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A b s t r a c t :
An increasing part of the overall costs of custom and semicustom integrated circuits has
to be spent for test purposes, and therefore the integration of test and design seems to be a
key of cost reduction. At the University of Karlsruhe a program system is currently
developed supporting the design of testable circuits.
The program system under work essentially solves three tasks:
1 . ) Selection of an economical test strategy.
2 . ) Implementation of necessary circuit modifications in order to enhance testability,

retaining the circuit function by construction.
3 . ) Generation of the test program.
A low cost test strategy is selected under constraints given by the user, who describes the
intended application of the chip, its function and structure. These constraints include the
number of produced chips, the desired dependability, the available test equipment, the
chip size and architecture, technology, performance and many others. The surface of the
program will be an expert system, asking the user for known parameters and proposing the
test strategy.
There are two interfaces to the design tools. The functional entry will be the logical
synthesis system CADDY where testability is regarded at a very early stage of the design.
The structural entry is a netlist on gate level, and a library of the used cells.
The overall test strategy has to be in accordance with the chip architecture. For each part
- random logic, PLA, RAM, ROM, busses - its appropriate test strategy has to be selected.
While at these levels mainly expert knowledge is used, at the other levels the program
system works algorithmically. At gate, switch, and layout level two kinds of algorithms are
implemented: Test algorithms supporting the test program generation, and design
algorithms modifying the circuit structure.
At gate level the design algorithms include the automatic integration of complete or
incomplete scan paths, the modification of the system registers in order to support the
self-test by conventional and optimized random patterns, the partitioning of circuits to
facilitate pseudo-exhaustive testing, parity lines for PLAs etc. Furthermore these
modifications must not destroy the circuit correctness, which is guaranteed by construc-
tion (logical function) or validated (timing, performance).
The test algorithms perform test pattern generation for combinational and sequential
circuits, testability analysis and optimization, test pattern compression and also the com-
pression of test responses. Additionally logic simulation and fault simulation are
integrated into the system.
Especially the MOS technologies require more detailed fault analysis. Therefore at switch-
level new algorithms have to be developed. They include the computation of fault
detection probabilities at switch-level and test pattern generation.
At last at the layout level an automatic fault modeling is performed. For each logical cell
the technology dependent faulty functions are generated. This precise modeling has two
advantages: On the one hand there are many faults not covered by a technology
independent fault model, and thus more realistic statements about fault coverage are
possible. On the other hand in some cases the conventional fault models are dealing with
faults, which can not occur, and which should be eliminated.
Moreover at this level a library of cells supporting the test strategies must be generated.

* ) This research was supported by the BMFT (Bundesministerium für Forschung und Techno-logie) 
the Federal Republic of Germany under grant NT 2809 A 3
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1 . I n t r o d u c t i o n

During the past few years the design automation has made a significant progress, and
nearly all tasks of the circuit design can be done automatically. Workstations with a stan-
dard cell environment or a silicon compiler are introduced into industrial practice, and
application specific integrated circuits are now widely substituting solutions by boards
and discrete elements.

On the one hand the circuit design is not any longer an art of a few experts, and can be
done economically by many institutions and companies. On the other hand the resulting
chips have a rapidly increasing complexity. This development has impact on the
structure of the overall costs of integrated circuits, where the test costs are becoming the
dominant part. There is not only a relative increase of the test costs due to shrinking
design expenses, but also an absolute rise, since the test costs are growing with the design
complexity. The test costs are now up to 60% [Benn84] through 70% [Will86] of the overall
costs of application specific circuits.

The test itself is divided into several expensive tasks:

1 ) Test pattern generation

The automatic test pattern generation (ATPG) for combinational circuits is NP-
complete [IbSa75], and for general sequential circuits it is exponential [Roth78].
Practical experience has shown a quadratical through cubical increase of the
computing time [Goel80] with respect to the size of a combinational circuit. The
ATPG requires design modifications like a scan path, and it is still one of the most
expensive computing tasks during the complete design process.

2 ) Test pattern application

The test equipment must be at least as powerful as the circuit under test, since many
technology dependent faults can only be detected by a high speed test [Tsai83],
[WuRo86]. There are rapidly increasing requirements to the speed, the resolution, the
channel number and the buffer size of a high performance tester resulting in rapidly
increasing costs.

3 ) Design for testability

As mentioned, in many cases the ATPG is only possible if additional circuitry is used
supporting the test. The integration of a scan path needs up to 20% hardware over-
head causing higher design costs, higher silicon area and less yield and reliability too.
In order to produce self-testable circuits the necessary overhead is even higher, and
the designer must evaluate the trade-off between the costs of the test equipment and
the silicon costs of the self-test circuitry. Some investigations state that for
application specific circuits in small and medium sized numbers an overhead up to
30% may be still economical [VARM84].

The objective of this paper is the description of a system of algorithms and tools that
supports the designer to minimize the costs of these three tasks. Like programs generating
minimized circuits, fast circuits or validated circuits automatically the intended system
shall support the design of easily testable circuits. The main problem is that testability is
not such a clear objective as speed, area or correctness. If a high performance test equip-
ment is available, a scan design will be sufficient, whereas otherwise self-testable circuits
would be required. Circuits testable by random patterns can sometimes hardly  be dealt
with ATPG and vice versa. It is known that different test pattern generation algorithms are
optimal for different benchmark circuits [Brgl85].

To sum up the concept of testability has only meaning, if the involved test strategy is
known. In the next section we discuss the parameters which have impact on their
selection. We will describe the necessary information for this selection, and we will list the
algorithms and tools providing this information. Moreover rule and knowledge based
approaches are discussed, in order to do this selection automatically too.

Such an expert system will be suitable at the application and architectural level of the
design, but at lower levels we are going an algorithmic way. Section 3 deals with the tasks
at gate level, which include both test and design algorithms. The test algorithms are test
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pattern generation, testability analysis or fault simulation for instance. The design
algorithms include the circuit partitioning or the automatic integration of scan paths or
BILBOs (Built-In Logic Block Observer). Both kinds of algorithms have to be carried out at
switch-level (section 4), and at layout level (section 5) too. Finally section 6 gives an over-
view of the complete system.

2 . The selection of test strategies
2 . 1 Decisions at the application and architectural level

A test strategy consists of a method to determine test patterns, a method to generate and
evaluate these patterns during test application, a design style, and a fault model which
should be covered. A large number of test strategies has been proposed during the past
years, and it turned out that there are no optimal solutions, because a complex system of
technical and economical parameters determines the suitability  of a test method.

Only for illustrations we mention the number of processed chips, the chip size, the
available test equipment, the requirements of fault coverage and reliability or the circuit
technology. These are user requirements at the application level, but the choice of a test
method for the complete circuit is also affected by the circuit architecture.

For instance the decision for a self-testable circuit leaves many degrees of freedom to
implement the self-test for PLAs, for random logic or storages in different ways. There are
many techniques proposed to make a PLA self-testable, most of them cheaper than an
ordinary BIST for random logic. But often such a locally optimal solution for a PLA is not
necessary, if a BIST structure for random logic can also be used directly or through a bus
(see fig. 1).
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Fig. 1:  Circuit architecture

Thus the test method for each single module must be chosen with respect to the global
costs. It is a multidimensional optimizing problem to find the best solution for each block
and for the overall circuit fulfilling the requirements about fault coverage, reliability, yield
or area (fig.  2). A designer can only make a sure decision if the solution is implemented
at least at gate level, and then he evaluates or estimates its costs and results.
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Fig. 2:  Some dimensions of the decision problem on test strategies

The presented system offers a set of tools analyzing and implementing test strategies. For
instance given a block of random logic the designer can estimate the necessary number of
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random patterns at gate level, and he can compute the costs to integrate self-test modules
for pseudo-random patterns. This is compared to the costs of the pseudo-exhaustive or
external test.

The cost functions are derived at gate level and given to the user at the application level.
Fig. 3 gives a rough overview about the implemented and analyzed test strategies.

Mainly we distinguish between the external test and the self-test method. Intermediate
there is the off-line test by special chips. These special chips contain some of the test
circuitry to reduce the hardware overhead.
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Fig. 3: Test strategies at gate level
At each leaf available: analysis algorithms, test generation algorithms, circuit
modification algorithms. Marked with a box means specially developed for the
presented system.

For the external test we have functional, pseudo-exhaustive and structural approaches. In
the latter case the test patterns are generated based on the circuit structure, and the
structure is modified in order to make the test pattern generation feasible. The presented
work supports a scan design. As few storage elements as possible are integrated into an
incomplete scan path automatically, still ensuring testability.

The other main approach is testing by random patterns which is possible as self-test
strategy too. There also exist deterministic self-test approaches, where our research
objective is the so called pseudo-exhaustive test. In the tree of fig. 3 the marked leaves
denote algorithms especially designed for our program system which are presented in
section 3 in deeper detail.

2 . 2 Rule and knowledge based approaches

Up to now we listed the tools and the informations needed by a designer in order to select
a test strategy. Further research will be necessary in order to do this selection
automatically too. The complexity of this problem prevents any algorithmic solution,
such that the system under work will be divided into two levels (fig. 4).

Input are user specifications as performance, area, reliability, and a technology dependent
library. The circuit itself is represented by a structural or a functional description, where
in the latter case logic synthesis has to be performed ([RoCa85], [SCHM86]).
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Based on this input the system will propose test strategies, in the current program version
this task must be done by the user himself. Then the system modifies the circuit structure
in order to implement a given test strategy, and it generates test patterns for the modified
s t ruc ture .
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Fig. 4:  Program system for automatic design for testability

Some preliminary work has already been done towards a complete system for automatic
design for testability. In 1985 Fung et al. presented the TESTPERT (testability expert) which
is integrated into the SILC silicon compiler of GTE [FUNG85]. This system provides most of
its informations in rather a conventional way by so called testability measures, but it also
uses some information of the application level as described above, and integrates
additional circuitry to enhance testability. The main differences to our approach are their
use of testability measures, and the extent of integrated test structures. Since the precision
of conventional testability measures does not seem to justify expensive design changes
[AgMe82], our system uses a variety of cost functions adapted to each test strategy.

At the University of Southern California an expert system was developed supporting the
design of a testable PLA [BrZh85], and a more general Testable Design Expert System (TDES)
has also been reported [AbBr85]. The description of this rule based system concentrates on
the circuit representation with BILBO integrations as an example. Another rule and
knowledge based system is described in [SaFo86], suggesting and explaining circuit
modifications that improve testability. Also  a more detailed review of previous work on
this topic is given. In [BGR87] knowledge based tools are reported checking whether the
circuits satisfy certain design for testability rules. A knowledge based selection of self-test
techniques all based on linear feedback shift registers (LFSR) is described in [Kras87]. But
up to now a system has not been reported supporting the automatic selection of test
strategies in a sufficiently general way. This part of an automatic design for testability is
still left to the designer.

3. Test strategies at gate level
3 . 1 The external random test

Testing by random patterns has several advantages. Here we can dispense with the time
consuming automatic test pattern generation, and the application of random patterns
needs no expensive test equipment, since it can be done by linear feedback shift registers
(LFSR) during self-test. This is possible in high speed, and therefore many technology
dependent dynamic faults are detected in addition ([Tsai83], [WuRo86]).

In general sequential logic is not treated by random patterns, since the probability may be
very small that certain initializing sequences occur randomly. Hence one uses a chip with
scan design, does logic simulation with the combinational part, and feeds the scan path
and primary inputs by pseudo-random patterns. Finally the circuit response is checked.

Doing so essentially three problems have to be solved: The number of random patterns
has to be determined to which the circuit must respond correctly in order to be assumed
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fault free. This leads to the second problem to compute fault detection probabilities.
Finally we have to deal with circuits which cannot randomly be tested since the fault
coverage would be too low, or the necessary test length would be too large.

The random test length N depends on the confidence δ , that is the probability to detect all
faults f ∈  F of the fault model F by applying N randomly generated patterns. If we assume
that the detection of some faults by a pattern set of size N forms completely independent
events, then we have

                                       δ = ∏
f ∈ F

 (1 - (1 - pf)
N)(1)

where pf denotes the detection probability of the fault f.

For large N the assumption of independence is asymptotically fulfilled, but in general
computing the necessary test length N by formula (1) will only provide an upper bound.
For our purposes this is precise enough, and N can be evaluated by computing fault
detection probabilities for combinational circuits.

For circuits with tree structures  such algorithms were presented by P. and V. D. Agrawal
[AgAg75], and the general case was solved by Parker and McCluskey [McPa75a,b]. But the
latter procedure shows an exponential time and storage complexity due to the NP-
completeness of the underlying fault detection problem. Therefore in recent years much
work has been done to est imate  those probabilities.

The cutting algorithm [BDS84] determines upper and lower bounds for the probabilities,
PROTEST (Probabilistic Testability Analysis) ([Wu84], [Wu85]), and a new version of
PREDICT [ABS86] estimate by an analyzing procedure, and STAFAN [AgJa84] counts  the
signal values during simulation.

In our system the algorithms of PROTEST are integrated, which have already been
presented in ([Wu85], [Wu87a]). But now it turns out that there are many circuits which
cannot randomly be tested due to faults with low detection probabilities. Table 1 shows
for some circuits the necessary test lengths based on estimations of PROTEST. The circuits
C<n> are the well-known benchmarks of the ISCAS�’85 test session [Brgl85], the circuit S1 is
a 24-bit comparator constructed by six Texas Instruments comparators SN 7485 [TI80],
where some redundancies are removed, and S2 is the combinational part of a 32 bit
divider [KuWu85].

Circuit Required test length

* S1 5.6*108
* S2 2.0*101 1

C432 2.5*103
C499 1.9*103
C880 3.7*104
C1355 2.2*106
C1908 6.2*104

* C2670 1.1*107
C3540 2.3*106
C5315 5.3*104
C6288 1.9*103

* C7552 4.9*101 1

Table 1: Necessary test lengths for a conventional random test (by PROTEST).

In table 1 the marked (*) circuits need an exorbitant size of the random test set, and these
predictions of PROTEST are confirmed by fault simulation:



7

Circuit Test length Fault coverage

* S1 12,000 80.7 %
* S2 12,000 77.2 %
* C2670 4,000 88.0 %
* C7552 4,096 93.9 %

Table 2:  Fault coverage by simulation of conventional random patterns.

It should be noted that an estimation with the exact value 0 or 1 of a signal probability by
PROTEST is a proof (not an estimation!) of redundancy. But of course not in all cases a
fixed signal value can be detected this way, and therefore redundancies may be left which
cannot be found by PROTEST. The fault coverage in table 2 is computed with respect to
faults which are not proven to be undetectable due to redundancy. The table indicates
that self-testing of those circuits may need several hours, preventing an economical use of
random patterns.

In many cases this problem is solved applying optimized random patterns. That is, each
primary input is set to logical "1" by its specific optimal probability. Using such
optimized input probabilities PROTEST proposes the test lengths listed in table 3:

Circuit Required test length

* S1 1.5*104
* S2 4.0*104
* C2670 6.9*104
* C7552 1.2*105

Table 3:  Necessary test lengths for optimized random tests (by PROTEST)

The results of fault simulation listed in table 4 prove that such optimized random
patterns yield a higher fault coverage indeed.

Circuit Test length Fault coverage

* S1 12,000 99.7 %
* S2 12,000 99.7 %
* C2670 4,000 99.7 %
* C7552 4,000 98.9 %

Table 4:  Fault coverage by simulation of optimized random patterns

A gradient method to compute optimized input probabilities has been proposed in
[LBGG86]. In our system the algorithms described in ([Wu85], [Wu87a], [Wu87b]) are
integrated. They use the fact that for each fault f ∈  F the detection probability pf( X )
depends on the tupel of input probabilities  X := <xi | i ∈  I> where I denotes the set of
primary  inputs. Therefore the formula above turns into

δN(X)  =  ∏
f∈F

 (1 - (1 - pf(X))N).(2)

This formula expresses the probability that all  faults are detected by N patterns with the
distributions of X. Using some well-known approximations this is transformed into

ln(δN(X)) ≈ -∑
f∈F

(1 - pf(X))N ≈ -∑
f∈F

e
-N⋅pf(X)

.(3)

This describes the objective function, and we call a tupel X of input probabilities optimal
with respect to N, if
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JN(X)  := ∑
f∈F

e
-N⋅pf(X)

(4)

is minimal at X ∈  [0 ,1]I.

In the {0,1}-space expectation value and probability coincide, and the stochastical
optimizing problem reduces to a deterministical one. But this is only a modest
simplification, since one immediately notices that the objective function is not a member
of the well-known linear or quadratical optimizing problems. In general the objective
function will not be convex or even unimodal. Our optimizing problem is a member of the
general class of smooth multi-extremal problems, which have an exponential average case
complexity with respect to the number of variables, and to the required precision
[NeYu83]. The known global optimizing procedures like the Newton or the gradient
method will fail to handle large circuits with hundreds or thousands of input variables
resulting from scan designs.

Therefore we do not try to find a global optimum, but we use some approximations to
search a relative one. In [Wu87a] it is shown that the objective function is strictly convex
with respect to a single variable. Hence for each fixed  x1 ,. . ,xi -1 , xi + 1 ,. . ,xn   there exists
exactly one  xi ∈ [0,1] with minimal JN (x1,..,xi,..,xn) .

N o t a t i o n :

Let  Z := <z1,�…,zn>, and y ∈  [0,1]. We write f(Z,y|i)  := f(z1,�…,zi-1,y,zi+1,�…,zn). One easily
verifies that

pf(X)  =  pf(X, 0|i)  + xi(pf(X,1|i)-pf(X,0|i) ).
Hence

dy
dJN(X,y|i) = ∑

f∈F
-N(pf(X,1|i)-pf(X,0|i))e

-Npf(X,y|i )

a n d

d2y

d
2J

N(X,y|i) = ∑
f∈F

N2(pf(X,1|i) - pf(X,0|i))2e-Npf(X,y|i)
 > 0.

The ">" holds since we assume irredundancy, and at some primary input we have
pf(X,1|i)-pf(X,0|i) = 0. And now we have:

For each X ∈  [0 ,1 ] I  there exists exactly one y ∈  [0,1] with dJN ( X , y |i)/dy = 0  and
JN (X,y |i) has its minimum there.

Since all derivations of the objective function are explicitly available this minimum point
can be computed by simple iterations like the Newton algorithm or the regula falsi.

Fig. 5 sketches the complete subsystem PROTEST that has been integrated. PROTEST uses a
gate level netlist of the circuit, and a functional library of the primitives. Then it
estimates the test lengths, the fault detection and the signal probabilities. It computes
optimal distributions for random test sets, and generates these patterns. Finally it
validates its predictions by a static fault simulation. The latter feature is useful, if  a self-
test technique is implemented based on optimized input probabilities.
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Fig. 5: Program system PROTEST

3 . 2 External test by deterministic patterns

Another tool has to support the external deterministic test. Objectives of this test strategy
are shortening of the test length, treatment of circuits which are not randomly testable,
certainty to detect a given set of faults, or the detection of redundancies within circuits.

State of the art are so called implicit enumeration algorithms like PODEM [Goel81] and
FAN [FuSh83]. They are using testability measures to control the order they enumerate the
input patterns.

The quality of the testability measure and further heuristics as implemented for instance
in SOCRATES [SCHU87] mainly determine the number of backtrackings and thus the
overall running time. The presented program system includes the tool SPROUT (Signal
PRObability Using Test pattern generator), that uses the signal probabilities provided by
PROTEST as testability measure and control function [Kunz87b]. Fig. 6 gives an overview of
the interfaces of SPROUT and PROTEST.
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coverage

t e s t
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remaining
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set of
fau l t s

control
values

c i r cu i t
description

informations
for DfT

Fig. 6:  Interfaces of SPROUT and PROTEST

Using a scan design it is in many cases sufficient to deal with combinational circuits, with
the single fault assumption and with a five-valued logic as the well-known enumeration
algorithms do. But these algorithms often fail to handle sequential circuits and therefore
SPROUT uses a nine-valued logic. The capability to deal with sequential logic is needed, if
an incomplete scan path is integrated as described in the next section. In detail the
algorithms and the performance of SPROUT are reported in [Kunz87b].
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3 . 2 Circuit modifications supporting the external test

There are no algorithms known overcoming the test generation problem for general
sequential synchronous circuits. This is due to the fact that the worst case test length for a
single fault may increase exponentially with the circuit size [Roth78].

For this reason many scan design techniques were proposed, where during the test mode
all the storage elements are part of a serial shift register (see e.g. [EiWi77]) and therefore
directly accessable.

The automatic integration of a complete scan path has been the first design for testability
capability of the presented system [KuWu85]. Nowadays this is state of the art and is
already supported by standard cell environments like VENUS [GeNe84].

The hardware overhead to integrate a complete scan path is about 10 % to 20 % [Benn84],
and it is determined by the additional routing area, the larger storage elements, by
multiplexers selecting the valid input data, and by the supplementary peripheral inputs
and outputs. In order to reduce this hardware overhead, Trischler proposed the
integration of an incomplete scan path [Tris80]. A detailed comparison between both
types of scan paths can be found in [Kunz87a].

In [Tris80] and [Tris83] controllability and observability values at the storage elements
decide whether they are integrated into the incomplete scan path. In [AGRA87] a method
has been proposed, to select the scan elements during test pattern generation for the
combinational part of the circuit.

But both approaches cannot guarantee that the following two conditions are kept:

1 ) For each fault its test sequence is bounded linearly in the worst case.

2 ) The number of selected storage elements is minimal.

A procedure has been integrated into the presented system that selects storage elements
satisfying these conditions. This procedure is called INSPIRATION (INcomplete Scan Path
IntegRATION). To illustrate our approach we map a sequential circuit on a connectivity
graph where the nodes correspond to storage elements, primary inputs and outputs. Fig. 7
shows a part of a sequential circuit, consisting of 5 storage elements (D-type flip-flops) and
the corresponding connectivity graph (CG).
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Fig. 7:  Part of a sequential circuit and its connectivity graph CG
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The connectivity graph must be acyclic in order to guarantee that the test length is
linearly bounded. If the number of cycles is not restricted the connectivity graph may
represent a circuit with a linear feedback shift register with 2n  - 1 states, and with an
initializing sequence of the same length. But even if there is only a single cycle in the
connectivity graph, the test length for a single fault may increase quadratically.

The circuit of fig. 8 consists of a single cycle with n storage elements, and a path from
input P1 via m storage elements.
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Fig. 8:  Sequential circuit with one single cycle

If signal NC is "1", this value is transfered to the cycle. Obviously the cycle can be pushed
into any state. But any "1" at net NC is followed by (m-1)-times "0", which cannot
influence the cyclic shifting. Thus a test sequence of O(n.m) is necessary to force the
circuit into a certain state.

The previous considerations are only valid, if the current state of a storage element has no
impact on its next one. If other kinds of storage elements are used, they have to be
modeled by D-flip-flops for instance. For an acyclic graph it can easily be proven that the
test length for a single fault cannot exceed the  rank of the graph.

Therefore INSPIRATION provides a procedure to generate acyclic connectivity graphs by
removing a minimal number of nodes. This proceeding consists of two algorithms: (1)
Search all the elementary cycles of a directed graph and (2) determine a minimal number
of cuts, affecting all cycles using heuristics for the set covering problem [ChKo75]. Then
the corresponding storage elements are integrated into an incomplete scan path.

Based on the new acylic connectivity graph the sequential circuit is mapped into iterated
combinational circuits, where the image of a single fault may be a multiple fault.
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Fig. 9:   Combinational circuit with scan-element D5

In the example circuit 2 cycles exist (D1, D2, D4, D5 and D1, D3, D5). To eliminate both
cycles the set covering problem suggests the cut at element D5. The rank of the resulting
CG is 4. Circuit transformation yields a combinational representation (fig. 9) with 66
single and 18 multiple faults. Each test pattern has to be transformed into a test pattern
sequence of length 4.

This approach results in less hardware overhead for test purposes, but this is paid by the
additional test pattern generation costs for sequential circuits. However if the sequential
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circuit is transformed into a pipeline structure (fig. 10), for test pattern generation the
circuit can be handled exactly like a combinational one.
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Fig. 10:  Pipeline structure

There are also algorithms integrated to make the marked flip-flops directly accessible,
such that the remaining structure is a pipeline. Then all test algorithms for combinational
logic are applicable to this sequential circuit.

3 . 3 Self-test by random patterns

The most widely used self-test techniques are based on LFSRs, where the system registers
are augmented by some additional hardware. Then the registers can be controlled to per-
form the normal operating mode, the shifting mode or the LFSR mode. Fig. 11 shows the
typical test configuration.

Here the test is carried out within five phases. Firstly the registers R1 and R2 are reset.
Then both registers work in the LFSR mode, where R1 produces random test patterns for
the combinational network SN1, and R2 compresses its responses by signature analysis.
Thirdly the signature of R2 is shifted out, and then both registers work as LFSR again, but
R2 generates the patterns for SN2 and R1 performes signature analysis. At last the
signature of R1 is shifted out.

R1 SN1 R2 SN2

Fig. 11: A self-test configuration

The LFSRs produce random patterns by polynomial division over GF(2). This is possible by
two different architectures. The LFSR of type I feeds back the linear sum

∑
i=0

r-1
 gr-1-i ti

into  t0 (fig. 12a), and the LFSR of type II feeds sr-1 ⊕  si-1 into those si, where gi = 1 (fig.
12b) .
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Fig. 12a:   Standard LFSR (type I)
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Fig. 12b:  Modular LFSR (type II)

Both automata are equivalent, for a detailed discussion see [Golo67]. If they implement a
division by a primitive polynomial, their period is maximal and a produced bit sequence
of length m satisfies some basic random properties.

Conventional self-test techniques use standard LFSRs, since besides the feedback functions
they are easily composed by cascading identical cells. Well-known is the BILBO approach
[KOEN79]. Some work has already been done to integrate BILBOs into a logic netlist
automatically ([AMBL86], [KrAl85]).

More difficult is the generation of circuits which are self-testable by optimized pseudo-
random patterns. A module called GURT (Generator of Unequiprobable Random Tests)
was presented in [Wu87c]. A GURT is based on modular LFSRs and has four operation
modes :

1 ) Normal system operation as register
2 ) Unequiprobable random pattern generator
3 ) Signature analysis
4 ) Shift register

During pattern generation the GURT is configurated by a module LR, which is a modular
LFSR, and by a module SR, that is mainly a shift register (fig. 13).

LR generates equiprobable random patterns, and it feeds a boolean function F. At the
output of F there is a biased sequence of probability p (e.g. if F is a  3-input AND:
p=0.125). This sequence is shifted into SR, where by inverting the value 1-p may be
ob t a ined .

++++
G1 G1G1G1G2 G2

F

G2 G2 G2 G2

p p 1-p p
f f f f0 1 2 3

LR

Boolean function
with F(0.5,0.5,0.5) = p

SR

Fig. 13:   Random pattern generation using LR and SR

If the GURT is in the signature analysis mode, both LR and SR are working together as a
large linear feedback shift register (fig. 14).
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++++
G1 G1G1G1G2 G2

G2 G2 G2 G2
SR out

SRLR

LR in

Fig. 14:   A GURT in signature register mode

Using at least three GURTs with different functions F each of the probabilities 1/8, �…, 7/8
can be produced. A gurt needs a sufficiently long pattern sequence as input in order to
avoid periodicity. This input sequence can be generated by a long LFSR with self-test
features like a BILBO or an LR described above, or by a preceeding GURT.

Additionally one GURT is only able to generate the three probabilities p, 1-p, and 0.5 at its
storage elements. Therefore the inputs of the combinational circuit under test have to be
grouped into four sets: one set contains the inputs which must be stimulated with
probabilities 1/8 and 7/8, in the next set there are the inputs with probabilities 1/4 and
3/4, a further set needs probabilities 3/8 and 5/8, and at least there is the set with
probability 1/2. If a circuit has inputs in each of those sets at least 3 GURTs must be
connected in series (see fig. 15).

0.5

p1

p2

p
3

- Maximum LFSR
- at each position
  probability p = 0

- Several GURTs
- at each position
  probability p,
  1-p or 0.5

Fig. 15:   Self-test configuration using GURTs

The GURTs and the circuit inputs are ordered by a heuristic optimizing procedure.

3 . 4 Deterministic Self -Test

In the following "deterministic test" will denote the test by deterministicly determined
patterns in contrast to test by (pseudo-) random patterns. Straightforward approaches to
implement the deterministic test as built-in self-test are the complete enumeration of all
possible patterns by a counter or LFSR ("exhaustive test") or the storage of the elements of
a deterministic test set in a ROM on chip ("prestored test"). In recent years some more
sophisticated methods have been developed. One approach based on nonlinear feedback
shift registers was suggested by Daehn [Daeh83]. For a given set T of deterministicly
determined test patterns a shift register is designed whose sequence of stages contains T as
a subset.

Another technique called "Store and Generate" [AgCe81], [AbCe82] works as a compromise
between the prestored and the exhaustive test. A given testset T for a circuit with n
primary inputs is transformed into a set T' that can be divided into classes such that the
test patterns belonging to the same class only differ in the last n-k components for a fixed
k ≤ n. It is sufficient to store one representative of each class (i.e. its first k components) in
a ROM on chip. All elements of T' are obtained if each stored pattern is combined with all
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different output vectors of a (n-k)-stage LFSR or counter. Retransformation of T' into T
provides all patterns in T.

Of course the fault coverage of both approaches depends on the quality of the test set, and
on the underlying fault model. Furthermore these approaches need a high computing
effort and especially the second one a high hardware overhead too: a ROM, an LFSR and a
decoder are required. Therefore our system supports a third approach: pseudo-exhaustive
or verification test. Consider a combinational circuit C with a set I of primary inputs and
a set J of primary outputs. The minimal subcircuit containing all the nodes which have
impact on a primary output j is called the cone of j and will be denoted by Cj. The
principle of pseudo-exhaustive test is to consider C as the (not necessarily disjoint) union
of its cones and to test each cone exhaustively (see fig. 16).

This provides a relative independence of a certain fault model in contrast to conventional
approaches (within the cones al l faults that do not cause a sequential behavior of C are
detected, confer [ArMc84] ).

1x

2x

1 2f(x  , x  , x  , x  )3 4

x5

x6

x3
x4

x7

f(x  , x  , x  , x  )75 64

2C

1C

Fig. 16: Combinational circuit with 7 primary inputs and 2 primary outputs.

In general the necessary test length is drastically reduced in comparison with exhaustive
test. For the number t of required test patterns the following inequation holds

  :=   max 2
| Ij | ≤   t ≤ ∑

j∈J
 2

| Ij | ≤   | J | · 
            j∈
M M

J
(5)  ,

where Ij denotes the set of primary inputs of cone Cj, j∈ J. It can be shown that t ≤ 2|I|-1, if
no primary output depends on all primary inputs. In the example of figure 16 pseudo-
exhaustive test can be done with 16+16 = 32 patterns in contrast to 128 patterns for
exhaustive test. The pseudo-exhaustive test can be applied efficiently to general circuits if
they are segmented for test-purposes [McBo81]. This can be done either by software
("path-sensitizing") or by some additional hardware ("multiplexer-partitioning"), where
the hardware overhead should be minimized.

In order to do so, it is useful to represent C by a graph GC = (V, E). The set of vertices V cor-
responds to the set of nodes of C (primary inputs and outputs inclusively), and the set of
edges E consists of all pairs (v, w) ∈  V x V such that the corresponding nodes in C are
directly connected by a logic gate. The insertion of a multiplexer can be modeled as the
cut of vertices or edges. To cut a vertex v ∈  V means to replace v by two nodes v' and v''
such that the predecessors of v' are the predecessors of v, the set of successors of v' is
empty and v'' is a source-vertex whose successors are the successors of v (see figure 1 7 ) .
The cut of an edge can be defined in an analoguous way.

Fig. 17:   Cut of a vertex.



1 6

The number of sources-vertices among the predecessors of a vertex v is called the dependence-level d(v) of v. In
these terms the following problem has to be solved.

Segmentation Problem SP: Let G = (V,E) be a directed acyclic graph and  a natural
number. Transform G by a minimal number of cuts into a graph G' such that the
dependence-level of each vertex is smaller than .

Some algorithms have been proposed in order to treat similar problems. Roberts and Lala
[RoLa84] suggested a straightforward heuristic which produces a transformed graph G'
with maximal dependence-level as close as possible to  (but not necessarily below  ).
Starting from a source vertex of G the graph is searched until a vertex v with dependence-
level exceeding  is found. Depending on the difference between the respective dependence-
level and , v or one of its predecessors is cut. If the resulting graph G' does not yet fulfill
all requirements the procedure is applied to G'.

Patashnik [Pata83] proved the NP-completeness of a slightly modified segmentation pro-
blem SP' by reducing CLIQUE [GaJo79] to it. The cost function to be minimized is the
resulting test length without consideration of the necessary hardware overhead. A
heuristic for SP' using a mincut-technique was published by Archambeau in 1985 [Arch85].
McCluskey and Shperling [McSh87] recently published a paper on the use  of  simulated
annealing for circuit segmentation.

In the following the considered circuit C is assumed to meet the requirements for an effi-
cient pseudo-exhaustive test as discussed above. The straightforward approach to execute
pseudo-exhaustive test is the successive test of the cones. But further reduction of the test
length is possible. Consider the example shown in fig. 18.

x1
x

2

x
3

f(x   , x   )1 2

f(x   , x   )1 3

f(x   , x   )2 3

Fig. 18:   Combinational circuit with 3 primary inputs and 3 primary outputs.

x1 x2 x3 x1 x2 x3
1 0 x 1 1 0
1 1 x 1 0 1
0 0 x 0 1 1
0 1 x C1 0 0 0
x 1 0
x 1 1 C1 C2 C3
x 0 0
x 0 1 C2
1 x 0
1 x 1
0 x 0
0 x 1 C3

Table 5:   Successive and parallel exhaustive test.

Each primary output depends on two primary inputs. Successive test of the cones is
carried out by the left sequence of patterns (x denotes "don't care"), but actually the test
can also be done by 4 patterns as shown on the right part of the above table.

Therefore the following problem has to be solved:
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Compaction Problem CP: Let C be a combinational circuit with cones C1,�…, Cm . Find a test
set T such that C1  through Cm  are tested exhaustively and |T| is minimal.

A graph-theoretical approach is based on the partitioning of "dependence-matrices"
[McCl84]. The aim is to divide the primary inputs into a minimal number k ≤ n of classes
such that all inputs belonging to one class can share the same test signal, i.e. a pseudo-ex-
haustive test can be done by the complete enumeration of GF(k). Hirose and Singh
[HiSi82] showed the NP-completeness of this problem by reducing the graph k-colouring
problem [GaJo79] to it. They suggested a tree search algorithm in order to get suboptimal
solut ions .

Other approaches are based on algebraic concepts. Let w denote the maximal number of
primary inputs of the cones. Akers [Aker85] published an algorithm working with GF(2)-
linear combinations ("linear sums") of k ≥ w "basic" independent signals. For example the
circuit of figure 18 could be tested with two independent signals A and B applied to x1
and x2  respectively, and A +GF(2)  B applied to x3 . This provides a pseudo-exhaustive test
of the circuit, because A, B and A +GF(2) B are pairwise linearly independent over GF(2).

= 1

A

B

x3

x2

x1

1 3f(x   , x   )

21f(x   , x   )

3f(x   , x   )2

MUX

Control

Combinational
Circuit C

Scan
Elements

Fig. 19:   Test of the circuit of figure 18 by "linear sums".

The "basic" independent signals can be generated by an LFSR or counter and the addition
in GF(2) can easily be realized by EXOR-Gates. The resulting test length, however, is not mi-
nimal in general.

Other authors treated a more special problem CP'. For  ä I let

pr :  GF(2)n         ‘        GF(2)| |

         (x1,�….xn) ‘          (y1,�…,yn)

be defined by

yi  :=   xi    if i ∈ 

            0     else.

In these terms CP' can be formulated as follows.

Problem CP': Find a set T ä  GF(2)n such that for all ä  I w i th  | | = w the projection pr
restricted to T is surjective and |T| is minimal.

T is called a universal test set for the circuit C. The most elegant approach to solve CP' is
to use shortened cyclic codes [WaMc86]. Test pattern generation can be carried out by an
n-stage LFSR. But in general the construction of universal test sets demands the consider-
ation of too many constraints and in some cases even the successive test of the cones is
more efficient.

Within the framework of our system a tool PETT (Pseudo-Exhaustive Test Tool) has been
developed which performs segmentation and test pattern compaction for a given circuit
[Korn87].

Concerning circuit segmentation we decided for hardware partitioning, since only this
technique preserves all advantages of the pseudo-exhaustive test. Therefore an algorithm
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solving SP had to be designed. Because of the already mentioned NP-complexity of the
similar problem SP' a heuristic tree search procedure based on the hill climbing principle
[Rich83] was chosen. Each vertex x ∈ X of the search tree represents a set s(x) of vertices of
the graph GC . Cutting all vertices in s(x) transforms GC  into a graph GC ' = (V',E'), and x is
called a solution of SP if the maximal dependence-level of GC ' is smaller than .

Starting with the empty set represented by the root-vertex the tree is built up as follows:
Let the vertices of GC  be ordered according to the signal flow in C. For x ∈ X let v* ∈ V' be
the vertex of minimal order with dependence-level exceeding . A direct successor of x
represents the set s(x) ∪ {v}, where v is a predecessor of v* neither a source-vertex nor in
s(x). An example is shown in figure 20.

12345

6789

1011

12

Graph representing a combinational circuit C.
The vertices are ordered according to the signal-
flow in C.

{6, 11, 7} {6, 11, 10}

�…

{}

{7}

�…�…
�…

{6}

{6, 10} {6, 11}{6, 7} {6, 8} {6, 9} �…�…
�…

Corresponding search tree.
{6, 11, 7} and {6, 11, 10} are solutions.

Fig. 20: Combinational circuit represented by a graph GC  and the corresponding
search tree.

The vertices in X are weighted by the following cost function:

F : X   ‘  R

      x   ‘    ∑
v∈V'

 ln ( d(v) )  .

                 d(v)>

If d(v) ≤ for all v ∈ V', F is set to zero.

At the root vertex of the tree the following search is started: For a vertex x ∈ X all direct
successors of x are generated and a vertex with minimal value of F is chosen. If no
improvement of F is obtained within a certain number of steps, backtracking is initialized.
If backtracking also fails to improve F a vertex representing s(x) ∪ {w} is chosen, where w is
a predecessor of v* with maximal dependence-level . The algorithm stops when F is zero. A
complexity analysis of this algorithm shows a quadratical increase of the computing time
in the worst case, but experience shows rather a linear behavior.

The segmentation algorithm and an algorithm based on the paper of Roberts and Lala
[RoLa84] were applied to some benchmark circuits [Brgl85]. Table 6 shows the results.
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Circuit number of cuts number of cuts by the
by PETT algorithm based on [RoLa84]

tn .c486 16 27 56
tn.c499 16 8 20
tn.c880 16 11 34
tn.c1355 16 8 20
tn.c2670 16 32 108
tn.c3540 16 85 138

Table 6: Comparison of the segmentation algorithm of PETT with an algorithm based
on [RoLa84].

For the test compaction the algorithm suggested by Hirose and Singh [HiSi82] has been
implemented. Further research will concentrate on the synthesis of feedback functions for
(non-)linear feedback shift registers executing test pattern generation.

3 . 5 Off-line test

Between external test techniques and self-test techniques there is the off-line test where
special chips contain some of the test circuitry to reduce the hardware overhead. For a
random test the external chips contain linear feedback shift registers, and can perform
pattern generation and signature analysis (fig. 21).

LFSR

LFSR

LFSR

LFSRoutputs

inputs

scan path

circuit under test

Fig. 21:   Principle of the off-line test

For a conventional random test this procedure was already proposed in [EiLi83] and
[BaMc82]. But also a chip generating optimized random sequences has been developed
and processed [Berg85].

3 . 6 Regular Structures

A complete system supporting the automatic design for testability must not be restricted
to random logic. For regular structures like RAMs, ROMs, bit-slices or PLAs test strategies
should be selected and integrated. But the test problem for these structures is widely
discussed in the textbooks (e.g. [BrFr76], [Fuji86]), and further research in this topic will
concentrate on tool integration.

But to minimize the global hardware overhead the use of general BIST-structures for these
modules has also been investigated.

If in fig. 11 one of the combinational networks is a PLA, then it is useless to add self-test
circuitry to this PLA, since the test capabilities of the registers R1 and R2 can also be used.
But in this case the random pattern testability of the PLA must be determined and
optimal input probabilities have to be computed if GURTs are used. Both can be done
with higher efficiency and high precision compared to random logic, using a Monte Carlo
approach [Wu87d].

3 . 7 Validation and valuation

The external test and the self-test require both test and design algorithms. If the design
modifications are done automatically, the logical correctness must be retained by
construction. But the design changes also have impact on other parameters which are
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estimated and given to the user and to the application level as objective function. Most
important are:

- performance degradation is estimated by critical path analysis and simulation;
- the additional area is estimated by informations about the test cells in the library.

Further work has to be done about the impacts of wiring and placement.

Detailed information is obtained about:

- test lengths and test application time for
- random test
- optimized random test
- deterministic test with complete scan path
- deterministic test with partial scan path
- pseudo-exhaustive test

- fault coverage achieved by the different strategies.

Based on these informations a decision about the test strategies can be made at the
application level. But in order to compute these objective functions more detailed,
technology dependent knowledge is necessary. This is described in the next two sections.

4 . Test algorithms at switch-level

The quality of the test is its fault coverage and it is well-known that fault modeling has to
be technology dependent [Wads78], [GALI80]. The faulty behavior of MOS cells cannot be
derived at gate level, especially if complex cells are used. But in general the computation
at the electrical level (e.g. SPICE) is too expensive for complete fault modeling. One
solution may be the so called switch-level algorithms, which are still much more accurate
than those at gate-level by having only a small increase of the CPU-time [Haye87].

At switch-level the circuit is represented by a netlist of discrete operators standing for a
transistor, a net, a resistor or a capacitor.
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switch
connector
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transisto
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↔
↔

↔
↔

Fig. 22:  Switch-level representation of a CMOS NOR-gate
The algorithms describe the electrical behavior of the circuit by a multi-valued logic, thus
reducing the expensive continuous computations to algebraic operations on the restricted
set of values.

There are mainly two approaches of switch-level modeling. The graph theoretical
approach by Bryant ([Brya79], [Brya84]), and the work of Hayes ([Haye82], [Haye86])
based on lattice theory.

At the upper levels of the circuit description mainly three kinds of informations are
needed :
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Firstly one wants to know the behavior of the logic cell which is obtained by f a u l t
s i m u l a t i o n . Secondly for a given fault within the cell test pattern generation has to be
performed, and thirdly estimations of testability analysis are needed.

The simulation of the fault-free and faulty circuit is already state of the art. These
simulators make it possible to look at the circuit at different description levels. They
include switch-level, gate-level and functional level.

The generation of test patterns at switch-level is still in a very early state of development.
The algorithms suggested in [CMN85] and [RRA85] are the first test pattern generators
using the switch-level model of a circuit to get a better fault coverage for a large field of
MOS-circuits, but further effort is required to generalize the classes of networks and faults
that can be handled. At the CMU [Maly87] and the McGill University [AKCR87] such
developments are done. Up to now even less work has been done on the testability
analysis at switch-level.

Test pattern generation and testability analysis for MOS-cells are to be integrated into the
presented system. The algorithms are using the lattice model by Hayes.

The test patterns generated at switch-level can be described at gate level, and the test
generator SPROUT has to create them at the cell inputs. A survey of the underlying models
and algorithms is found in [Holz87]. Informations about the testability of MOS-cells are
needed if a self-test technique is selected. For a built-in test based on random patterns the
necessary test lengths can only be computed if the detection probabilities of complex MOS
faults are known. An algorithm computing fault detection probabilities based on the
Hayes model is found in [WuHo88].

Moreover these informations are also needed if a pseudo-exhaustive self-test is applied. It
is well-known that certain MOS faults induce a sequential behavior that is not guaranteed
to be detected by an exhaustive test of the combinational function. If these faults are to be
regarded too, a more complex self-test technique must be used described in [WuHe88].

Along with fault simulation, test pattern generation and testability analysis also the
impact of the design modifications are analysed and validated at switch-level. The
informations derived by these four tasks are used at gate level.

5 . Automatic fault modeling

The switch-level netlist does not provide enough information for realistic fault modeling.
In order to determine the effects of every possible process defect on the logic function, the
only way is the fault injection at layout level. A common classification concerning the
reasons of process defects is found in [Maly87], [Mang84], [MFS84]:

( 1 ) lithographic defects

( 2 ) defects caused by less process quality inducing wrong electrical characteristics.

On the other hand process defects can be classified as local or global. Local disturbances
(spot defects [MSD86]) affect only a very small region of the chip, global disturbances
affect a large area on the chip, thus changing the overall electrical characteristics of the
chip. They are easily detected during the manufacturing process or during the parametric
tests. The efforts to enhance testability as described in this paper are therefore
concentrated on the detection of spot defects.

The majority of the spot defects is caused by the lithography process [SMF85].
Transparent spots and opaque particles in a lithography mask can cause shorts between
non equipotential regions and breaks in equipotential regions and generate parasitic
transistors, resistors and capacitors. In most cases the behavior of the chip will change. A
special sort of lithographic defect is the mask justification which will cause global defects.

All of the lithographic defects concern the masks used during the manufacturing process,
where the spot defects result in extra or missing material. Other spot defects are less oxid
quality, airborne particles or very small droplets generated by the manufacturing
equipment. If such disturbances are not removed from the surface of the wafer during a
cleaning process, they will cause defects in much the same way as a punctual mask defect.
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These both types of spot defects can be defined in the layout description of the circuit, e.g.
in CIF [MeCo80]. Each area on the chip can be produced by combining masks. The
gateoxid for example is the area where the polymask is transparent and the masks for p-
or n-diffusion are transparent too. Fault injection is done by changing the layout
description thus changing the specific area of the mask from transparent to opaque or
vice versa. This CIF-file will now be the input of a circuit extractor, e.g. DRACULA [DRAC87]
(together with a file describing the underlying technological process).

The output of DRACULA is a transistor netlist in SPICE-format. With this netlist it is easy to
generate a circuit description on switch-level to start fault simulation, testpattern
generation or testability analysis. For an exact prediction of the behavior of the faulty
circuit we can do a circuit simulation with SPICE.

This approach of inductive fault analysis is also followed by Ferguson and Maly ([Ferg87],
[Maly87]) and by the CVT project [MHMS85]. But they inject the defects stochastically
into the layout descriptions, whereas our approach is analytical [ReWi87].

A layout description (CIF) of the fault free circuit is transformed into an internal
representation, where all the possible faults at layout level are generated. By applying a
set of rules the number of faults is minimized. In fig. 23 the fault "additional metal
between line 1 and line 3" must also affect line 2. Therefore the fault "additional metal
between line 1 and line 3 without affecting line 2" need not be modeled.

1

2

5

4

6

meta l Fault "additional meta

Fig. 23:   Fault in the metal layer of a small cell

The algorithms for fault reduction are based on computational geometry, and described in
detail in [ReWi87]. They create all different single faults at the layout level, where a single
fault is defined as a topological change of the layout caused by a single defect or as a
significant geometrical change (e.g. aspect ratio). The next steps are the generation of CIF
descriptions of the deformed layouts and the generation of transistor netlists, which can
be processed at switch-level.

6. System overview

As conclusion we give an overview of the entire system (fig. 24). The system accepts a
functional or a structural entry for the circuit description. Based on the gate netlist and
the library the different  tasks are performed.

At gate, switch, and layout level both test and design algorithms are implemented: The
cell layout is input in order to derive the list of possible faults at switch-level. These des-
criptions are processed during testability analysis and testpattern generation for the cell.
This yields an input for the test algorithms at gate level. On the other hand at gate level
circuit modifications like BILBOs, GURTs or the circuit partitioning are automatically
implemented. The impacts of these design changes are checked at switch-level using real
layout descriptions of the self-test cells. The layout library of special test cells is open and
can be enlarged.
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Fig. 24: Integrated tools for automatic design for testability (overview)

The results of the test and design algorithms at gate level are given to the rule and
knowledge based system shell, where system and user will decide, which test strategy is
implemented indeed.
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