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Abstract:

The concept of a pseudo-exhaustive test for sequential circuits is
introduced in a similar way as it is used for combinational
networks. Instead of test sets one has to apply pseudo-
exhaustive test sequences of a limited length, which provides
well-known benefits as far as fault-coverage, self-test capability
and simplicity of test generation are concerned.

Design methods are presented for hardware segmentation which
ensure that a pseudo-exhaustive test is feasible. Example circuits
show that the presented test-strategy requires less additional
silicon area than a complete scan path.

Keywords: Pseudo-exhaustive test, sequential circuits, design
for testability.

1. Introduction

In [McBo81], [McCl84] the pseudo-exhaustive test has been
proposed in order to reduce the costs of test pattern generation
and test application. For a primary output o of a combinational
circuit, the cone C, is the subcircuit containing all predecessors
of o (figure 1). A cone is tested by applying all possible patterns
at its primary inputs. The total number of all these patterns is
smaller than an exhaustive test, if the cones are sufficiently
small.
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Figure 1; Cones of outputs oj and 03.

An obvious advantage of this test strategy is the high fault
coverage, within a cone all combinationally faulty functions are
detected. A faulty sequential behavior induced by stuck-open
faults can be detected by applying special pattern sequéences as
described in [WuHe88]. Moreover the pseudo-exhaustive test
sets can be generated by special feedback shift-registers
[WaMc86], [Aker85], [Udel86], which may be used as a self-
test technique or for an external low-cost test. A similar
approach is possible for CMOS-faults [WuHe88].

In this paper, we extend the approach to sequential circuits.
Using Roth's notation of time frames, a sequential circuit is
transformed into a combinational representation [Roth78]. Its
size increases linearly with respect to the circuit size if the data-
flow graph of the circuit does not contain any cycles ([Wu89],
[Kunz89]). Often the data-flow part of the circuit is acyclic by
itself, otherwise some flipflops must be included into a partial
scan path ([Tris83], [Agra88], [Kunz89]). To obtain a pseudo-
exhaustive test, we generate a pseudo-exhaustive test set for the
combinational representation, and transform these pattern sets
into the respective sequences for the original sequential circuit.

A pseudo-exhaustive test of the combinational representation is
not applicable, if a primary output depends on a very large
number of primary inputs. In the approach presented, this pro-
blem is solved by hardware segmentation, where additional seg-
mentation cells are used to logically disconnect some circuit lines
in the test mode.

A uniform technique is presented integrating the partial scan de-
sign and the segmentation of a sequential network in a similar
way as proposed in [HeWu88]. Examples show that the
additional silicon area needed for the partial scan path and the
segmentation cells together is less than the overhead for a
complete scan path. As an additional advantage we have com-
plete fault coverage without expensive test pattern generation.

After this introductory section, we sketch some basic graph
theoretica! definitions and facts, which are necessary for our
way of circuit modeling. In section 3 we present the cells
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necessary for the design of pseudo-exhaustively testable circuits.
Besides the well-known LSSD-latches, these are the segmen-
tation cells already mentioned. In section 4 we discuss
placement-algorithms which make a pseudo-exhaustive test
feasible using a minimum number of these cells.

In section 5 we discuss pseudo-exhaustive test sequences. The
sequences can be generated by linear feedback shift-registers
(LFSR) in a similar way as proposed for combinational
networks [BARZ83]. Finally we present some examples.

2. Circuit modeling and restrictions

We assume that the sequential circuits are described at gate level,

and that the following restrictions are fulfilled:

®  The circuits are purely synchronous.

¢ Only D-flipflops are used.

s  The D-flipflops can be augmented according to the rules of
cither level-sensitive or edge triggered scan-design (LSSD,
ETSD).

Such a circuit is modeled by a graph:

Definition 2: A circuit graph G := (V,E) is a directed graph
with vertices V and edges EC V2. V := VcuVsul is a disjoint
union of combinational vertices V¢, sequential vertices Vg and
inputs L

The outputs of the gates are represented by V. the outputs of
the flipflops are represented by Vg, and I contains both the
primary and the pseudo-primary inputs. The pseudo-primary
inputs correspond to the flipflops within the scan-path. An
example circuit and its circuit graph are shown in figures 2 and
3, respectively.

Figurc 2: Example circuit.

The circuit graph G = (V,E) consists of the nodes V := [PII,...,
PIS, K1,..., K8, K11, K12, P01, P02, PO3)} and the corres-
ponding edges.

The vertices of this circuit graph are partitioned into the three
sets
Ve = (K1, K3, K4, K7, K8, K11, P02, P03},
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Vs = (K2, K5, K6, P01, K12}, and
1 = (P11, PI2, PI3, PI4, PI5}.

Figure 3: Circuit graph.

In general, we have (v,w) € E, if node v is input of a compo-
nent, gate or flipflop with output node w. The primary outputs
are a subset OC V. For the example circuit, we have O := {PO1,

P02, P03).

Definition 2: Let G := (V,E) be a circuit graph and ve V.
pd(v) := [we V | (w,v)e E] is the set of direct predecessors of
v, and sd(v) := (we V | (v,w)e E] is the set of direct
successors.

Definition 3: A circuit graph G := (V,E) is called consistent,
if 1= {ve VIpd(v) = @).

We only deal with consistent circuit graphs.

Definition 4:
sequence of vertices ko,...,kn, with ko=u, kn=v and (ki.1.ki)e E
for i=1,...,n. n is called the length [(w). If kg = ky @ is called a
cycle.

Let u, ve V. A path ® from u to v is a

Definition 5: Let G :=(V.E) be a circuit graph, let ve V.
p(v) := [{we V | there is a path from w to v} is the set of
predecessors of v, s(v) := {we V | there is a path from v to w])
the set of successors.

Only the topology of the storage elements Vs determines the test
length. It is described by the so-called S-graph:

Definition 6: Let GEi:= (VCi ECi) be a circuit graph with
VCi = VEUVSUI and O Its S-graph GS := (VS,ES) s de-

fined by:
o vS=ofuvgiu©
b) ES:= [(v,w)e VSxVS | There is a path @ from v to w in

GCi, and onVS=(v,w]}

Figure 4 shows the S-graph corresponding to the circuit graph
of figure 3.



Eigure 4; S-graph.

The approach presented is valid for circuits, where the S-graph
does not contain any cycles. Every S-graph can be made acyclic
by integrating some of the flipflops into an incomplete scan-
path. For instance, if in the example circuit flipflop K12 were a
scan path element, then the resulting circuit graph would be
acyclic (figure 5).

Figure 5:  Acyclic circuit graph.

The pseudo-exhaustive test of sequential circuits requires the
application of pattern sequences instead of single patterns. Using
Roth’s notation of time-frames, copies of the combinational part
of the circuit are generated, and the number of time-frames
corresponds to the length of the test sequences. We modify this
approach, such that at each time step we only copy the small part
of the combinational circuit that is actually needed for fault
detection. In order 1o describe our solutions exactly, some more
graph-theoretical definitions are required:

Definition 7: LetG :=(V,E)be an acyclic graph, let ve V be
a node. rf(v) := max{[(®) | @ is a path in G with end point v} is
called forward-rank of v, and rb(v) := max {[{w) | @ is a path in
G with start point v) is called backward-rank.

Definition 8: Let G :=(V,E) be an acyclic graph. The rank
of G is defined by rank(G) = m§{ rf(v)} = mgé{rb{v)].
VE v

Definition 9: Let G := (V,E) be an S-graph with sequential
nodes Vs, outputs O and inputs I. Its back-trace function P is

P: P(VsUI) = P(Vgul); P(W) := wkEJ wpd(W).

The nodes of a subset WtC V have defined values at time step t,
if the nodes W1 := P(W1) have defined values at time step t-1,
and we can use this notation for state back-tracing.

Observation 1: Let G :=(V,E) be an acyclic S-graph with
rank(G) = r. Then PT(VgUI) C L

Corollary: Every state is reachable within r steps, if it is
reachable at all.

Definition 10: Let GS := (VS,ES) be an acyclic S-graph with
rank 1, and let GC ;= (VG EC) be its circuit graph. Set

Wr:= {ve VS | sd(v)nO=@ in G5},

Vr:= (ve VCi| Juge W' Juje O (v is member of a path © from
up to uy and @NVS={ug,u; )} UWrU O,

and forOst<rm
Wt = P(Wi+]),

Vi := [ve VCi| Jupe Wt 3uje WH! (v#u; is member of a path
o from ug to uj and @VS={ug,u;})} U WL

The combinational representation of GCI is the graph

G :=(V,E), where

Vi= U Vix (1)
Ostsr

E

= uéf’s: (0,0 | (x,y) e VIXVINE} U

Og-ér{{(x,t),(y,tﬂ}} Ixe VtAye Wl A (x,y) € E}

Ve :=0§é[{x,t) e Vixe VgiUVSCi }:

T:=((xte Vixel),
0:={(o,) o€ O}.

It should be noted, that all flipflops are mapped to combinational
buffers. For the example circuit graph of figure 5 the combina-
tional representation is shown in figure 6. This straightforward
construction provides our basic theorem:

Theorem 1: Let G := (V,E) be an acyclic circuit graph,
with rank r, and let G := (V,E) be its combinational represen-

tation. A pattern sequence << b;E {0,1) | ie I > | O<t<r > detects

a given fault of a node ve V exactly at time r, if and only if in G
the corresponding multiple fault of the nodes (v,t), 0<t<r if
defined, is detected by the pattern <b; | (0T >.
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Figure 6; Combinational representation.

If a cone C, of the combinational representation has € primary
inputs, it is tested exhaustively by 2¢ patterns. Each pattern is
mapped to a sequence of the maximal length r in the original
circuit. Thus the length of the pseudo-exhaustive test sequence is
bounded by r-2f. In section 5 we discuss some further
compactions.

This approach is applicable to all fault models concerning the
combinational function of a single or of multiple nodes. If the
design is irredundant, a complete fault coverage is obtained.
Faults affecting the topology of the S-graph are not guaranteed
to be detected. Bridges might connect various cones, and they
are hard to detect in purely combinational circuits, too
[ArMc84].

3. Devices supporting the pseudo-exhaustive test

A pseudo-exhaustive test is only feasible, if the corresponding
S-graph is acyclic, and if each cone of the combinational repre-
sentation only has a limited number of inputs. The first
condition can be satisfied by integrating some flipflops or
latches into a partial scan path P extending the well-known
LSSD-rules [EiWi77]. This results in the circuit structure of
figure 7. In order to keep the hardware overhead small, the size
of P should be minimal.
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In order to fulfill the second requirement, some nodes within the
sequential network have to be cut such that they are directly
accessible. This way new pseudoprimary inputs p; and outputs
Po are introduced to replace a cut node v (figure 8).

Figure 8: Cutof a node v.

If node v corresponds to a latch in the original network, it is cut
easily by its integration into the partial scan path. For the general
case multiplexer partitioning has been proposed originally
[McBo81], which has some serious drawbacks with regard to
area, speed, test control, and fault coverage [HeWu88]. They
are avoided by the use of segmentation cells (figure 9).

cell

Figure 9: Hardware segmentation by special cells.

In [Bhat86] unmodified latches have been proposed for seg-
mentation purposes. But this alters the clocking scheme, and
the speed of the entire circuit is slowed down. For this reason,
we use the more sophisticated cell shown in figure 10. In
system mode S = 1 is asserted so that D and Q are directly
connected. For § = 0 the cell works like the usual LSSD
L1(L2*)-latch with data-input D, clock CLK, shift input SDI
and shift-clock A(B).
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Figure 10: Segmentation cell.

These cells are added to the partial scan path, but they do not
affect the system operation of the circuit (figure 11).

segmentation |,

Figure 11: Integrating segmentation and scan design.

In the next section, we discuss how to place the directly
accessible latches and segmentation cells.

4. Design algorithms

The following modifications of a design are required to realize a
pseudo-exhaustive test strategy:

a) A small number of latches must be integrated into a partial
scan path in order to obtain an acyclic S-graph.

b) A minimal number of lines within the original circuit must
be cut, in order to obtain small sets of inputs of the cones
within the combinational representation. Since the inte-
gration of an existing latch into the scan path requires less
hardware overhead than adding a new segmentation cell,
cutting nodes corresponding to latches is given preference.

Now we want to describe these tasks in graph theoretical terms.

Definition 11: Let veV. The cutof G := (V,E) in v is the

graph Gy) := (V(v),E(v)), where

Viv) = [(pi.Po} U YNV}, pipo & V

Efyvi = (xyIx=pia (vy)€ E)v(y=poa (xv) € E)}
UVE(xy)lx=vvy=v].

One easily verifies that for v,w € V the cuts are independent of
their order, G (v} {w} = G{w)(v). Thus we can define:

Definition 12: Let W := {w),...,wn)cV. The cur of G(V,E)
along W is the graph Gw := (Vw.Ew) :=G{w;]...{wg)-

The subproblem to generate acyclic S-graphs can now be stated
as follows:

Problem FBN(Feedback Node): Let G = (V,E) be an S-
graph. Find a set WcCV of minimal cardinality such that Gw =
(Vw.Ew) is acyclic.

FBN is known to be np-complete [Karp72], and heuristics are
used in order to obtain good, suboptimal solutions. Let Zg be
the set of all elementary cycles of G. For each cycle ze Zg, we
define n(z):={ve V | ve z}], the set of all nodes of z. Now the
scan selection problem is divided into two subproblems:

i)  For the S-graph G=(V,E), create the set of all elementary
cycles Zg, i. e. all cycles, where each node only appears
once.

ii) Set H := U n(z). Find a set WC H of minimal
zelg

cardinality, such that Vze Zg Wrn(z)#0.

These are standard-problems of graph-theory, and there are
well-known solutions. The implemented algorithms are based on
methods described in [ChKo75], [John75], and additional heu-
ristics are used. Alternatingly we select a bounded set Z'G of
elementary cycles, solve the hitting set problem ii), and select
another bounded Z'g.

The solution of subproblem b) is more complicated. First we
explain how to segment purely combinational circuits, and then
we extend this approach to general combinational represen-
tations.

Definition 13: Let G = (V,E) be a combinational represen-
tation, and let ve V. The natural number d(v) := [Inp(v)! is called
the dependence level of v.

Now we can state the segmentation problem of combinational
circuits exactly:

Problem OCS (Optimal Circuit Segmentation): Let G :=
(V.E) be a circuit graph of a combinational circuit, and €eIN. Is
there a set WV of size k < 1VI such that all vertices ve V in
Gy := (Vw.Ew) have dependence level at most £, i. e.d(v) <€

in Gw?

For any cut along W, d(v) € £ in Gw can be checked in nearly
linear time. Generating and checking all 2'V! cuts would take ex-
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ponential effort. Unfortunately, we cannot expect an algorithm

of a better worst case complexity, since OCS is np-complete for
£ > 2. A complex proof of this theorem is found in [Bhat86), a

shorter reduction in [HeWu89].

As OCS is np-complete, we refrain from looking for minimal
solutions, but present some efficient heuristics. Dealing with
general combinational representations is even more complex,
since one physical cut of the circuit corresponds to multiple cuts
in various time frames.

Definition 14: Let G = (V,E) be a combinational represen-
tation, and let V := (v,t) € V. The relevant time steps of v are in

set T(v) := (di(v,d)e V). The equivalent node set of v is Q(v) :=
{(w,d)eVIiw=v) c V.

Now we can formulate the general segmentation problem:

Problem OCRS: Let G := (V,E) be an acyclic circuit graph,
let G = (V,E) be its combinational representation, and let £ IN.
Is there a set WV of size k < [VI, such that all vertices

veV in G =V E )
w:JWQ(w> -:) WQ(w) wkerQ(w) ung(w)

have dependence level at most £, i.e.d(v) <2 inG u Q(w)?
weW .
We use some heuristics for an approximative solution of OCRS

applying well-known methods, since OCRS is an instance of a
general combinatorial optimizing problem:

CO (Combinatiorial Optimization): Let 2 be a set of states,
Z*c be a set of admissible states, and let k: & - IR be a cost

function. Find an admissible state Ze Z* with minimal costs
k(Z) = min(k(X) | Xe &*).

For OCRS the set of states is & = P(V), since every Zc V
determines a set of cuts with resulting graph

G =(V E ).
mksJZQ(z) ‘%Q(Z) ;JZQ(Z)
The admissible states are
o {ZE z | V\Fevuqz) (d(\f) s a in GUQ(Z))}
=2 L

The cost function k: 2 —+ IR, k(Z) := |ZI, corresponds to the
necessary number of segmentation cells.

We define a heuristical function h: 2 - IR to evaluate states:
h(2):= X In@d(v)),
veV'

where V'i= (ve V , 0y 1d¥) >Ein G, o )-
2eZ z=Z
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This function is an estimation of the number of vertices which
have to be cut in the combinational representation. We assume
an enumeration <vj,...,vp> of V with vie pd(vj)) =i <j.

Definition 15: Let G = (V,E) be a combinational represen-
tation, and let ve V. The cone C(v) of v is the subgraph C(v) :=
(PM v (v), M U (vDHZN E).

Definition 16: Let G = (V,E) be a combinational represen-
tation, and £e IN. The first violation fve V is the node fv=vj,
where i := min(j | d(vj)>}.

We construct a search graph § =(& &), where the nodes Ze &
= P(V) define cuts in the sequential network, and an edge
(Z1,Z2)e € exists if and only if

a) fve V\ZI is the first violation in G \'é Q)
2eZy

b) Za:=Zju [v], where Q(v)np(fv) # @ and h(Zyu(v])) is

The search is started at Zg = @. One branches fromZtwaZ, e
{Z(Z,Z) e &), preferably cutting lines corresponding to latches
or flipflops in order to reduce the hardware overhead, until an
admissible state Z is reached. The results of this process are
presented in section 6.

first violation

o fvinG

Figure 12: Example for =3,

For the example circuit of figure 2 and £ = 3, the algorithm
needs two steps to determine a solution for OCRS. This is
illustrated in figure 13 showing the combinational representation
of the circuit with an enumeration according to the signal flow.
In the first step, node 14 is the first violation and the two equi-
valent nodes 12 and 13 are chosen to be cut. In the second step
the first violation is node 22 and the algorithm decides to cut
node 20. Nodes 12 and 13 comrespond to node K2 in the original
circuit and node 20 corresponds to K7. As both K2 and K7 are
flip-flops, they simply have to be integrated into the partial scan
path.



o nodes cut

o in step 1
Figure 13: Steps of the segmentation algorithm for the example
circuit of figure 2.

in step 2

first violation

first violation
(step 2)

(step 1)

Since K12 has been cut before to guarantee an acyclic S-graph,
there are altogether 3 of 5 flip-flops in the partial scan path.
Figure 14 shows the resulting circuit.

Integration into partial scan

path for circuit_segmentation
/ N =
: Se

Pl

PO2
P12
B gt [0 R s
PIS
CLOCK

integration into partial
scan path to provide
acyclic S-Graph

Figure 14: Resulting circuit after integration of a partial scan
path and segmentation.

5. Pseudo-exhaustive test sequences

A considerable amount of work has already been done in inves-
tigating the generation of pseudo-exhaustive test sets for combi-
national circuits. Dependence-matrices [HiSi82], linear sums
[Aker85], cyclic codes ([TaCh84], [WaMc86]) and special
polynomials for linear feedback shift-registers [BARZ83] have
been proposed. They are all applicable to combinational repre-
sentations, and only little effort is needed to transform them into
pseudo-exhaustive test sequences. Each pattern p := <bje (0,1} |

ie I> of the combinational representation corresponds to a
pattern sequence. We remember 1 C IxT, hence the sequence is
S(p) := <<b;E (0,1} 1jel AteTG)> 1 te T>.

It should be noted, that not for the entire set IXT values are
defined in S(p). This can be used for pattern compaction.

A further compaction is possible, if some sequences have
common parts, e. g. the last patterns of sequence S(pj) are
identical to the first of S(p3). These merged sequences can be
generated with the help of cyclic codes by feedback shift
registers, supporting a low-cost external test or a self-test. The
details are beyond the scope of this paper, which aims at estab-
lishing a linear bound on the length of the pseudo-exhaustive test
sequence.

Let O c 'V be the set of primary and pseudo-primary outputs of
the sequential network. Each output function of 0 € O is tested
by at most 2% patterns in the combinational representation. Hence
the size of the pseudo-exhaustive test set is bounded by 101:2¢,
Each pattern is mapped to a sequence of at most length r :=
rank(G), hence the entire psecudo-exhaustive test sequence is
bounded by r-101-2¢.

6. Examples

We discuss three examples: the operation unit of the signal pro-
cessor (SP) proposed in [Blan84], a multiplier presented in
[Gutb88], and a PROLOG-coprocessor (PP) [Habe87].

Circuit Inputs | Outputs Gates Flipflops
SP 83 55 1675 239
MU 43 26 993 183
PP 36 73 1428 136

Table 1; Circuit characteristics,

The unmodified circuits are very hard to test, which is proven
with the help of the program LASAR [LASA85]. Fault
coverages obtained after 3600 seconds of computing time are
listed below.

PP MU SP

11.2 % 9.8 % 8.7 %

Table2: Fault coverage by LASAR after 1h of computing time.

First, we have selected a small number of flipflops in order to
obtain acyclic S-graphs (table 3).
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PP MU SP

28 (20.6 %) 72 (39.3 %) 41 (17.2 %)

Table 3: Number and percentage of flipflops in a partial scan
path in order to obtain an acyclic S-graph.

For these modified circuits, we have generated the combinational
representation. The representations have been segmented by the
algorithms described, where the maximal number of inputs to a
cone has been varied from £ = 20 1o & = 12. The required test
sizes are between some millions and a few thousands of
patterns, which is competitive with a usual deterministic test.

In the table below we distinguish between cuts of flipflops re-
sulting in additional scan path elements and other cuts requiring
more expensive segmentation cells.

overhead is competitive with a conventional scan design, since
the larger number of segmentation cells is balanced by the
shorter partial scan path.

In all cases the advantages are obvious:
e Complete fault coverage with respect to the usual fault
models;
& No expensive test pattern generation;
e Simple test application.

Also with respect to the number of necessary segmentation cells
the partial scan design is in most cases superior to the complete
scan path. This is due to the fact that the integration of a
complete scan path in general does not provide a pseudo-
exhaustively testable circuit. Additional segmentation cells arc
necessary. Table 5 shows the number of segmentation cells

Table4: Necessary number of segmentation cells and number
of flipflops in the partial scan path, in order to make
the circuits pseudo-exhaustively testable.

Table 4 shows significant savings of silicon area compared with
the conventional complete scan design. The exact quantification
depends on the layout of the used LSSD- and segmentation-
cells. A rough estimation shows savings of approximately 50%
for £ = 20 and £ = 16. But even for £ = 12, the hardware
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£=20 PP MU SP required for an efficient pseudo-exhaustive test based on a
¥ 5o caion cells 3 = 5 complete and on a partial scan design.
# additonal flipflops 6 6 72 t=20 PP MU SP
in the scan path partial scan path 3 7 5
complete scan path 9 4
# overall flipflops in the 34 78 113 —— =
scan path (percentage) 25 % 43 %) 47 %)
: ¢ 2 ¢ ¢ £=16 PP MU SP
=16 PP MU sP partial scan path 6 $ 2
# segmentation cells 6 4 9 complete scan path 14 7 10
# additonal flipflops 12 13 95 £=12 PP MU SP
in the scan path partial scan path 23 24 16
# overall flipflops in the 40 85 136 Complel scan peth - i 2
| scan path (percentage) | (29%) | (46%) | (57 %) Table5; Number of necessary segmentation cells using
T=12 s vr = complete and partial scan design, respectively.
# segmentation cells 23 24 16 In most cases the additonal number of segmentation cells
increases, if all flipflops are integrated into a complete scan path.
# additonal flipflops 22 30 131
in the scan path
# overall flipflops in the 50 102 172 7. Conclusions
scan path (percentage) (37 %) | (56 %) (72 %)

The new concept of a pseudo-exhaustive test of sequential
circuits has been introduced. Some flipflops and latches are
integrated into an incomplete scan path, such that each possible
state of the circuit is reachable within a few steps. Some more
flipflops and some new segmentation cells are added to the
partial scan path in order to make a pseudo-exhaustive test
feasible. Algorithms have been presented for placing these
devices automatically. Moreover it has been shown how to
transform a pseudo-exhaustive test set into a pseudo-exhaustive
test sequence of a similar size.




The analyzed examples show that a conventional complete scan
path without additional testability features requires more
hardware overhead than the presented test strategy which retains
all the known benefits of a pseudo-exhaustive test.
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