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Abstract; 
The test of integrated circuits by random patterns is very anrac-
tive, since no expensive test panern generntion is necessary and 
the test application can be done by a self-test technique or ex-
ternally using linear feedback shifl-registers. Unfonunately not 
all circuits are random-testable, since the fault coverage would 
be too low or the necessary test length would be too large. In 
many cases the random test lengths can be reduced by orders of 
magnitude using weighted random patterns. But there are also 
some circuits where no single optimal weight exists. In this 
paper it is shown that the problem is solved using several 
distributions instead of a single one. Funhermore an efficient 
procedure is presented computing the optimi:ted input 
probabilities. 
Thisway all combinational circuits can be made random-testable. 
Fault simulation with weighted panerns shows a complete cove-
rage of all non-redundant faults. The patterns can be successive-
ly produced by an external chip, and an optimi:ted test scheme 
for circuits in a scan design can be established. 
As a result of its own fonnulas are derived detennining sharp 
bounds of the probability that all faults are detected. 
Kuwrdt.· Random tests, biased random panerns, multiple di-
stributionS,low cost test. 

1) Introduction 
Testing by random panerns has many advantages compared to 
other test strategies, for instance the self test capability, less 
computing time and the high coverage of parametric faults. An 
extensive literature has been published during Ihe last few years 
concerning problems of random tesls, as computing fault detec-
tion probabilities and test lengthS. Unfortunately most of these 
papers are only dealing with special views of the subject 
Therefore it is necessary to list some basic facts as prerequisites 
of the following investigations. Among these basic facts, there 
is a new Iheorem eSTablishing" shJltp hound of Ihe probahilily 
that all faults of a given set are detected by a given amount of 
random patterns. Another theorem proves that a real random test 
and a pseudo-random test by shift-register sequences require the 
same length, if the number of primary inputs is sufficiently 
large. 
II is shown thai Ihe fault coverage increases, and the overall 
testlength decreases, if several random panern sets with different 
disDibutions are applied. The optimized input probabilities can 
be computed numericallr, if a procedure is available, estimating 
fault detection probabilities, and satifying certain restrict ions. 
The restrictions are discussed at the end of section 2. 

In section 3 the complexity of computing an optimized random 
test scheme is detennined, and since this problem ist at least np-
hard, we avoid the exact calculation using an efficient heuristic 
in section 4. Some implementation details are given in section 5, 
and results are discussed in section 6. Finally we present a 
system· generating weighted random tcst panems according to 
mul!iple distributions, which is used for tbe external test of 
circuits with an integrated scan-path. 

2) Basic faels 
2.1 Fault detection proba bili ties 
One of the main concep.ts of random tCSts is the computation of 
fault detection probabilities. Many tools and algorithms have 
been proposed during the past years estimating these 
probabilities (e.g. (BDS83), [AgJa84], [Wu8S], [ChHu86], 
[AaMe87J). Most of them are restricted to the usual stuck-at 
fault-model, but an extension to more complex faults is possible 
in a straightforward manner, unless a sequential behavior is is 
involved [WuR086J. The precision of these tools, however, is 
limited by the following fact: 

Computing fault detection probabilities is at least np-

'''''. 
This is a simple consequence of the np-completeness of the fault 
detection problem [lbSa7Sj. The mentioned fact has led some 
people to the conjecture that a stochastical Monte Carlo 
algqrithm would yield a higher precision. But this is not uue: 
Eilt.L.l;. Estimating fault detection probabilities is IF-com-

plete, that is, one cannot expect a stochastical algo-
rithm with a sample size bounded by a polynomial in 
the reciprocal of the relative estimation error. 

This result is derived using elementary concepts of complexity 
theory found in [GaJ079j. In a more fonnal way, the pattern 
number N may exponentially increase with the reciprocals of the 
maximal relative estimation error (e) and of the probability (P) 
that this error is not exceeded (11), where f is the real detection 
probability and f' is an estimated value provided by a sample 
siuN: 
(I) 
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Both facts point out that we cannot expect tools estimating fault 
detection probabilities with arbitrary high precision neither 
analytically nor stochastically. This has consequences on the 
numerical stability of algorithms computing optimal 
distributions, and it will be discussed in section Z.3. The intrinsic 
error also makes useless algorithms computing random test 
lengths in a very sophisticated way, if the input is based on 
estimated fault detection probabilities. 

2.2 Fault detection probabilities and lest tengths 
Often it is discussed that the pseudo-random property has [0 be 
considered. and there some papers published on this topic rw AGN87]. But here we have the following fact: 

For realistic circuits the difference between the 
length of a random test and the length of a pseudo-
random tcst is negligible. 

The fact is an immediate consequence of theorem 1. It holds for 
circuits with a realistic number of primary inputs, where all pos-
sible input patterns cannot be enumerated exhaustively. Only in 
this case a random teSt makes sense, and the random pattern sct 
wiil be a very small part of an exhaustive test set. 
TbtQam I.' 

Let p be the detection I?robability of a fault f in a 
combinational circuit wnh i inputs, and let t be the 
escape probability that f is neither detected by Nr 
random patterns nor by Np pseudo-random patterns. 
For 2i1l Nr we have Nr= Np-

lI1lIIf; 
Fault detection by random patterns follows the binomial disai· 
bulion, and we have t .. (I - p)Nr or Io(e) '" Nrln(1 , p). Expres-
sing the exponention function by its power series we have 
(') 
In( )- N I (-' 'f (_p) l) _ ( " iof' (_p)1 

t - ,n e -N,1o e 
1-1 100 

(_p)1 
=N,(-p+Io(l+"'7pk-(' ,),». e 1.0 I + . 

Straightforward computation shows 

(3) (-p)' 

1 
eO, < '2 

and by iteration we can prove 

(4) 

Fault detcction by pseudo-random paneros follows hypcrgeo-
metric distribution, that is 

(5) (21 - 21p) 
e- N , _ (21(I_p»!(21 _N p)! _ fiI21(I-p)-k 

- (2;(I-p)- N,)!2!! -'0(1 2; k 

H,_' 
" :: TI(l- - ,-p), 

2-k 

Using the same argument as before we have 

(6) '""I , I H,-I,'" 'Cp 'Cp p, 
"'-, -S-ln(e)S -+(-,-» 
'002-k );002-k 2-k 

(I) 

Hence 
(8) z! N 21 

S-Io(t) S ! p . , (1+ I P ) 
2 (2 -N,+I) 2 -N,+I 

and since 
(9) 

we have 

(10) 

N - I 
2'N, ( -N,(I+ ! ' ): 

2-N , +1 2-N,+1 
Nl_ N ZI _N 

, • , N I =N+ SN p + . <,+ 
, 21_N,+1 2'-N,+1 

N + I 
pN, S-Io(t)< p(N , + 1)(1+ ----F:r--P) • 

< P(N,+ 1)+ 2p2(N p + I). 

Since for usually small detection probabilities p the terms 
2p2(Np+I) and plNr both are smaller than p, and since N denotes 
integer numbers, the inequations (4) and (10) lead to pNp " 
·In(e), pNr .. -In(e), and thus Np '" Nr. 

As a consequence we can use the random assumption wilhout 
any loss of generality for those circuits where an exhaustive test 
is impossible. For instance, if we have to apply less than 8000 
patterns to a circuit with more than 2S primary inputs, then 
random and pseudo·random pattern sets will exactly have the 
same size. 
Let now F be a set of faults of the combinational circuit C with 
inputs 1, with the only restriction that no sequential behavior is 
induced. Let X:", <li:1, ... ,xn> e [0,11' be a tupel of real numbcn, 
one number for each primary input. 1bcse input probabilities 
detennine the probability of being "I" for each primary input. 
and for each fault they detennine its detection probability pf(X). 
The probability that each single faul! of F is detected by N ran-
dom patterns is often estimated by the formula 

(11) JH(X)=TI(I-(l-pr<X»H). 

'" Of course formula (II) only holds if we assume that tbe detec-
tion of some faults by N patterns forms completely independent 
events. Therefore some authors try to compute an exact value by 
means of Markov·theory [BaSa83], but the next theorem shows 
that formula (11) indeed is a very prtcise estimation. 
Let di>iSIi be an enumeration of F, where i < j implies pr, S Prr 
In order to simplify the notation we omit the concrete 
distribution X. The expression p(A,N) denotes the probability 10 
detect all faults of the set A by N random patterns. Then we can 
show: 
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Thw a m 2: 
So< 

I N:= II(l - (1- P r)\ .. , 
• 

I N - (1- IN)l:(l - P, )N S ,., , 
SP(F,N) S; 

• H 

We sel B •• ,:= P({ f lli Sn + I},N) - TI(l- (1- Pr,)\ I., 
Now we have P(F,N) = and using the Bayesian formula 
we can estimate .. , 
B •• 1 '" P«(flli Sn},N} - IICl- (1- PI,»N ,., , 

-(I -PI) P({fllis:nLN lnopattem detecls ( o.l) .. , . 
::: P({f;1i s:n),N) -(l - (\ - PI )N)II(l- (i - P I )N) .. , , 

i.1 

-(I-PI )"'POf;li Sn}.N lno pauem del ecls f •• I) .. , 
• 

:::B.+(I- p , )N<I1(l-(l-Pr)N j -
." , i., 
P(tf;1 i s: nL Nino pallern del eclS f • • 1)' 

Thus B • • ISB . +O-p, )NIi:(l-( I -p,)'\ 
•• , 1.1 ' 

• • , H and sincedl :: 0: 
B •• IS L,( I-P I jNII (l_O_p,)N). 

jo l ,., k _1 • 

On the other hand P( If ,I i S n I. N I no pattern del ec IS f •• ) S I, 
and we have 

• 
B .. I;?: B. +(I-p, )N<I1 (l _ (I_p,)N) _ I) ;?: .. , , ,.1 .. , 

;?:B.-(I-p, )N(l-J.);?:-( I - J N) L (I - P r) N. 
. ,' j.1' 

q<d. 
Using this theorem we can state 

Let IN .. 1 be the derived probability to detect all 
faults. Formula (11) underestimates Jess than 
O(lln(JN)I) and overestimates less than 0(1(1· 
IN)· ln(JN)I). 

For instance if we 3 faults with Pfl :: 10'"1. jlf2 '" 5·10'"7 anrt 
Pf3 :: 10.(; then using fonnula (II) we would need N '" 69·1()6 
patterns in order to detec t all faults with probability 0.999. The 
estimation of theorem 2 yields 

0.999 - 10-18 S P(lfl , f2, f3}.N) S 0.999 + 10.15. 

The following fact has already been observed in 18aSa83]: 
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E1J.£1...5..;. Only the few fau lts with lowest detection probability 
have impact on the necessary test length. 

In [Wu87a] it is discussed thai those faults can be neglected 
which have a detection probability more than 10 times larger 
than the minimal detection probability . 
The next statement has already been established in (Shed17]: 

The necessary number of random pauems increases 
linearly with the reciprocal of the minimal fault de· 
tection probability. 

Thus during a conventional random test the size of a tes t set can 
grow exponentially with the number of inpulS. For instance con· 
sider an AND32 (figure 1) where each input is set 10 with 
probability x . 
Then an arbitrary slUck-at-O fault is detected with probability 
x32, and each of the 32 stuck-al- l faulls wi th probability (1-
x)·x31. For x :: 0.5 and test confidence 0.999 fonnula (II) yields 

0.999 = (1- (1- 2-n )"),,, 
andN .. 4.48·1 0]0. 

" 
" 

fjgun 1: 32 Input AND 

& 

But using unequiprobable patterns, i.e. It '" 0.5, test lengths can 
be reduced drastically ([Wu85], [L8GG86]). For example 
sett ing 

we would need appmltima!ely N .. 6· 102 patterns . 
Fael 7; Using unequiprobable random patterns the test 

lengthS can be reduced. 
In {Wu87a,bJ an efficient procedure computing optimilCd input 
probabilities was presented BUI unfortunately some circuits are 
resistant to optimizing. For the connection of an AND32 and an 
OR32 in figure 2 no solution better than x '" 0.5 uislS . 

, 1 

" 
'32 

-:-
: . & 

: >1 
F jgua 2 ,' Not random-testable circuit 

r-

r--

This problem is solved by firstly applying 600 patterns with 
input probability 

It:= .ero:s, 
and then 600 patterns with input probability 

x;= 1- %:5, 



For the rest of. this paper we are dealing with the problem to 
compUIe several dislributions X for random patterns in order 10 
minimi1;e the overall test length, based on tools estimating fault 
delCCtion probabilities 

2.3 Efficiency and accuracy of the testabillity measures 
Computing optimiud disuibulions X is essentially done by 
numerical algorithms formula (II). The involved 
fault detection probability pf(X) has 10 be determined by a 
testability measure meeting the following requirements: 
oj High Efficiency: 
During optimization the detection probabilities PC have 10 be 
evaluated very often for different arguments. Due to the already 
mentioned inherent problem complexity this is not possible by 
an exact computation. Recently several algorithms have been 
proposed. exactly computing fault detection probabilites using a 
4-valued logic [ChHu86] or using some graph-theoretic 
properties of the circuit [SETH86J. But until now no reports 
about their measured performance are available. Therefore we 
have to use heuristics estimating fault detection probabilities. 
and dispense with the exact computation. 
b) Urziqut! results: 
The so-called cutting algorithm is a heuristic computing bounds 
of the detection and signal probabilities [BDS83}. If one of the 
bounds is conStant 0 or I, this information is not sufficient. 
since especially the faults with low detection probabilities are 
in!Cresting. Thus we demand a real number as an estimation. 
c) HoNiJing weigmed inpUl probabilities: 
For each fault its detection probability will be computed several 
times for different input probabilites X. IC the input probabilities 
differ only in few positions. the algorithm should take advantage 
of this fact. 
d) No random errors: 
The algorithm runs for different input probabilities. and the 
estimation enor should not be a random variable. H.the error is 
random. we have to deal with a stochastical optimizing problem 
which has a very high complexity. Optimizing procedures like 
the Newton iteration in general do not converge based on 
stochastical derived inputs. Only in special cases these 
algorithms can be modified, for instance for PLAs as described 
in [Wu87d). 
These four requirements are fulfilled by the tool PROTEST 
(Probabilistic testability analysis) as described in [Wu8SJ. 
[Wu87a}. Furthermore this 1001 has the advantage that the user 
can control the trade-off between the precision of the estimation 
and the required computing time. All resultt reported in this 
paper are provided by PR01EST. 

3) Optimizing input probabilities 
Now we can try to formulate the optimizing problem in a more 
fannal way: 

Problem A: 
Let G be the desired probability to detect all faults. Find a 
number k. k disuibutions Xi. and k numbers Nj, i - I ..... k. such .,,' . , . 
G s II(1- n(I - p,(XI» '). and N:= LN , is minimal. 

." ,., ,., 

The problem is solved, if we set Ie equal to the minimal number 
of dcterministic test panerns. that is the size of the smallest 
possible test set Then each xi E [O.I)n represents a test pattern, 
we have Ni = 1 for each pattem. and N .. k. But the problem to 
find a minimal test set has becn proven to be np-complete 
[AkKr84], hence there is no hope to develop an efficient CAD 
tool based on a solution for problem A. Even the weaker 
problem B will tum out to be np-hard: 

ProblemB: 

Let G and k be given. Find k disuibutions Xi and numbers Ni, 
i = I .... ,k, such that 

, . N k 

G s II(l- n(l- p,(X'» '). and N:= LN 1 is minimal. ... ,., iol 

A single moment of consideration proofs that problem A can be 
reduced to problem B. and an efficient algorithm cannot be ex.· 
pected either. Therefore our goal is not an optimal solution of 
problem A or B. but we are content to find an efficient 
optimizinJ: procedure. Figure 2 indicates that optimizing input 
probabiliues can be prevented by contradictory requirements of 
some faults. Hence we formulate our problem as follows: 
Optimizing problem: 
Let G and k be given. We are searching a partition <Ft, .... Ft> of 
F:=FI U ... U Ft. disuibutions XI, ... .xt and numbers Nt. ... .Nt. 
such that 
(12) 

is sufficiently small. 
For k : .. 1 this problem has already been solved in [Wu87a.b], 
and we now list some basic results of this paper. For the input 
probabilities X :_ <x ...... xn> E [O. I]n we have for all fau1ts f 
(13) 
Pf{X) ... pr(XI ..... Xi.hO,xi+l, .... xnl + 

Xi(p[(Xh ... ,xi . lol.xi+ ...... XO) - prtXl ..... Xi_100•Xi+I .... ,xnl). 
This is a straightforward consequence of Shannon's formulL 
Now we can compute a fault detection probability and its partial 
derivative for an arbitrary value of Xi, if we know the values 
under the conditions that input i is constant "0" and constant "I": 

(14) dp ,(X) 
, 

By some straightforward approximations formula (12) leads 10 

(IS) In (G) .. L-(I- p/X»N .. _ Le ·',(XJIf .. , .. , 
We call a tupel X e [O,lln oprimill. if the objective function 

(16) 5:(X):= Le ·',(lIlN .. , 
is minimal. Obviously this corresponds to the fact that the pr0-
bability to detect all faults by N patterns is maximal. 
Minimizing the objective function would need exponential effort 
in general. But a sufficient heuristic is found. since the ritSl par-
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tial derivative of the 
explicitly: 

objective fu nction can be computed 

(17) dli:(X) --- = "", 
- L N(p ,(x1. ··· , X l,xl+1" ,., .• x.) 

( n - p,(X ) 
- P I ...• Xl-l' ..... XI.P···,x . »e . 

The next step shows that the second derivative is positive every-
where: 
(18) d20:OQ 

"": 
- L Nz( PI(xl' . .• x ;_1. 1• x ;., ... • x . ) ,., 

( 
n 

- PI xr ··· 'X I_1' ..... XI. ' ··· .x .» e . 
Thus the objective function is strictly convex with respect to a 
single variable, and the explicit fonnula of (18) can be used to 
find the optimal value for xi by the bisection method, the regula 
fa lsi or the Newton itcration. The complete optimizing 
procedure is: 
Procedure Optimize 

(F: Faultsets, X: Startvecto r ) 

Old : -
New : -
While Old> (1+l.)New+£ do 

Old : .. New. 
For i : "' I t o n do 
Search optimal value y 
for input i . 
Xi : ., y 
New : '" 

The parameters l. and t are specified by the user. and they 
determine anOlher' trade-off between accuracy and computing 
time. In the next sections we discuss the extension to multiple 
distributions. 

4) Parlionlng of a fault set 
In order 10 gain efficiency, the optimizing problem is solved by 
splitting the fault set into twO subsets iteratively. In this section 
it is discussed. how to find two tupels VI. V2 E [D.I) l and a 
partition F I U F2 ., F. such that the sum of the two correspon-
ding objective functions is minimized: 

" " 't"' 't"' _',(V,IN F 
0 N(V1)+ ON(V 1):= £...e + £...e <O . (X). '.f, f. f. .. 

For each F"" C F the objective function ° N may be multi modal 
and its global minimization would need exponential effort. For 
this reason we do not try to compute a global minimum. but we 
are loomg for a direction. where starting from a tupel XD the .. 
decrease of ON is maximal. The next theorem will give a 
helpful hint: 
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Theorem 3: 

Let U C Rn be convex. -+ R. and 

.,-'" 
.. 

be the gradient For each Xo E U the vector 
indicates the direction of strongest de-

crease. If is linear a local minimum is found on the 
line XO' a D. 

Mathematical calculus. 

.. 
Even though ° N is nOt a linear function. theorem 3 claims that .. 

- grad(ON)(XO) 

is the required direction. Thus we define the new function ,. 
by ,. p' F' 

(a):= ON (Xu - agrad(oN)(X,J) 
The fonnula 
(19) .. 

D(F",N,XO' D):= (D) 

exactly measures the decrease of our objective function in its 
optimal direction. The solution of 

(20) D(F" .N.xo:y) = D 
provides input probabilities .. 

Xo - -ygrnd(o N )(Xo) 

defining a minimum point in this direction. Therefore our 
partitioning problem is solved by F1 and F2 such that 

(21) D(Fl,N,xo.D) + D(F2,N,xo.D) > D 

is maximal. It should be noted that for linear functions th is pro-
ceeding would be optimal indeed. 
For the rest of this section the wks necessary for panitioning are 
discussed. These tasks have to be done only for the small subset 
of faults with lowest detection probability due to fact S). If this 
se t is small enough. the presented method will compute a global 
optimal solution maxilTUzing formula (21). For large fault sets 
computing time can be saved. if the method is somewhat 
simplified . 

a) ComDun"ni the rradjent 
The gradienl .. 

Xo - -ygrad(oN )(X o) 
can be computed explicitly us ing formula (16). If additionally 
formula (13) is used, it is immediately seen. that we only have to 
compute Pf(X) and either Pf(xl, .. .• xi_I,O,xi+ I , .... Xn) or 
PRx l, ... ,xi-l ,l,xi+l , ... ,xn) for this purpose. 



bl Sartini' the fault set 

For each fa ult let 

« -""")' d,(Xol:= de ru: I (Xo) = Igrad(e -,,{X)N)(Xo)11 

be the Euclidian nonn of the gradient of 

e -',DON 

in Xo. and let < fi >iSk be an enumeration of F with 

is k d, (Xo) d, (Xo). 
Now we select a consUUlt c and moSI important subset 
of fau lts FC F by F:=lfi I iSC I. the results presented in the next 
section are provided br c=20. If as usual the nwnber of faults 
with low delectability IS small enough. then a global optimum 
can be achieved. 

c:J Staning Damlianini',' 

FU'Slly we are looking for a starting partitioning Fa, Fb C F: 

1) Sat Fa, Fb :- (2) • 

2) For i ;= 1 to c d o 
it D(Fau{fil,N,XO,O)+D(Fb,N,XO,O) > 

D(Fa,N,Xo,O)+D(FbU{fil,N,XO,O) 
t h an Fa:- Faulfil 
a l . a Fb:'" FbU{fi). 

The so achieved statting panitioning corresponds to an objective 
value v := D(Fa,N,Xo,O) + D(Fb,N.xo,O) . 

41 Con.urucUn, a wuch rru· 

Now a search !lee T can be consttucted, where each node repre-
sents twO disjoint subsets of F. Node A is a direct successor of 
node B, if one of the subsets of A is equal to one ofB, and if Ibe 
olber subset contains exactly one more fault (see figure 3). Thus 
a node of deplb k represents a partitioning the ftrst contiguous 
faults in the aforementioned enumeration. 

(lfl,f4J, 11'2,f3,f5) 

({fl,f4,f6), Ifl, n, fS}) (fl.f4). (fl,n,f5,f61) 

F i/run 3: Node at level S with its ooth successors. 
Due to the mangle inequation. at a node A at depth mSc with 
fault sets Fv,Fw the search can be stopped if 

v D(Fv,N,Xo,O) ... D{F",,N,,Xo.O) + (mo(:)dfmOCO), 

since no leaf succeeding node A will be beller than the starting 

pattitioning. If we reach a leaf thisway, then a better solution F .. 
Ii, is found and v must be updated. The complexity of this pr0-
ceeding is disUncdy lower than ZC, since most of the branches 
are aboned at a very early stage of the search. 
,I The complm partitionjn,: 

The Testing faults of F (if some exist) are now added to the sets 
Fa and Fb in the same way as described in c}. Finally elements 
are exchanged between Fa and Fb such that the value of 

is maximized. 

n CDmPutiai a tupeL ofoptimaf input probabilities 
If the gradient ror 

6' 
" is already computed, fonnu la (20) is solved by a bisection me· 

thod.This provides a Ya with D{Fa.N,XO,yal..() and a Yb with 
DCFboN,Xo,ra>=o. We set 

" Fi= Fb, V 2:= Xo--,bgrad(liN}(Xo)' 

Finally we improve V I and V2 by the procedure OPTIMIZE of 
section 3. If the gradient is unknown this is done immediately. 

S) Multiple optimal d ist ributions 
Of course partitioning is not restricted to two sets. But instead of 
partitioning into m sets at one time. experience has shown better 
results by a successive procedure: 
Procedure Multiple Optimize 

(F: Faultsets, X: Start vector, 
m: Number of distributions). 

F [lJ : - F 
X [1] : - X 
Fo r i :-1 to m-l do 

6) Results 

Find fault f with lowest 
detection probability. 
Let j S m-l be such that f E F[j). 
Partition F[j) into Fa. Fb. 
Optimize (Fa, x I j], xa) and Optimize 
(Fb,X[j),xbl as mentioned in 
sect. <Ie) . 
F[j) ; - Fa, x(j] : - xa, F(l] : - Fb, 
xli} ; - xb . 

In tahle I optimizing are shown on PROlEST. The 
first example is the ANDOR32.circuit of figure 2. For the 
wellknown benchmark circuits (BrgI8SJ. k:: 1 •... ,6 optimized 
input probabilities have been computed. The fmt column 
denotes the circuit name, the second one the necessary number 
or not optimized, equiprobable random patterns, and the follo-
wing 6 columns contain the necessary number of random pat-
terns for each distribution and its sum. For the set or distribu-
tions which results in a minimal size, the overall number of test 
patterns is printed by bold letters. 
For the small circuit Cl7 the some distributions degenerate to 
deterministic test patterns. Especially three points are 
remarkable: 
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Firstly, all of the benchmark circuits and the counter-example 
can be tested by only few Ihousand.s of random patterns. From a 
theoretical POint of view, al l circuits can be made random 
testable by the presented procedure. 
Secondly. the overall number of necessary patterns does not 
decrease monoI:OI\Ously with the number of distributions. This is 
a practical consequence of the discussed problem complexity 
and the applied heuristics. 
Thirdly, the results slightly differ from the results reponed in 
[Wu87B,bl, since some parameters of the testability measure 
have been changed in order to speed up optimizing. This has 
been paid by less precision, and therefore the predictions on 
fault coverage and lest lengths have to be validated by fault 
simulation. 

Circuli 
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NKftliar, numMr ofrandOlll pattrms 
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Iqbtc I j DistnbullolU and tesU1US 
Recently Schulz and Auth succeeded in identifying all redundant 
faults of the benchmark circuits by a detenninistic test panern 
generator (ScAu88] . The first column of table 2 contains the 
number of redundant faults they recognized, in the second 
column the number of weighted patterns are given. The third 
column contams the number of not detected fau lts by simulation, 
then the fault coverage with respect [0 all fauits, and finaliy [he 
faui[ coverage with respect to all detectable fauilS. 
Ll1'Cult t: coverage redundant or cover- of not wllh respec t 

faults bl .,. detected [0 all detectabl 
[ScAu8 1 p3nerns ('O) faults faults (%) 

100.00 
<499 8 1381 98.99 8 100.00 
c880 0 '" 100.00 0 100.00 
c13SS 8 5288 99.53 8 100.00 
cl908 • 10784 99.60 9 100.00 
c2670 111 47110 95.4g 117 100.00 
03540 \37 11233 96.30 i37 100.00 
c53lS " 4430 99.07 " 100.00 
<6288 34 23. 99.59 34 100.00 
c1SS2 131 24037 98.3 158 99.7 

Faul[ coverage by simulation of weighled paneros 

It should be noted that the simulated amount of patterns has been 
much smaller than thaI one required by PROTEST, due to re-
strictions of the available fault simulator. Presumably this is the 
reason for the 0 .3 percent not detected fau lts of the circuit 



c7SS2, and thus the weighted patterns will be another 
application field of the recently proposed fast fauh simulators for 
combinational circuits (e.g. [MaRa88), [Waic8SJ). 
FmalJy table 3 shows Cor each circuits the optimal number of di · 
stributions and the percentage of the size of an optimized 
random test set in terms of a conventional one. 

Irallt luptnna nU'!Iber 0 IU 01 an optmuzed test set In 
distributions percents of a conventional one 

i 
C432 2 58 .. 
0499 1 100 % 
C880 3 3% 
C13SS 1 98% 
C1908 6 '1% 
02670 , 9% 
03540 , 13% 
CS31S , 28% 
C6288 1 38% 
C7SS2 6 9.0e·S % 

:t:IllLkJ Optimal number of distributions and test sizes 

7) ApplicatioRS 
The mentioned tools estimating fault detection probabilities are 
mainly used to predict the necessary leSt length of a random 
test, which can be carried out by a built-in self-test structure like 
a BILBO [KOEN79). Since a large class of circuits is resistant 10 
such a conventional random test, optimized input probabilities 
were computed. They can also be implemented as self·tesl using 
a so called GURT (Generator of Unequiprobable Random Tests) 
[Wu87c]. But even this way nOl all circuits can be dealt with. 
The presented method of computing multiple dlsttibutions is ap--
plicable to till. combinational circuits, but unfortunately there is 
no obvious way to implement them by a BIST technique. But of 
course they can be used for a so called LSSD or scan·path ran· 
dom test ([EiLi83], (BaMc84J). Figure 4 shows the basic archi· 
tecture. 

Firuu4: 

Primay 
inputs 

Device 
test 

Primary 
outputs 

LSSD·based random test 
The pattern generator and the signarure registers are built on an 
external chip generating random patterns with multiple 
disaibutions sequentiaUy. Such a test chip has been designed 

and processed as a gate array (Berg8S] . Currentiy a 
programmable circuit based on standard ceUs is designed and 
processed. 
TItis leads to a weighted TlIndom pattern test system at low costs, 
where the same or even a beller fault coverage is reachable as it 
is during a conventional deterministic test. In addition 10 the low 
priced test equipment the test application time will also decrease 
due to the high speed pallern generation. 
CondWiions 
An efficient method has been presented 10 compute multiple 
disttibutions for random patterns, which can be applied succes· 
sively. Using multiple dlsaibutions, all combinauonal circuits 
can be made random lestable, and a complete fault coverage is 
provided by a few thousands of randODi patterns. 
The differently weighted random test sets can be applied 10 scan 
path circuits using an chip, combining the advantages of 
a low cost test and of high fault coverage. 
Furthennore several facts about testing by random patterns have 
been proven. II has been shown, that the number of random 

requm:d for a certain fau lt coverage can be computed 
WIthout regarcilng the pseudo·random propeny and with the 
independence assumption for fault detection. 
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