
1= 1=

and set const(0) to the complement of 2%, Hence we have to count upward
from const(0) in order to generate 2 clocks.
In a similar way, we determine { :=[logy (!rgg B()-2)as the general
<jss

session length, and set const(1) to the complement of 28, By the reduction
10 a constant which is a power of 2 in a complementary representation,
only an inverter is needed to create the constants, and the loop is
implemented by an upward counter (figure 5).

g
I |ttl
w0 0
R
carry loop-
Joad  counter
- loop
[jll ,
cnable  ™icro- PLA —— TEST
program-  [— e
— Teset —35
CT counter T
I TEND

Figure 5: Efficient test control unit
It should be noted, that the program storage in figure S is implemented
by a PLA generated by the program ESPRESSO [15). ESPRESSO can
directly use the microprogram code as an input, and produces an efficient
hardware structure.
Up to now we have

presented hardware solutions according to different
trade-offs, as clarified by table 4.

5135



1) Test length II) Aliasing
1) Optimal constants 1) Signature checking after
each test session
2) Two upper bounds of | 2) Signature checking after
constants the entire test
Table 4; Trade-offs
6) An example

The example is a circuit for matrix multiplication, accelerating some real
time critical applications in robotics. It is a standard cell design, and it is
described in [16] in detail. Figure 6 shows its register-iransfer structure
afier the placement of the test-registers.

test-register | 221

Eigure 6: RT-representation of the example circuit with placed test-registers
‘We obtain a complete self-test by 2 test sessions:

A I test session 1 test session 2
test-regster | [1] 1
test-register 2 1 0
test-register 3 0 1
test-register 4 1 0
test-register 5 0 1
test-register 6 X 1

Merging some rows of A, only q = 2 control lines are required, with
—
?(l) = (D,1) for test session 1, and S (2) = (1,0) for test session 2:

B I Lest session 1 test session 2
test-register 1,3,5.6 0 1
test-register 2,4 1 0

We assume B(1) = B(2) for the length of the test sessions, then the
algorithm GEN generates the following sequence of microinstructions and
constants for the loop-counter:

instructions constants

begin

shift(0) WIHV(2HV(3HU(E)+0(5)-2=54=const(0)
test(1,1) B(1)-2=consi(1)

shifn(2) W(5)+(6)-2=14=cons1(2)

5ig(2) v(4)-2=14=const(2)

shife(2) v(3)-2=14=const(2)

sig(3) W(2)-2=6=const(3)

shifi(3) V(IH V203 (4)-(S5)+10(6)-56-2=6=consi(3)
test(1,2) B(2)-2=const(1)

sig(2) w(5)+0(6)-2=14=const(2)

shife(2) v4)-2=14=consy(2)

5ig(2) v(3)-2=14=const(2)

shifi(3) v(2)-2=6=const(3)

sig(3) w(1)-2=6=const(3)

end

Using the coding of table 3, this program can be stored at 28 addresses
ina Rogl It can be minimized by ESPRESSO, in order to obtain a PLA-
implementation by 20 product-terms.

‘We have presented the (11, [11)-solution of table 4. Table 5 shows the
necessary number of product terms for all four versions.

army | aum) I @21 | (12,112)
W10 b 0

Table 5: Necessa.? number of pmduct terms for the implementations
table

Especially the (12,112)-solution leads to a very small control unit
(L=10):

1 g
111 111111
AIRRIATIL
cary 10 bit
rm loop-counter o
B [m B
e micro- ith | TEST
cr— e T '_/; log:oductfgm
terms | ——TEND
Figure 7: (12,112)-control unit
Conclusions

Methods have been presented to synthesize a self-test control unit after
the placement of test-registers and the test scheduling.

If the test schedule is given in a straightforward matrix form, the
presented algorithms automatically synthesize a finite automaton controlling
the entire test. Different implementations of the control unit are derived,
balancing the paramelers of hardware-overhead, test-length and aliasing
probability.

References

[1] B. Kénemann, J. Mucha, G. Zwiehoff "Built-In Logic Block
Observation Techniques” in Prog, IEEE Int, Test Conference, 1979,
pp- 3741
(2] H.-J. Wunderlich "Self Test Using Unequ:pmbable Random
Patterns” in Dig, [ ]
FTCS-17, July 1987, pp. 258-263
[3] A Krasniewski, A. Albicki "Self-Testing Pipelines” in Prog, [EEE
1985, pp. 702-706
[4]  A. Krasniewski, A. Albicki "Automatic Desagn of Exhausuvc!y
Self-Testing Chips with BILBO Modules" in Proc, IEEE Int. Test
Conference, 1985, pp. 362-371
[5] H.-J. Wunderlich "The Design of Random-Testable Sequential
Circuits” (submitted)
[6] J. Kalinowki, A. Albicki, J. Beausang "Test Control Signal
Distribution in Self-Testing VLSI Circuits” in Proc, [EEE Int,
r-Al . 1986, pp. 60-63
[71 1. Beausang, A. Albicki "The Deslgn for T:stability Process:
Definition and Exploration” in Proc, IEEE Int. Conference on
Computer Design, 1987, pp. 362-365
[8] G. L. Graig, C. R. Kime, K. K. Saluja "Test Scheduling and
Control for VLSI Buili-In Self-Test” in
Vol. C-37, No. 9, Sept. 1988, pp. 1099-1109
[99 M. A, Breuer, R. Gupta, J.-C. Lien, J.-C "Concurrent Control of
Multiple BIT Structures” in Proc. [EEE Int. Test Conference, 1988,

pp. 431-442

[10] H.-J. Wunderlich "On Computing Optimized Input Probabilities for
Random Tesis" in Proc. 241h Design Aulomaion Conference, 1987,
pp. 392-398

[11] S. B. Akers "On The Use Of mea.r Sums In Exhaustive Testing" in

, FTCS-15,

1985, pp. 148-153

[12] L.-T. Wang, E. J. McCluskey "Circuits for Pseudo-Exhaustive Test
Pattern Generation” in Proc, IEEE Int, Test Conference, 1986, pp.
25-37

[13] T. W. Williams, W. Daehn, M. Gruetzner, C. W. Starke
"Comparison of Aliasing Errors for Primitive and Non Primitive
Polynomials” in Proc. JEEE Int. Test Conference, 1986, pp. 282-
288

[14] S. K. Gupta, D. K. Pradhan "A new framework for designing an
analyzing BIST technique: computation of exact aliasing probability"

in Proc. IEEE Int, Test Conference. 1988, pp. 329-342
[15] R. K. Bm“ywn,G D. Hachtel, C. T. McMullen, A. Sangiovanni-
Vincen

Boston: Kluwer Academic Publishers, 1984
[16] P. Gutberlet " i
Studienarbeit Fakuliit Informatik, Universitit Kaﬂsmhe 1988

5-136



