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Abstract;

The test of integrated circuits by random patterns is very attrac-
tive, since no expensive test pattern generation is necessary and
the test application can be done by a self-test technique or ex-
ternally using linear feedback shift-registers. Unfortunately not
all circuits are random-testable, since the fault coverage would
be too low or the necessary test length would be too large. In
many cases the random test lengths can be reduced by orders of
magnitude using weighted random patterns, But there are also
some circuits where no single optimal weight exists. In this
paper it is shown that the problem is solved using several
distributions instead of a single one. Furthermore an efficient
procedure is presented computing the optimized input
probabilities.

Thisway all combinational circuits can be made random-testable.
Fault simulation with weighted patterns shows a complete cove-
rage of all non-redundant faults. The patterns can be successive-
ly produced by an external chip, and an optimized test scheme
for circuits in a scan design can be established.

As a result of its own formulas are derived determining sharp
bounds of the probability that all faults are detected.

Keywords: Random tests, biased random patterns, multiple di-
stributions, low cost test.

1) Introduction

Testing by random patterns has many advantages compared to
other test strategies, for instance the self test capability, less
computing time and the high coverage of parametric faults. An
extensive literature has been published during the last few years
concerning problems of random tests, as computing fault detec-
tion probabilities and test lengths. Unfortunately most of these
papers are only dealing with special views of the subject.

Therefore it is necessary to list some basic facts as prerequisites
of the following investigations. Among these basic facts, there
is a new theorem establishing a sharp bound of the probability
that all faults of a given set are detected by a given amount of
random patterns. Another theorem proves that a real random test
and a pseudo-random test by shift-register sequences require the
same length, if the number of primary inputs is sufficiently
large.

It is shown that the fault coverage increases, and the overall
testlength decreases, if several random pattern sets with different
distributions are applied. The optimized input probabilities can
be computed numerically, if a procedure is available, estimating
fault detection probabilities, and satifying certain restrictions.
The restrictions are discussed at the end of section 2.
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In section 3 the complexity of computing an optimized random
test scheme is determined, and since this problem ist at least np-
hard, we avoid the exact calculation using an efficient heuristic
in section 4. Some implementation details are given in section 5,

and results are discussed in section 6. Finally we present a

system- generating weighted random test patterns according to
multiple distributions, which is used for the external test of
circuits with an integrated scan-path.

2) Basic facts
2.1 Fault detection probabilities

One of the main concepts of random tests is the computation of
fault detection probabilities. Many tools and algorithms have
been proposed during the past years estimating these
probabilities (e.g. [BDS83], [AgJa84], [Wu85], [ChHu86],
[AaMeR7]). Most of them are restricted to the usual stuck-at
fault-model, but an extension to more complex faults is possible
in a straightforward manner, unless a sequential behavior is is
involved [WuRo086]. The precision of these tools, however, is
limited by the following fact:

Fact I: C;rmapuﬁng fault detection probabilities is at least np-
h

This is a simple consequence of the np-completeness of the fault
detection problem [IbSa75]. The mentioned fact has led some
people to the conjecture that a stochastical Monte Carlo
algorithm would yield a higher precision. But this is not true:

Fact 2: Estimating fault detection probabilities is #-com-
plete, that is, one cannot expect a stochastical algo-
rithm with a sample size bounded by a polynomial in
the reciprocal of the relative estimation error.

This result is derived using elementary concepts of complexity
theory found in [GaJo79]. In a more formal way, the pattern
number N may exponentially increase with the reciprocals of the
maximal relative estimation error () and of the probability (P)
that this error is not exceeded (8), where f is the real detection
probability and f' is an estimated value provided by a sample
size N:
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Both facts point out that we cannot expect tools estimating fault
detection probabilities with arbitrary high precision neither
analytically nor stochastically. This has consequences on the
numerical stability of algorithms computing optimal
distributions, and it will be discussed in section 2.3. The intrinsic
error also makes useless algorithms computing random test
lengths in a very sophisticated way, if the input is based on
estimated fault detection probabilities.

2.2 Fault detection probabilities and test lengths

Often it is discussed that the pseudo-random property has to be
considered, and there are some papers published on this topic
[WAGNS87]. But here we have the following fact:

Fact 3: For realistic circuits the difference between the
length of a random test and the length of a pseudo-
random test is negligible.

The fact is an immediate consequence of theorem 1. It holds for
circuits with a realistic number of primary inputs, where all pos-
sible input patterns cannot be enumerated exhaustively. Only in
this case a random test makes sense, and the random pattern set
will be a very small part of an exhaustive test set.

be the detection probability of a fault f in a
comEmational circuit with i inputs, and let £ be the
escape probability that f is neither detected by N
random patterns nor by N, pseudo-random patterns,

For 22 > N; we have Np = Np.

Fault detection by random patterns follows the binomial distri-
bution, and we have & = (1 - p)Nr or In(e) = Nln(1 - p). Expres-
sing the exponention function by its power series we have

@)
In(e)=N,In(e - 5.2 p)) NIn("—pZ

i=2

(-p)'
=G+ 21

=N,(-p+In(1+ Z(( 3)! ).

Straightforward computation shows

3 (~
p)'
Z() +2)! 1
er 3
and by iteration we can prove
4) N,p<-In(e)<N,p+N,p

Fault detection by pseudo-random patterns follows hypergeo—
metric distribution, that is
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Using the same argument as before we have
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Hence
(® _ 2'5. N 9!
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2 (2'=N,+1) 2 -N,+1
and since
9 > N, -1
{} ZINP - 1 =Np(l+ .._E_P._-.—)=
2'-N,+1 2'-N,+1
N2 -N 2'-N
=N, + ———— <N, +— I_<N,+1
2'-N,+1 2 -N, +1
we have
(10) N,+1
pN, <-In(€) < p(N, + 1)(1+ N p)
P

< p(N,+ 1)+ 2p*(N, + 1).

Since for usually small detection probabilities p the terms

2p2(Np+l) and p2N; both are smaller than p, and since N denotes
integer numbers, the inequations (4) and (10) lead to pNp =

-l.l'l(e}, er = -ll‘l{e), and thus Np =N

qed.
As a consequence we can use the random assumption without
any loss of generality for those circuits where an exhaustive test
is impossible. For instance, if we have to apply less than 8000
patterns to a circuit with more than 25 primary inputs, then
random and pseudo-random pattern sets will exactly have the
same size.
Let now F be a set of faults of the combinational circuit C with
inputs I, with the only restriction that no sequential behavior is

induced. Let X := <x1,....xp> € [0,1]! be a tupel of real numbers,
one number for each primary input. These input probabilities
determine the probability of being "1" for each primary input,
and for each fault they determine its detection probability pp(X).
The probability that each single fault of F is detected by N ran-
dom patterns is often estimated by the formula

ab 0 =TTa-a-pmxn".

feF
Of course formula (11) only holds if we assume that the detec-
tion of some faults by N patterns forms completely independent
events. Therefore some authors try to compute an exact value by
means of Markov-theory [BaSa83], but the next theorem shows
that formula (11) indeed is a very precise estimation.
Let <fj>j<y be an enumeration of F, where i < j implies pg < pg.
In order to simplify the notation we omit the concrete
distribution X. The expression P(A,N) denotes the probability to
detect all faults of the set A by N random patterns. Then we can
show:
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Set
1e=Tla-a-pp".
IeF
Then
R p,)"s
j=2
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We set 8, = P((£fi <n + 1.8 - [Ta-a-p, ).

Now we have P(E,N) =
we can estimate

IN+3y, and using the Bayesian formula

n+l

=p((ffi sn)N) -TIa-a-p )"

i=l

—(l—p, }P({fllsn}Nino pattern detects f ;)

=P({fli<n),N) - (1- (I“P,‘)}H(lﬂ(l-p,))

i=l

~=p, ) P((f)isn),NIno pattern detects f )
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P({f]i <n},NIno pattern detects f_,).

Thus 8,,<8,+(1-p, I“H(l—(l—p'}),

i=l
and since d1 =0: a4l
5, <2(-p, Mla-a- p )"

j=2 ok

On the other hand P((fi < n),N Ino pattern detects f_,) <1,
and we have

8,,28,+(~p, )'Ila~a-p)H-12

j=l
n+l

28,-(1-p, )'1-1)2- -1 )2(1-p,)"
=2
qed.
Using this theorem we can state
Fact 4: Let In = 1 be the derived probability to detect all
faults. Formula (11) underestimates less than

O(lIn(JN)!) and overestimates less than O((1-
IN)-In(In)N).
For instance if we have 3 faults with pgy = 10-7, ppp = 5:10-7 and

pr3 = 106 then using formula (11) we would need N = 69-106
patterns in order to detect all faults with probability 0.999. The

estimation of theorem 2 yields
0.999 - 10-18 < P({fy, f2, f3},N) £0.999 + 10-15.
The following fact has already been observed in [BaSa83]:
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Fact5:  Only the few faults with lowest detection probability
have impact on the necessary test length.

In [Wu87a] it is discussed that those faults can be neglected

which have a detection probability more than 10 times larger

than the minimal detection probability.

The next statement has already been established in [Shed77]:

Fact 6: The necessary number of random patterns increases
linearly with the reciprocal of the minimal fault de-
tection probability.

Thus during a conventional random test the size of a test set can

grow exponentially with the number of inputs. For instance con-

sider an AND32 (figure 1) where each input is set to "1" with

probability x.

Then an arbitrary stuck-at-0 fault is detected with probability

x32, and each of the 32 stuck-at-1 faults with probability (1-

x)-x31, For x = 0.5 and test confidence 0.999 formula (11) yields

~32,N. 33

099 =(1-(1-27)),
and N = 4.48.1010,

X —

|

1 ——

Figure 1; 32 Input AND

But using unequiprobable patterns, i.e. x # 0.5, test lengths can
be reduced drastically ([Wu85], [LBGGS86]). For example

setting
x:=3/N.5,
we would need approximately N = 6-102 patterns.

Fact 7: Using unequiprobable random patterns the test
lengths can be reduced.

In [Wu87a,b] an efficient procedure computing opnrnlzcd input
probabilities was presented. But unfortunately some circuits are
resistant to optimizing. For the connection of an AND32 and an
OR32 in figure 2 no solution better than x = 0.5 exists.

X1
X3

& —

X32

>1

Figure 2; Not random-testable circuit
This problem is solved by firstly applying 600 patterns with
input probability
x:=4/0.5,
and then 600 patterns with input probability

x:=1-3/0.5,




For the rest of, this paper we are dealing with the problem to
compute several distributions X for random patterns in order to
minimize the overall test length, based on tools estimating fault
detection probabilities

2.3 Efficiency and accurcacy of the testabillity measures

Computing optimized distributions X is essentially done by
numerical algorithms maximizing formula (11). The involved
fault detection probability pg(X) has to be determined by a
testability measure meeting the following requirements:

a) High Efficiency:

During optimization the detection probabilities pghave to be
evaluated very often for different arguments. Due to the already
mentioned inherent problem complexity this is not possible by
an exact computation. Recently several algorithms have been
proposed, exactly computing fault detection probabilites using a
4-valued logic [ChHu86] or using some graph-theoretic
properties of the circuit [SETH86]. But until now no reports
about their measured performance are available. Therefore we
have to use heuristics estimating fault detection probabilities,
and dispense with the exact computation.

b) Unique results:

The so-called cutting algorithm is a heuristic computing bounds
of the detection and signal probabilities [BDS83). If one of the
bounds is constant 0 or 1, this information is not sufficient,
since especially the faults with low detection probabilities are
interesting. Thus we demand a real number as an estimation.

c¢) Handling weighted input probabilities:

For each fault its detection probability will be computed several
times for different input probabilites X. If the input probabilities
d}ffer ofnly in few positions, the algorithm should take advantage
of this fact.

d) No random errors:

The algorithm runs for different input probabilities, and the
estimation error should not be a random variable. If the error is
random, we have to deal with a stochastical optimizing problem
which has a very high complexity. Optimizing procedures like
the Newton iteration in general do not converge based on
stochastical derived inputs. Only in special cases these
algorithms can be modified, for instance for PLAs as described
in [Wu87d].

These four requirements are fulfilled by the tool PROTEST
(Probabilistic testability analysis) as described in [Wu85],
[Wu87a]. Furthermore this tool has the advantage that the user
can control the trade-off between the precision of the estimation
and the required computing time. All resultreported in this
paper are provided by PROTEST.

3) Optimizing input probabilities

Now we can try to formulate the optimizing problem in a more
formal way:

Eroblem A:
Let G be the desired probability to detect all faults. Find a

number k, k distributions Xi, and k numbers N;, i = 1,....k, such
that

k 3
c<Jla-Ila- p,(X*})N'). and N:= ENiisrninimal.

feF i=l i=l

The problem is solved, if we set k equal to the minimal number
of deterministic test patterns, that is the size of the smallest

possible test set. Then each X! € [0,1]™ represents a test pattern,
we have Nj = 1 for each pattern, and N = k. But the problem to
find a minimal test set has been proven to be np-complete
[AkKr84], hence there is no hope to develop an efficient CAD
tool based on a solution for problem A. Even the weaker
problem B will turn out to be np-hard:

Broblem B:
Let G and k be given. Find k distributions X! and numbers N;,
i=1,...,k, such that

3 ) k
G sITa-ITa-p,) ) and N:= XN, is minimal,

feF i=1 iml

A single moment of consideration proofs that problem A can be
reduced to problem B, and an efficient algorithm cannot be ex-
pected either. Therefore our goal is not an optimal solution of
problem A or B, but we are content to find an efficient
optimizing procedure. Figure 2 indicates that optimizing input
probabilities can be prevented by contradictory requirements of
some faults. Hence we formulate our problem as follows:

Optimizing problem:
Let G and k be given. We are searching a partition <Fy,...,Fi> of

F:=Fj U...U Fy, distributions X1,..., Xk and numbers Nj,...,Nk,
such that

(12) k LN, :
G <IITTa-a-p,exh) ), and Ni= XN,
i=l f‘Pi i=1
is sufficiently small.

For k := 1 this problem has already been solved in [Wu87a,b],
and we now list some basic results of this paper. For the input

probabilities X := <xj,...,xp> € [0,1]" we have for all faults f
(13)
PAX) = p(X15e-1Xi-1,0.Xii4 150Xn) +

Xi(PEXLye- i1 1 Xig LoeresX) = PRXLye0esXie 1,0, Xi 1yeeesX))s

This is a straightforward consequence of Shannon's formula.
Now we can compute a fault detection probability and its partial
derivative for an arbitrary value of xj, if we know the values
under the conditions that input i is constant "0" and constant "1":

(14) dp (X)
dx

i

=P (XKoo X _p L X nX,)

= P(Xppeer X g 0K heiin X
By some straightforward approximations formula (12) leads to
9 @G~ X-(-p )" ==L ™"

feF feF
We call a tupel X € [0,1]% oprimal, if the objective function
1 F -p, (XN
€

is minimal. Obviously this corresponds to the fact that the pro-
bability to detect all faults by N patterns is maximal.

Minimizing the objective function would need exponential effort
in general. But a sufficient heuristic is found, since the first par-
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tial derivative of the objective function can be computed
explicitly:

an ByX)

dx,
—EN(p,(x,....,xl_F LxninXs)

feF

Pl(XpeaaX 30X 00 ...,x,))e-"m.
The next step shows that the second derivative is positive every-
where:
(18) 2.F
s (Xx)
dx?
_ZNz(pf(xl,...,xi_l,l,xm. S
feF
= N O A C T
Thus the objective function is strictly convex with respect to a
single variable, and the explicit formula of (18) can be used to
find the optimal value for xj by the bisection method, the regula

falsi or the Newton iteration. The complete optimizing
procedure is:

Procedure Optimize
(F: Faultsets,

0ld := 28y(X)

X: Startvector)

New := 8y(X).

While 0ld > (1+A)New+E do
0ld := New.
For i := 1 to n do
Search optimal value y
for input i.
®i = ¥
New := &y (X)

The parameters A and € are specified by the user, and they
determine another trade-off between accuracy and computing
time. In the next sections we discuss the extension to multiple
distributions.

4) Partioning of a fault set

In order to gain efficiency, the optimizing problem is solved by
splitting the fault set into two subsets iteratively. In this section
it is discussed, how to find two tupels V1, V2 € [0,1]] and a
partition F] U F2 =F, such that the sum of the two correspon-

ding objective functions is minimized:
F F i o
By (V) + 8y(v,)i= 2e "4 e < x).
l’aF, feF,

-
For each F* C F the objective function 8y may be multimodal

and its global minimization would need exponential effort. For
this reason we do not try to compute a global minimum, but we
are looking for a direction, where starting from a tupel X( the

decrease of 81;
helpful hint:
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is maximal. The next theorem will give a

Let U C RN be convex, {:U — R, and
d
i 0rm (&)

' 1giga

be the gradient of {. For each Xg e U the vector
~grad({)(Xg) indicates the direction of strongest de-
crease. If { is linear a local minimum is found on the

line X - agrad({)(xg), a2 0.

Proof: Mathematical calculus.

Even though 8; is not a linear function, theorem 3 claims that

P
—grad (8,)(X)
is the required direction. Thus we define the new function
£ :R\I0)— R

b}’ . . .
By, ()= 8}, (X, — oigrad(8;,)(X,)
The formula
19) !
( ' déi(a)
D(F',N,X,0):= T(O)

exactly measures the decrease of our objective function in its
optimal direction. The solution of

(20 D(F*,N.Xo,7) =0
provides input probabilities

X, - ygrad(8y, )(X,)

defining a minimum point in this direction. Therefore our
partitioning problem is solved by F1 and F2 such that

21) D(F1,N,X0,0) + D(F2,N,X,0) > 0

is maximal. It should be noted that for linear functions this pro-
ceeding would be optimal indeed.

For the rest of this section the tasks necessary for partitioning are
discussed. These tasks have to be done only for the small subset
of faults with lowest detection probability due to fact 5). If this
set is small enough, the presented method will compute a global
optimal solution maximizing formula (21). For large fault sets
computing time can be saved, if the method is somewhat
simplified.

a) Computing the gradient
The gradient
X, - yerad(8;, )(X,)

can be computed explicitly using formula (16). If additionally
formula (13) is used, it is immediately seen, that we only have to

compute pf(X) and either pf(x1,...,xi-1,0,Xi+1,...,Xn) or
PE(x1,e.%i-1,1,Xi+1,....xn) for this purpose.



b) Sorting the fault set:

For each fault let

p (XN
d,(X )= Z(“" J(xo)—ﬂgrad(e N

i=l
be the Euclidian norm of the gradient of

e-p,(xm

in Xp, and let < fj >j< be an enumeration of F with

isk=d (Xu)zd (X ).
Now we select a constant value ¢ and the most important subset
of faults FCF by F:={fj | i<c), the results presented in the next
section are provided by c¢=20. If as usual the number of faults

with low detectability is small enough, then a global optimum
can be achieved.

) Starti Y S
Firstly we are looking for a starting partitioning Fa, Fp C F:

1) Set F, Fp := 9 .
2) For i :=1 to c do
if D(FaU{fi)},N,Xo,0)+D(Fp,N,Xp,0) >
D(Fa,N, Xg,0)+D (Fpu{fs},N,Xp, 0)
then Fa := Fau{fi}
Fp := Fpwi{fil}.
The so achieved starting partitioning corresponds to an objective
value v := D(Fg,N,X,0) + D(Fp,N.X0,0) .

d) Constructing a search tree:

Now a search tree T can be constructed, where each node repre-
sents two disjoint subsets of F. Node A is a direct successor of
node B, if one of the subsets of A is equal to one of B, and if the
other subset contains exactly one more fault (see figure 3). Thus
a node of depth k represents a partitioning the first contiguous
faults in the aforementioned enumeration.

else

e, 2,565

_ ( (61, 4,66, 2, ;3',15} ) {flfd}{mﬂfs t6)) ;

Node at level 5 with its both successors.

Figure 3:
Due to the triangle inequation, at a node A at depth m<c with
fault sets Fy,Fy the search can be stopped if

v 2 D(Fy,N,X0,0) + D(Fw,N,X0,0) + (m-c)dim(X0),

since no leaf succeeding node A will be better than the starting

partitioning. If we reach a leaf thisway, then a better solution Fj,
Fp is found and v must be updated. The complexity of this pro-

ceeding is distinctly lower than 2€, since most of the branches
are aborted at a very early stage of the search.

The resting faults of F (if some exist) are now added to the sets
F3 and Fy in the same way as described in c). Finally elements
are exchanged between F; and Fp such that the value of

v := D(Fa,N,X(,0) + D(Fp.N,Xp,0)
is maximized.
A C . | of optimal i babiliti
If the gradient for

P

&
is already computed, formula (21(‘)) is solved by a bisection me-
thod.This provides a ya with D(F;,N,X0,Ya)=0 and a y, with
D(Fp,N,X0,Y2)=0. We set

FI
Fi=F, V=X -v,grad(®,)X,), and

1
F2
Fy=F, V=X, bgrad(8y)(X,).
Finally we improve V) and V3 by the procedure OPTIMIZE of
section 3. If the gradient is unknown this is done immediately.
5) Multiple optimal distributions

Of course partitioning is not restricted to two sets. But instead of
partitioning into m sets at one time, experience has shown better
results by a successive procedure:

Procedure Multiple Optimize
(F: Faultsets, X: Startvector,
m: Number of distributions).
F[1] :=F
X[1l] := X
For i :=1 to m-1 do

Find fault f with lowest
detection probability.

Let jJ € m-1 be such that £ € F[]].
Partition F[j] into F, Fp.

Optimize (Fa,x[j],xa) and Optimize
(Fb,x[3),%xp) as mentioned in
sect.de).
F(j] := Fa, x[J] := xa, F[i] := Fp,
x[i] := =xp.

6) Results

In table 1 optimizing results are shown based on PROTEST. The
first example is the ANDOR32-circuit of figure 2. For the
wellknown benchmark circuits [Brgl85], k = 1,...,6 optimized
input probabilities have been computed. The first column
denotes the circuit name, the second one the necessary number
of not optimized, equiprobable random patterns, and the follo-
wing 6 columns contain the necessary number of random pat-
terns for each distribution and its sum. For the set of distribu-
tions which results in a minimal size, the overall number of test
patterns is printed by bold letters.

For the small circuit C17 the some distributions degenerate to
deterministic test patterns. Especially three points are
remarkable:
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Firstly, all of the benchmark circuits and the counter-example
can be tested by only few thousands of random patterns. From a
theoretical point of view, all circuits can be made random
testable by the presented procedure.

Secondly, the overall number of necessary patterns does not

monotonously with the number of distributions. This is
a practical consequence of the discussed problem complexity
and the applied heuristics.

Thirdly, the results slightly differ from the results reported in
[Wu87a,b], since some parameters of the testability measure
have been changed in order to speed up optimizing. This has
been paid by less precision, and therefore the predictions on
fault coverage and test lengths have to be validated by fault
simulation,

[C2670 T8 128 | 47c6 12:&._1.&:6_’_&.1&__&1:5
1.0e1 10el | 1.0el | 1.0el 1.0el
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8.1e5
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6.led | 1.4e3 3.3el
4.1e2 6.8e4

1.1e5

o315 14004 | 1.3ed lled | LJed ] 13cd | 1ded | 1ded
24¢2 | 24¢2 | 24e2 | 24e2 2.4e2
lled | 8.6e3 | 2.2e3 | 22e3 2.2e3

22e3 | 7.2e3| 293 29e3
293 | 1.2e3 1.2e3
7.2e3 3.3¢2

7.2¢3

CO2RE (6% | 243 | a0e) [ dA7c) | 52e7 | 567 | 61l
1.6e2 | 1.6e2| 87el | 491 491
24e2 | 22¢2 | 1.6e2| 871 5.lel

8.7el | 491 | 1.6e2 8.7el
22e2 | 5.1el 1.5¢2
2.1e2 6.8e1

2.1e2
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1.1e8 | 25e3 | 2.5e3 25e3
1.1e8 | 4.5e6 2.5¢2
2.0e2 2.8e5

2.6e3

Table 1: Distributions and test sizes

Recently Schulz and Auth succeeded in identifying all redundant
faults of the benchmark circuits by a deterministic test pattern
generator [ScAu88). The first column of table 2 contains the
number of redundant faults they recognized, in the second
column the number of weighted patterns are given. The third
column contains the number of not detected faults by simulation,
then the fault coverage with respect to all faults, and finally the
fault coverage with respect to all detectable faults.

Circuit] Number of| Number | Fault | Number | Fault coverage
redundant of cover- | of not | with respect
faults bgr simulated] age |detected [to all detectablé]
[ScAu88]| patterns | (%) | faults faults (%)
cl? 0 23 [ 100.00 0 100.00
c432 4 494 | 99.32 4 100.00
c499 8 1381 98.99 8 100.00
c880 0 578 | 100.00 0 100.00
c1355 8 5288 | 99.53 8 100.00
c1908 9 10784 | 99.60 9 100.00
¢2670 117 47110 | 95.48 117 100.00
c3540 137 11233 | 96.30 | 137 100.00
c5315 59 4430 | 99.07 59 100.00
c6288 34 239 | 9959 | 34 100.00
c7552 131 24037 98.3 158 99.7

'Erculll Necessary number of random patterns
|equipro- | weighs:

bable 1 2 3 4 5 6
AndOr[38eTOT 3810 T6ed [ T8I | 2Te3 1 29¢3 | 2de3
820 200 200 | 200 200
820 820 250 150 150
820 820 | 250 250
820 | 820 200
820 820
820
cl/ B S8 59 o4 3 51 49 |
27 27 19 8 8
32 10 9 7 7
17 17 9 10
10 17 9
10 8
7
o432 1107 T T0e3 | TJed | 1331 1231 113 L33
4.6e2 | 4.6e2 | 4.0e2 | 192 1.6e2
6.1c2 | 43¢2 | 4.6e2 | 1.6e2 1.6e2
402 | 1622 | 402 1.9¢2
1.9¢2 | 2.0e2 2.0e2
1.6e2 2.7e2
2.9¢2
(c400 [17e7 | 1Je3 | 2.3¢3 | 30e3| 3.7e3| a0e3 | 4.2e3
Lle3 | L.1e3 | 1.le3 | 692 6.92
123 | 1.1e3 | Lle3 | 82e2 1.1e3
B.5e2 | 8.2¢2 | 1.le3 5.5¢2
6.9e2 | 5.5¢2 8.3¢2
8.3e2 7.7e2
2.7e2
CRR0 [2ded | 3dcy [ 022 | Taes | %3 | 1oe3 | 1163
1.le2 | 1.1e2 | 1lle2| 1l.le2 1.1e2
8.1c2 | 1.7e2 | 1.7¢2 | L7e2 1.7e2
53e2 | 492 | 5.1e2 5.1e2
5.1e2 | 4.6el 4.6el
4.4¢2 491
2.5¢2
[N PAL A0c6 | 5.7e6 | 776 | 936 | L1l
196 | 1.7e6 | 1.5¢6 | 1.5¢6 Seb
2.1e6 | 19e6| 1.7e6 | 1.7e6 1.7e6
21e6 | 196 | 196 1.9e6
21e6 | 2.1e6 2.1e6
2.1e6 1.7¢6
1.7e6

[CTO08 [5Ted | STed " STed [ TAcT| T Ted | 2764
24e2 | 24e2 | 24e2 | 2422 24e2
S5.1ed | 25e4 | 9.1e3 | 9.1e3 1.5¢3
9.1e3 | 153 | 15e3 5.2e3
1.0c4 | 5.2e3 6.1e3
6.1e3 3.4e3
4.6e3
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Table 2: Fault coverage by simulation of weighted patterns

It should be noted that the simulated amount of patierns has been
much smaller than that one required by PROTEST, due to re-
strictions of the available fault simulator. Presumably this is the
reason for the 0.3 percent not detected faults of the circuit



€7552, and thus the weighted patterns will be another
application field of the recently proposed fast fault simulators for
combinational circuits (e.g. [MaRa88], [Waic85]).

Finally table 3 shows for each circuits the optimal number of di-
stributions and the percentage of the size of an optimized
random test set in terms of a conventional one.

Circuit |Optimal number of] Size of an optimized test set in
distributions percents of a conventional one

[AndOr 2 728 %

C17 6 58 %

C432 2 58 %

C499 1 100 %

C880 3 3%

C1355 1 98 %

C1908 6 41 %

C2670 3 9%

C3540 d 13%

C5315 5 28%

C6288 1 38 %

C7552 6 9.0e-5 %

Table3  Optimal number of distributions and test sizes

7) Applications

The mentioned tools estimating fault detection probabilities are
mainly used to predict the necessary test length of a random
test, which can be carried out by a built-in self-test structure like
a BILBO [KOEN79]. Since a large class of circuits is resistant to
such a conventional random test, optimized input probabilities
were computed. They can also be implemented as self-test using
a so called GURT (Generator of Unequiprobable Random Tests)
[Wu87c]. But even this way not all circuits can be dealt with.

The presented method of computing multiple distributions is ap-
plicable to gl combinational circuits, but unfortunately there is
no obvious way to implement them by a BIST technique. But of
course they can be used for a so called LSSD or scan-path ran-
dom test ([EiLi83], [BaMc84]). Figure 4 shows the basic archi-
tecture.

LRI Scan path
Primay
inputs
Device under
2 test
Primary
outputs
LR4 -
Figure 4: LSSD-based random test

The pattern generator and the signature registers are built on an
external chip generating random patterns with multiple
distributions sequentially. Such a test chip has been designed

and processed as a gate array [Berg85]. Currently a
programmable circuit based on standard cells is designed and
processed.

This leads to a weighted random pattern test system at low costs,
where the same or even a better fault coverage is reachable as it
is during a conventional deterministic test. In addition to the low
priced test equipment the test application time will also decrease
due to the high speed pattern generation.

Conclusions

An efficient method has been presented to compute multiple
distributions for random patterns, which can be applied succes-
sively. Using multiple distributions, all combinational circuits
can be made random testable, and a complete fault coverage is
provided by a few thousands of random patterns.

The differently weighted random test sets can be applied to scan
path circuits using an external chip, combining the advantages of
a low cost test and of high fault coverage.

Furthermore several facts about testing by random patterns have
been proven. It has been shown, that the number of random
patterns required for a certain fault coverage can be computed
without regarding the pseudo-random property and with the
independence assumption for fault detection.
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