Proceedings 18th International Symposium on Fault-Tolerant Computing (FTCS-18), Tokyo, 1988

Generating Pattern Sequences for the Pseudo-Exhaustive Test of
MOS-Circuits

Hans-Joachim Wunderlich and Sybille Hellebrand

Institute of Computer Design and Fault-Tolerance
(Prof. Dr. D. Schmid)
Universitét Karlsruhe
D-7500 Karlsruhe 1
Federal Republic of Germany

Abstract

In order to ensure a high product quality some authors propose
pseudo-exhaustive or verification testing. This is applicable if each
primary output of the combinational circuit only depends on a small
set of primary inputs, where all possible patterns can be enumerated
completely. But in CMOS-circuits even a single stuck-open fault
may fail to be detected this way, and the already proposed
additional test of each input transition is not sufficient either.

In this paper a method based on linear feedback shift registers over
finite fields is presented to generate for a natural number n a pattern
sequence with minimal length detecting each m-multiple stuck-open
fault for m < n. A hardware architecture is discussed generating
this sequence, and for n =1 a built-in self-test approach is presen-
ted detecting all combinations of multiple combinational and single
stuck-open faults.

Keywords: Pseudo-exhaustive test, built-in test, stuck-open
faults, LFSR, finite fields.

1) Introduction

In recent years much attention has been paid to the so called pseu-
do-exhaustive or verification test. This test strategy is applicable, if
each primary output of the combinational circuits under test only
depends on a limited number of primary inputs. In this case for
each primary output all possible patterns at the relevant inputs can
be enumerated completely, and thus its function is tested exhausti-
vely (fig. 1):

Fig. 1: Pseudo-exhaustively testable circuit with its cones

Not all circuits are testable this way, and they have to be
segmented. This is done either by path sensitizing, or directly by
hardware. Doing path sensitizing some inputs are set to fixed
values, such that only suitable segments are activated. But this
approach has the disadvantages of high computing time, since the
segmentation problem is np-complete [Arch85], [Pata83], and of an
inclomplete fault coverage, since multiple faults and shorts between
the segments may not be detected [ArMc84].

On the other hand the hardware segmentation costs some chip area,
if for instance multiplexer partitioning is used [McCI185],[BoMc81].
Furthermore some faults within the partitioning circuitry may be un-
detectable. The later problem is solved using the partitioning tech-
nique applied in [Behr87]. The pseudo-exhaustive test of circuits
segmented by hardware is often called verification testing
[McC184]. This technique has several advantages:

1) All combinational faults can be detected this way with the ex-
ception of some shorts between different segments.

2) There are some techniques known implementing this test
strategy as a built-in self-test [WaMc86], [Aker85] by costs
comparable to self-test by pseudo-random patterns (for exam-
ple the BILBO [KOEN79] or the GURT [Wu87]).

But some nMOS-pass-transistor and static CMOS networks are
causing further problems, since faults may cause a sequential beha-
vior [Wads78]. For this reason a modified linear feedback shift re-
gister (LFSR) approach has already been proposed, generating pat-
tern sequences of length 2 supporting the deterministic self-test
[Star84]. In order to test these circuits exhaustively an architecture
was presented generating all possible single transitions at the pri-
mary inputs [CrKi85]. But here the authors already pointed out that
complete fault coverage may only be obtained for irredundant two
level networks designed for a robust test.

In section 2 we will discuss the fault coverage and the hardware
overhead of both approaches. Furthermore we will establish the re-
quirements for a complete test sequence for MOS circuits, and we
will give a lower bound of the length of such a sequence. In section
3 we will show that this lower bound is obtained using a technique
based on finite fields. In section 4 we present a hardware architectu-
re generating complete test sequences, which can also be used as a
built-in self-test method. Finally section 5 gives an example.

2) Self-test of CMOS circuits

The problems of fault modeling for CMOS gates have widely been
discussed ([Wads78], [GALI80], [Chan83]). In presence of a
stuck-open fault CMOS gates may show sequential behavior.
Without such a fault the circuit of fig. 2 behaves as a NOR-gate.

In presence of the marked fault the output of the gate is prevented
from being decharged when the inputs are A=1 and B=0. Because
of the capacitive load effect the output retains the previous value,
and the gate behaves like a sequential circuit (table 1).

A B f 't
11 0 0

1 0 0 f'e1
0 1 0 0
00 1 1

Table 1: Fault free and faulty function of the circuit in fig. 2

DD

f(A,B)

IJ\ I'J.
Vss

Fig. 2: CMOS-NOR with stuck-open fault

Obviously the fault is not detected if we apply the patterns in the
shown order. Such faults are only guaranteed to be tested, if certain
pattern sequences are applied, in this case the sequence of
(A,B) =(0,0),(1,0). Sequential behavior may also be caused by
faults in nMOS-pass-transistor networks, but using dynamic MOS-
techniques this can be avoided ([OkKo84], [WuR086]). For static
MOS-techniques Starke proposed a self-test architecture generating
pairs of test patterns. For an n-input circuit he uses a feedback shift
register of length 2n (fig. 3).

feedback function

112]13]4 k-1 k k=12n

Lo l

1 2 eesseeesssseesse g

Fig. 3: Generator circuit by [Star84]

Only every second flip-flop is connected to an input of the combina-
tional circuit. Within two clock phases the contents of the flip-flops
2i, i:=1,...,n, form the first pattern, and the flip-flops 2i-1 form the
second one. The feedback function is computed by methods
described in [DaMu81]. Besides the high computing effort to de-
termine the test patterns and the feedback function, this approach
also suffers from rather a high hardware overhead, since the flip-
flops are doubled, and the feedback function may become complex.

The fault coverage depends on the quality of the deterministic test
set. Furthermore due to delays and hazards the nodes under test
may be charged or decharged at times preventing fault detection
([Chan83], [REDDS83], [REDD&4]). The fault coverage is enhanced
if the feedback function represents a primitive polynomial genera-
ting 22n-1 patterns, resulting in a complete transition test. But in
this case we have to deal with a long test length besides the hard-
ware overhead by the doubled flip-flops.

In order to enhance the fault coverage and to reduce the test length
pseudo-exhaustive adjacency testing was proposed by Craig and
Kime ([CrKi85], see fig. 4).

=lQmamama

Circuit Under Test

Qm -

Pseudo-exhaustive adjacency testing by [CrKi85]

— Shift - Flip Control Storage

Fig. 4:

An adjacency test is a pair of patterns differing at a single bit
position. It is implemented by a modified LFSR (NFSR) generating
all 2n patterns, and for every pattern sequentially each register bit is
flipped. This is controlled by an additional flip control register. This
way within (n+1)2n clocks all single transition tests are generated.

But this approach has a large trade-off between the hardware over-
head and the test length. If for instance the circuit of fig. 1 is tested
this way, we cannot take advantage of its pseudo-exhaustive testa-
bility property, and we have to apply (n+1)2n patterns. If we tried
to test the cones Cy, Cp, and C3 separately, we would have to im-
plement multiple hardware for some inputs, since the cones are not
disjoint in general. Furthermore the authors already pointed out that
their approach is not pseudo-exhaustive in its real sense, because
there are stuck-open faults which may not be detected by a single
transition.

For the general case more patterns have to be applied:

Observation 1: Let F:{0,1}n—{0,1} be a boolean function,

n = 2. For each pair of patterns t] #tp € {0,1}n the function F
can be implemented by a CMOS circuit F' with the following pro-
perty: there is a fault possible in F', which is detectable if and only
if the pattern sequence ty, tp is applied.

Proof: (Sketch) Start with an arbitrary implementation of F, and
add some obvious hardware fulfilling the property that the initiali-
zing function of a fault is true exactly at t1, and the test function at
t2. Control the output of F by this hardware.

Observation 2: An exhaustive test including all single stuck-
open faults must include all pattern sequences

<t1,tp> € {0,1}nx{0,1}n\{<t,t>]|te {0,1}n}.

Notations: Let C be a combinational circuit with primary
outputs O = {01,...,0;y}, primary inputs I:= {ir,...,in}, and
cones K = {ki,....,ky}. For each j:=1,...,m let Ij be the set of
primary inputs of the cone k;j.

Now we can sequentially apply observation 2 to each output
0 € O. But there is a more general approach possible.

Definition 1: For each j :=1,...,m the projection

prj: GF2n—U, GF2)n > U

is defined by (x1,...,Xn)—=>(Y1,...,Yn) Where yj := xj, if i e Ij,
and yj := 0 otherwise.

Definition 2: A pattern set T, GF(2)n > T, is pseudo-
exhaustive, if for all j := 1,...,m, the restricted projections pr;j|T
are surjective.

This definition describes, that a test set has to enumerate all possible
input patterns for each cone.

Observation 3: If T is a pseudo-exhaustive test set for a
multiple-output circuit, then the set of all sequences TxT of length 2
detects all stuck-open faults. Furthermore this set of pairs of
patterns guarantees to detect multiple stuck-open faults under the
restriction that there is at least one cone with only a single fault.

If there is a cone containing a single stuck-open fault at most one
additional state is introduced into the output function. The probabili-
ty that cones contain multiple faults is reduced using design techni-
ques described in [Koep87]. If we want to consider multiple stuck-
open faults within cones or sequential circuits, the length of the
sequences must not be restricted to 2.

Let t :=|T| the cardinality of the test set. We now want to generate
a long pattern sequence of length L containing all sequences of
length (fig. 4).

‘(1 1)(10)51 D(11DOD)........
[

Sequences of length 2

\ Sequence of length L |
Fig. 4: Global sequence containing 2-sequences

Observation 4:
+t -1.

The length L of the global sequence is L >

Proof: There are t different sequences which have to be gene-
rated. The first patterns form the first sequence, and t -1 more se-
quences have to be generated. In the best case each additional pat-
tern adds one new sequence. Thus at least +t -1 patterns are neces-
sary.

In the next section we summarize the known procedures to deter-
mine pseudo-exhaustive test sets T, and we present an algorithm to
compute a global sequence containing all sequences of a given

length. Furthermore the global length will be minimal, if't := |T| is
a power of a prime number.

3) Computing pseudo-exhaustive test sequences for
CMOS circuits

Obviously creating short test sequences can be done within two
steps. Firstly a minimum sized pseudo-exhaustive test set T has to
be determined, and secondly a global sequence of minimum length

L must be generated, containing all sequences of length . Some

variants of the first problem have already been proven to be np-
complete[HiSi82], hence we will rely on some well known heuri-
stics. These heuristics are:

- the straightforward complete enumeration;

- the sequential enumeration with respect to the input set of
each cone;

- the extended shift register approach of [BARZ83];
- the dependency matrix approach of [HiSi82], [McCl84];

- the techniques based on linear and cyclic codes (e.g.
[VaMag5]);

- the constant weight vector technique [TaWo83];

- the technique of linear sums [Aker85], which is mainly a
hardware approach;

- condensed shift register approaches based on cyclic codes
([WaMc84], [WaMc86], [WaMc87]), which are also
hardware solutions.

Each of these techniques generates a pseudo-exhaustive test set T of
different size. Now we assume that such a test set T is given, and
we are looking for a global sequence containing all -sequences.

Let pr 2t :=|T| be the power of a prime. For practical reasons
explained later two cases are important:

1) p=2, and r is the minimal natural number with
pr=t;
2) r=1, and p is the minimal prime such that p>t.

If we set q := pr then it is known from elementary algebra that
there is a finite field H := GF(q), and there is a injective function

f:T—H.

We will now construct a sequence of elements of H with length

+q -1 containing all -sequences. We have already proven that this
is the minimum length. Furthermore using f-1 we have a sequence
of test patterns containing all -sequences, and in the case of t=q
this global sequence is even minimal.

Definition 3:

u
GE(Q)[x] = {) ,gx' |ue N, g € GE(@)}
i=0
is the polynomial ring over GF(q) in a single variable.
Definition 4: A polynomial s(x)e GF(q)[x] of degree is called

primitive, if it is irreducible, and the zeros of s in GF(q) are
primitive (q -1)-th roots of unitiy.

Definition 5: A feedback shift register @ over GF(q) is a

mapping
®: GF(q) — GF(q)

y .y Ry ...oyo)y
R is called feedback function.

A special case is a linear feedback function
-1

R .y = Zciyi

i=0

,,YI)

Here we say that the polynomial
-1
i
s(x) = X - Zcix
i=0
represents the linear feedback shift register (LFSR).
Definition 6: The period of a feedback shift register @ defined on
U is the smallest number > 1 such that ®=n|U = id|U.

Theorem 1: A feedback shift register over GF(q) with a primitive
polynomial s(x) € GF(q)[x] of degree representing the feedback
function has maximum period 1 =q -1.

Proof: See [LiNi86], [Liine79] e.g.

Based on the following theorem we can compute global sequences
of minimum length, and can implement them by hardware:

Theorem 2: Let p be a prime number, r € N\{0}, and
q :=pr. For each € N\{0} there is a primitive polynomial s(x)
€ GF(q)[x] of degree

Proof: A proof is found in [LiNi86].

Remark: The m-th cyclotomic polynomial Qp over GF(q)
(m=q -1) is the product of all primitive polynomials of degree
over GF(q). Thus primitive polynomials of degree can be deter-
mined by applying one of the well known factorization-algorithms
to Qg (confer [LiNi86]).

Up to now theorem 1 and theorem 2 provide a method to compute a
sequence of length q -1, containing q -l different -sequences.
Now we set:

ap,...,a o :=0¢€ GF(q);

a .1 € GF(q), #0;

a +i:=R(a +i-1,...,3j), 1:=0,....q -2.

Obviously in <a;> all -sequences are generated, furthermore it is a

minimal sequence having this property, since it has length +q -1.
This sequence should be decoded by f-1 into test patterns, and if
one wants to generate 2-sequences for stuck-open tests, for each
pair of identical patterns one has to be omitted.

Summarizing the complete test sequences are computed by the fol-
lowing procedure:

1) Determine a pseudo-exhaustive test set T.

2) Choose a finite field H := GF(q) with q >t :=|T]|.

3) Encode the test patterns by elements of H, i.e. find an
elementary, injective mapping f:T — H.

4) Construct a primitive polynomial s(x) € GF(q)[x] of
degree

5) Construct the modified shift register sequence <a;>
using the polynomial s(x).

6) Decode the sequence <a;> into a sequence of test
patterns.

4) Generating complete test sequences by hardware

It is a well known built-in self-test technique to generate pattern se-
quences by a LFSR over GF(2) (fig. 5).

Fig. 5: Standard LFSR over GF(2)

The feedback function is determined by the polynomial

g(x) =g x tg .ix -1+, tgix+tgo € GF(2)[x],
and since there are only two types of constants, 0 and 1, the multi-
plication in GF(2) is expressed by the presence or absence of feed-
back lines. In an arbitrary finite field GF(q) an LFSR is more com-
plicated since we have to multiply by some constants (fig. 6).

addition in GF(q)

Fig. 6: An LFSR over GF(q)
The LFSR of fig. 6 represents the feedback polynomial

g(x) =g x +g x -l+...+g1x+go € GF(q)[x].
For the sake of simplicity we will only discuss the most important
case = 2. Firstly we normalize the polynomial g(x), that is
g =1, by dividing. Then the LFSR of fig. 6 turns into an archi-
tecture as shown in fig. 7.
As a difference to other CMOS BIST-techniques discussed in sec-
tion 2, there are no doubled flip-flops for test reasons. We only
have to ensure that CUT1 and CUT2 are tested by the same set T.

The circuit of fig. 7 is a general architecture for GF(q), but now we
will explain further details only for the two cases q = p =t and

q = 2r 2 t. Furthermore these are the cases which are feasable by
the known algorithms of computer algebra.

CUT 1 CUT 2
(LTI (LT
(L (e e

4

v
e %)
+ [

Fig. 7: LFSR of length 2 over GF(q)

Now we will discuss the implementation of multiplication by con-
stants and of the addition in GF(q).

a) q = 2r

We assume that the test patterns enumerate at r bit positions the
complete field GF(q), otherwise we have to code and encode.
GF(q) is a linear space over GF(2), and the additon in GF(q) can be
done by addition of components. This is implemented by XOR-
gates, and hence we need r XOR-gates for our 2-stage-register of
fig. 7.

In order to explain the multiplication, a little more theoretical back-
ground is needed. In a finite field multiplication establishes a cyclic

group, in our case of cardinality 2r-1. Let ®:GF(2)r — GF(2)rbe
a shift register according to definition 5, with a linear feedback
function

r-1
R(Xr-l""’xo) = Z’Cixi
=0

By theorems 2 and 3 there are linear feedback functions R, such
that @ has the period 2r-1.

Let ¢ be a primitive element of the cyclic group of multiplication in
H := GF(2r). If 2r-1 is a prime number, all elements except 0 and 1
will do. For x, y € H define the operation *¢ on H\{0} by

x*cy =z & x=ck and z=Ok(y) for a k< 2r-1.

Theorem 3: (H,+,*.) is a finite field.

Proof: Left to the reader.

Now multiplication by a constant, that is a primitive element, can be
expressed as a single shift by ®. If 2r-1 is prime, all elements of
GF(2r)\{0,1} are primitive too. Hence g is primitive, and we set
go*y := @(y). We have g| = gok for some k and g;*y = Ok(y).
It is an open problem, whether it is possible that neither go nor g;
can be primitive. But in this case there is a primitive ¢ with

ckl = gy, and ck0 = g, and we have g;*y = ®kl(y) and
go*y = ®kO(y).

Example: Let be 1 := 6, let gg be primitive, and g; = go2. x6+x+1
is a primitive polynomial over GF(2), and we have

D(xs,...,X0) = (X0+X1,X5...,X1). This is implemented by

X X X X X X
5 4 3 2 1 0
y=gx x
YS Y4 y3 }’2 yl yO
Fig. 8&: Implementation of the multiplication y = gp*x

Furthermore we have g1*(xs,...,X0) = (X1+X2,X0TX1,X5,...,X2).
The overall feedback function is as shown in fig. 9 using
80*(x5,...,X0)tg1*(X11,-...X6) = 0*(((X5,...,X0)t80*(X11,..-,X6))

X X X X X X
1 0 "9 8 7 6
N X 0
< X
= 1
>
- D X
2
< 5 x
- FanY X
4
< &b X
5
Fig. 9: Hardware implementation of

20*(xs,-..,x0) g1 *(x11,...,X¢6)

Summarizing we have r XOR-gates for the addition, and also some
XOR gates for the multiplication, in the whole this is comparable to
the usual linear feedback functions of pseudo-random patterns.

b) q=p, p prime

In this case the field is isomorphic to Z/q, and both addition and
multiplication have to be done modulo p. A straightforward imple-
mentation of the function can be simplified by means of boolean
minimization, described for instance in [Bray84]. But the use of a
prime q seems to be more suitable for an external test. Using a
CMOS specific scan design, an external chip can generate the pseu-
do-exhaustive pattern sequences (fig. 10). This approach is already
well known for pseudo-random patterns [EiLi83]. In order to use
the external chip in a most general way, the cardinality of the field
should be programmable.

Summarizing the design of a BIST-hardware can be done by pro-
ceeding as follows:

1) Choose a pseudo-exhaustive test set T.

2) Select an r with q :=2r >|T|, or a prime number p
with q:=p 2> |T|.

3) Find an encoding function f:T — GF(q).

4) Find a primitive polynomial over GF(q) of degree 2, i.

e. two constants gg and gj.

5) a) For q=2r determine addition and multiplication
by theorem 3;

b) for q=p implement addition and multiplication
modulo p.
6) Implement the decoding function f-1.

Linear feedback shift
———— register for exhaustive
pattern generation

LFSR for parallel
signature analysis

circuit under test
y
primary primary
nputs outputs
scan data scan data
input output
v
LFSR for LFSR for
exhaustive s;quemlal
pattern P signature
generation analysis
Fig. 10: Pseudo-exhaustive test by an external chip
5) Example

Let S be a combinational circuit with 16 inputs x1,...,x16 and 8
outputs oy,...,08, where

o1 = f1(x2,-..,Xg)

02 = £5(x1,X3,...,X8)

03 = 13(X1,X2,X4,-..,Xg)

04 = f4(x1,...,X3,X5,...,X8)

05 = f5(x10,---,X16)

06 = 16(x9,X11,-..,X16)

07 = 17(X9,X10,X12,---,X8)

08 = 13(X9,...,X11,X135---,X8)

Each cone depends on 7 primary inputs. The first 4 cones are tested
by a set enumerating all patterns from (xi,...,x7) and setting
xg := X]+X2+tX3+x4 (method of linear sums by [Aker85]). For the
last 4 cones we have to enumerate (Xo9,...,Xx15) and set
X16 = X9tX10*+x11+X]2. Since both subcircuits are tested by the
same sets of patterns, we only consider the first 4 cones, and call
this subcircuits C1. Its test set is

T = {(x1,...,x8) | (X1,.-.,x7)€ GF(2)7 & xg:=x1+x2+x3+x4}. The
encoding function is f:T — GF(2)7, (x1,...,x8)—(X1,...,X7).

A primitive polynomial can be derived by means given in [LiNi86],
were s(x) := x2+gx+go. Since 127 is prime, both g| and go are
primitive in the cyclic group of multiplication. The most suitable
coefficients we find are g := gp2. In order to implement multipli-
cation by g0, we have to look for a primitive polynomial of degree
7 in GF(2), for instance x7+x+1. Thus multiplication by gg is
20(x7,...,X1) = (X1+tX2,X7,...,X2).

The decoding function is f-1(x7,...,x1)=(X1,...,X7,X] +X2+tX31+X4),
and the overall feedback function looks like fig. 11. Since the last
four cones, C2, are tested in the same way, the whole circuit with
16 inputs is tested exhaustively for all stuck-open faults within 214
clocks.

Another often cited example is the parity generator TI
SN54/74LS630 with 23 inputs. Here each cone only depends on 10
inputs, and there is a pseudo-exhaustive test set of 210 patterns
[McCI84]. In the same way as presented above, a BIST structure
can be designed, testing two circuits with 46 primary input
exhaustively for stuck-open faults within 1M clocks. The reader
may prove his understanding of the presented concepts, by doing
this as an exercise.

15 714 713 12 11 10 9
D
J
[« X
1
4
X
™ 2
Vany
V
< T X 3
(- —
P D X
4
(S
< X
A\ % 5
< oD
< X
V 6
< Ya X
< D 7
-]
Fig. 11: Feedback function for the example

6) Further research

Mainly two points need further investigations. Firstly we are
looking for an optimal design of an external chip as discussed in
section 5 b). An optimal design should include the possibility to
generate patterns based on many different prime numbers p.

The second problem is the evaluation of the circuit responses. The
presented test circuitry can be considered as a signature register
over GF(q), and one has to investigate the fault coverage achieved
by such a register. Here the work should be generalized, which was
done for signature registers over GF(2) by [WILL87] or [AgIv87].

7) Conclusions

A technique has been presented generating complete test sequences
for CMOS circuits. The sequences are of minimum length, and can
be produced either by software, by an external chip, or by a BIST-
structure. Doing the latter the hardware overhead would be of the
same magnitude as a conventional pseudo-random architecture.

Literature

AgIv87 Agarwal, V.K.; Ivanow: On a Fast Method to Monitor the Behaviour
of Signature Analysis Registers; in: Proc. IEEE International Test
Conference 1987

Arch85 Archambeau, E.: Network Segmentation for Pseudo-Exhaustive
Testing; CRC Technical Report No. 85-10, 1985, Stanford

ArMc84 Archambeau, E.C.; McCluskey, E.J.: Fault Coverage of Pseudo-
Exhaustive Testing; in: Proc. International Symposium on Fault
Tolerant Computing, FTCS-14, 1984

Aker85 Akers,S.B.: On the Use of Linear Sums in Exhaustive Testing

in: Proc. International Symposium on Fault Tolerant Computing,

FTCS-15, 1985

Behrens,B.: Entwurf von Grundzellen fiir einen Silicon Compiler zur

Unterstiitzung des pseudo-erschopfenden Tests; Diplomarbeit an der

Universitit Karlsruhe, Fakultit fiir Informatik

Behr87

BoMc81 McCluskey, E.J.; Bozorgui-Nesbat, S.: Design for Autonomous Test

in: IEEE Trans. Comp., Vo. C-30, No. 11, 1981

Brayton, R. K.; Hachtel, G. D.; McMullen, C. D.; Sangiovanni-

Vincentelli: Logic Minimization Algorithms for VLSI Synthesis;

Kluwer Academic Publishers, 1984

BARZ83 Barzilai, Z. et al.: Exhaustive Generation of Bit Patterns with
Applications to VLSI Self-Testing; in: IEEE Trans. on Comp., Vol.
C-32, No. 2; Dec. 1983

Chan83 Chandramouli, R.: On Testing Stuck-Open Faults; in: Fault Tolerant
Computing Symp. FTCS-13, 1983

CrKi85 Craig,G.L., Kime,C.R.: Pseudo-Exhaustive Adjacency Testing: A
BIST Approach for Stuck-Open Faults; in: Proc. IEEE International
Test Conference, 1985

DaMu81 Daehn, W.: Deterministische Testmustergenerierung fiir den

eingebauten Selbsttest von integrierten Schaltungen; in:

GroBintegration, NTG-Fachberichte 82, 1983 Baden-Baden

Eichelberger, E.B.; Lindbloom, E.: Random-Pattern Coverage

Enhancement and Diagnosis for LSSD Logic Self-Test; IBM J. Res.

Develop., Vol. 27, No. 3, May 1983

GALI80 Galiay,J. et al.: Physical vs. Logical Fault Models in MOS LSI
Circuits, Impact on their Testability; in: IEEE Trans. Comp., Vol. C-
29, No. 6, June 1980

HiSi82 Hirose, F.; Singh, V.: McDDP, A Program for Partitioning
Verification Testing Matrices; CRC Technical Report No. 81-13,
Stanford, 1982

Koep87 Koeppe, S.: Optimal Layout to Avoid CMOS Stuck-Open Faults
in: Proc. 24th Design Automation Conference, Miami Beach 1987

KOEN79 Koenemann, B. et al.: Built-In Logic Block Observation Techniques
in: Proc. Test Conference, Cherry Hill 1979, New Jersey

LiNi86 Lidl, R.; Niederreiter, H.: Introduction to finite fields and their
applications; Cambridge University Press, Cambridge 1986

Liine79 Liineburg, H.: Galoisfelder, Kreisteilungskdrper und
Schieberegisterfolgen; Mannheim, Wien,Ziirich: Bibliographisches
Institut, 1979

McCl184 McCluskey,E.J.: Verification Testing - A Pseudoexhaustive Test
Technique; in: IEEE Trans. Comp., Vol. ¢-33, No.6, June 1984

OkKo84 Oklobdzija, V. G.; Kovijanic, P. G.: On Testability of CMOS-

Domino Logic; in: Proc. 14th Int. Conf. on Fault-Tolerant

Computing, FTCS-14, 1984

Patashnik,O.: Circuit Segmentation for Pseudo-Exhaustive Testing

CRC Technical Report No. 83-14, 1983 Stanford

REDDB83 Reddy, S.; Reddy, M.; Kuhl, J.: On Testable Design for CMOS
Logic Circuits; in: Proc. IEEE International Test Conference, 1983

REDDB84 Reddy, S.; Reddy, M.; Agrawal, V.: Robust Tests for Stuck-Open

Faults in CMOS Combinational Logic Circuits; in: Proc. Interna-

tional Syposium on. Fault-Tolerant Computing, FTCS-14, 1984

Starke, C.W.: Built-In Test for CMOS Circuits; in: Proc. IEEE

International Test Conference, 1984

TaWo83 Tang, D.T.; Woo, L.S.: Exhaustive Test Pattern Generation with
Constant Weight Vectors; in: IEEE Trans. on Comp., Vol. C-32, No.
12, 1983

VaMag85 Vasanthavada,N., Marinos,P.N.: An Operationally Efficient Scheme
for Exhaustive Test-Pattern Generation Using Linear Codes; in: Proc.
IEEE International Test Conference, 1985

Wads78 Wadsack, R.L.: Fault Modeling and Logic Simulation of CMOS and
MOS Integrated Circuits; in: The Bell System Technical Journal, Vol.
57, No. 5, May-June 1978

WaMc84 Wang, L.-T.; McCluskey, E.J.: A New Condensed Linear Feedback
Shift Register Design for VLSI/System Testing; in: Proc. Interna-
tional Symposium on Fault Tolerant Computing, FTCS-14, 1984

WaMc86 Wang, L.-T.; McCluskey, E.J.: Circuits for Pseudo-Exhaustive Test
Pattern Generation; in: Proc. IEEE International Test Conference,
1986

WaMc87 Wang,L.T.; McCluskey,E.J.: Circuits for Pseudo-Exhaustive Test

Pattern Generation Using Shortened Cyclic Codes; in: Proc. IEEE

International Conference on Computer Design, ICCD '87, 1987

H.-J. Wunderlich: Self Test Using Unequiprobable Random Patterns;

in: International Symposium on Fault-Tolerant Computing, FTCS-

17, 1987, Pittsburgh

WuR086 H.-J. Wunderlich, W. Rosenstiel: On Fault Modeling for Dynamic
MOS Circuits; in: Proc 23rd Design Automation Conference, 1986,
Las Vegas

WILL87 Williams, T.W. et al.: Aliasing Errors in Signature Analysis
Registers; in: IEEE Design & Test, April 1987

Bray84

EiLi83

Pata83

Star84

Wu87

This research was supported by the BMFT (Bundesministerium fiir Forschung
und Technologie) of the Federal Republic of Germany under grant NT 2809 A 3

