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Absiract; An efficient Monte Carlo Algorithm is presented estima-
ting the detection probability of each stuck-at fault of a PLA. Fur-
thermore for each primary input of the PLA the optimal probability is
computed to set this input to logical “1”. Using those unequiprobable
input ilities the necessary test set can be reduced by orders of
magnitude. Thus a self test by optimized randomlﬁ‘aucrnsispossiblc
cven if the circuil contains large PLAS preventing a conventional
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L _Intreduction
Ma.ng design i have been proposed in order 1o enhance the
testability of PLAs. In [FuKi81] and in [DaMu81] an additional row

and column are proposed in order 1o use universal test sets, and
some lextbooks are di ing testable PLAs as a subject of its own
[Fuji85]. There are also some attempts 1o build expert systems selec-
ting an appropriate test strategy [BrZh85].

A common test strategy for semicustom circuils is self testing based
on random pattems, Here we can dispense with the time consuming
automatic test pattern generation, and the application of those
pattemns needs no expensive test equipment, since it can be done by
linear feedback shift registers (LFSR) during self test. This is
possible in high speed, and thercfore many technology dependent
dynamic faults are detected in addition ([Tsal83], [WuRo086]).

Since a randomly generated test set is larger than a deterministic one,
the detection rate of logical faulis not in the fault model, multiple
faults for instance, will be higher.

But often semicustom circuits contain PLAs, which resist a random
test due to low fault detection probabilities. Especially PLAs with
large product terms will need an exorbitant size of a random test set.
In [LIGHB6] a design method based on simulated annealing is
proposed minimizing the size of the product terms and enhancing the
testability of the PLA. But due to the intended function of the PLA
this approach will not always yield satisfying results. Therefore
methods are required 1o estimate fault detection probabilities and 10
minimize random test lengths as well. In this paper solutions of both
problems are proposed.

Currently significant work is done to estimate fault detection
probabilities in circuits with random logic. In PREDICT [SETHS6]
and PROTEST [Wu85] an analytical way is used, whereas STAFAN
[AgJaB4] estimates detection probabilities by value counting. But
seeing that the underlying fault detection problem is NP-hard
[IbSa75] both methods suffer from a large trade-off between
i and accuracy.

and Luby found a fully polynomial Monte Carlo algorithm esti-
mating the number of minterms fulfilling a boolean function in
disjunctive form [KaLu83). Licberherr [Lieb84] conjectured that
based on this algorithm computing detection probabilities for circuits
in random logic can be solved polynomially. However due to the
already mentioned NP-compleleness this is not true,

But the simple structure of a PLA can be used to represent fault
detection probabilities as the difference of the probabilities of the
truth of two boolean functions in disjunctive form. Those functions
can be stated in linear effont, and the probabilities can be computed in
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polynomial time by the Karp-Luby algorithm. This procedure is
presented in the next section, and in section 3 some details of an
efficient implementation are discussed.

It is known that fault detection probabilities can increase and the
necessary number of test patterns can decrease, if each primary input
is set to logical "1" with its specific optimal input probability
(ILBGGB86)}, [Wu86]), in [Wu87) a procedure is presented 1o
compute those probabilities. In section 4 it is shown that the Monte-
Carlo algorithm can be modified in order to compute such optimal
input probabilities without significant overhead. In section 5 some
applications and results are discussed.
2. Estimatine fault d - babilities | M 3
Carlo algorithm

The Karp-Luby algorithm estimates the number of input
combinations for which a boolean function, Kﬁmwﬂ in disjunctive
normal form, assumes the value true. It is fully polynomially, i. e.
for every input triple (€,8,w), where w is the description of the
function and f(w) is the required number, and where € > 0 and
0 <8< 1, the algorithm produces as output a number

f., W)

such that
IT (w) - fiw)

m_u_m;)_-.z] <5

and the execution time of the algorithm is bounded by a polynomial
in 1/g, 1/ and the length of w,

Now we first describe how the function of a PLA usually is
represented in logic design and minimization by the cubical calculus
[Roth80], then we use this notation in order to explain the Karp-
Luby algorithm, and at the end of this section fault detection
probabilities are discussed.

For the sake of simplicity we restrict our attention to single output
PLAs, for multiple outputs the gencralizations are straightforward.
Let F be a boolean function with n input variables e,,..,e,. For each
product term P; (i=1,...m) of F a cube C; := (¢),...¢,) i defined.
The components c; are as follows:

0, if € is mga‘ed in PI

1, if ¢; is positive in P,

2,if ¢; is not part of P;

The set of cubes C := (C; | i=1,..,m} is called the cover of F, and it

describes the function uniqely. A minterm is a cube, where all
components have either the value "0 or the value "1". The cube C

contains the cube D, C> D, if ¢;# 2 = ¢; = d;, holds for all
3 PO s

Using this relation we define IC! as the number of minterms
contained in C, and UC is the set of all minterms of F.

€=



2.2 The Monte-Carlo algorithm

With the already mentioned parameters € and 8 we now use the
Karp-Luby algorithm to estimate the probability P(C) that a boolean
function with cover C is true:

draws = 0; trials := 0;

repeat until dn“zm"?‘ S,
begin =9 68
chose ie (1,...m) with probability

2

chose a random minterm S of Cy;
k=0,
trials = trials+1;
repeat untll a j is chosen such thal S is
inC)
bagin

draws = draws+1;

K= K41,

chosae j at random in {1,...m}
end

Yiials = K;
end

m trimks
2{<i JZY,

XKy m trials
With this algorithm X is an estimation for P(C ). In [KaLu83] it is
shown that this is a fully polynomial algorithm in €, 8 and m*n, for
fixed €, & running in O(m*n) time.

2.3 The detecti bability of stuck-at fault
For each primary input ¢; (j=1,..,n) the following covers are
defined:

0
C,:=(Ce Clcs0)
1
C):=(CeClcpl)
2z
C‘j = [Ce Clcj=2}
We define the cube C%4 := (cy,..,Cj.1,0,Cj41.--1Cq) and the cubes
Cld and C24 in an analogous way. Finally let be
¢} =(c™ice €]} ana
c=(ciceq.

First we are discussing stuck-at faults at the primary inputs of the
PLA.

Cose It st-0 at the j-th input.

a)  If the j-th input is nowhere negated then C;° is empty and this
is a diminishing fault. The detection probability Py is computed
by

P,=P(C) - P(C))

1f the j-th input only occurs negated at the product terms, then
C;! is empty and this is an enlarging fault. P is computed by

0,2 2
P, =P(C,” UC,) - P(C)

b)
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c)  If the j-th input occurs both positive and negative then there

may be some wrong minterms added, and some others may be
taken away. The probability that some minterms are added is

Py, =P(C;uC,uC}™) - P(C)

A little bit more complicated is the probability that some
minterms are missing, since those minterms can be added by
Cj 0-2:

1. .2 0 2 02
Pa, =P(C;UC,UC;") - PIC)C;)
And now we have Py = P4 + Prgy
In an analogous way one can compute the next case:

Case II: st-1 at the j-th input.

a)  C}%isempty: enlarging fault,
P,=P(C, “UC)) - P(C)

b)  Cj!isempty: diminishing fault,
P =P(C) - P(C))

c)  miscellaneous:

1 2 1.2
Py = P(C;LC,UC; 7) - K(C)

S, (RN 1,
P, = P(CjuCUC; ) - P(C)uC; )
P{ -] pfad o Pfsu-
Finally we have to deal with the faults at the product terms, i. e. the
cubes:

Case III: stuck-at faults of variable e; at C;:

a) ej=0andst-00rej=landst-1
P,=P(C\(C,} U (C)) - P(C)
b) ej= 0 and st-1 or €= 1 and st-0

P, = P(C) - P(C\(C}))

Up to this point we can now compute the fault detection probabilities
by the Monte-Carlo algorithm for covers C. But since for different
faults the needed covers use the same cubes to a large extent
something more can be done to enhance efficiency.

. Implementation of the estimation algorithm
Let Ft be the set of all stuck-at faults under interest. For each fault
f € Ft one has to deal with 2 covers (case I a, b; case II a, b; case
III) or with 4 covers (case 1 c, case Il ¢). For different faults those
covers are not necessarily different too, e. g. the value of P(C) is
needed very often. Of course one cover is only treated once.
Now let 4 := [(Cjli=1,.,t} be the set of all covers the
probabilities of which have to be computed. Those t different covers
again contain the same cubes to a large extent. Therefore we set

H :=uA = [Cl3he(l..t) CeCy) = (H; | i=1,..,u},
which is the collection of all involved cubes. Now the Karp-Luby
algorithm can be parallelized widely:

draws(1..t) = 0; trials{1..t) := 0;
repeat untllA = @

begin

H =UA;

1H,
chosa i € {1..u} with probability

2;'“1'

chose a random minterm S in H;;
Set A'={Ce AIHeC)
Forall.Cy € A’ do trials(k) = trials(k) +1;



repeat untilA' = @

begin

d=0;

H'=UA";

repeat untll a H e H ' is chosen such

thatSisinH

begin
di=d+l;
chose H e H ' at random
end

For all k with H e Cy, do
begin -
d = d'iCk WVH |
sz“}(k] =d;

draws(k) = draws(k) + d'
A’ = A'\NCy)

I draws(k) 2
nux(SOO‘le V&, 5'|Ck Ve28)
then begin
c%":‘ "2:,00
P(C,) im —A— *
IC.l  trds(k)
A = ANCy)
end
end
end
end.
¢, Optimal i babiliti

Up to this point we have constructed an efficient procedure to
estimate fault detection probabilities for a set of faults. The algorithm
is presented under the assumption that each primary input ¢;

(i=1...,n) is set to logical "1" with probability 0.5. Now we want (o
stimulate the inputs with unequiprobable pattems according to
<X}.-Xp>, %; € [0,1] in order to enhance testability. In this case
only slight modifications of the presented algorithms are necessary,
the details are left to the reader.

In this section we summarize the solution of the optimizing problem
in [Wu87], which results in a drastical reduction of the size of
random test sets, and discuss its application to PLAs. Let & be the
confidence of a random test of length N, that is the probability to

detect all faults f € Ft by applying N randomly generated pattemns.
If we assume that the detection of some faults by a pattern set of size
N forms completely independent events, then we have

8=TTa<pp™

where p¢is the detection probability of the fault f.

For large N the assumption of independence is asymptotically
fulfilled, but in general computing the nccessary test length N by this
formula will only provide an upper bound.

For each fault f € Ft the detection probability p (X) depends on the

tupel of input probabilitics X :=<x;lie€ I>. Thercfore the
formula above tums into

8,00 = II(l-u-p,(X»")-
s F1

This formula expresses the probability that all faults are detected by
N pattemns with the distributions of X.

Using some well known approximations this is transformed into
08, 06) = - S(1-pLXN" = e

fa Fu

This describes the objective function, and we call a tupel X of input
probabilities optimal with respect to N, if

1K) 1= 2 Y

fa Fu

is minimum at X € [0,1]L

In the [0,1) ;:racc expectation value and probability coincide, and
the stochastical optimuizing problem reduces 10 a deterministical one.
But this is only a modest simplification, since one immediately
notices that the objective function is not a member of the well known
linear or quadratical optimizing problems. In general the objective
function will not be convex or even unimodal. Our oplimizing
problem is a member of the general class of smooth multi-extremal
problems, which have an exponential average case complexity with
respect to the number of variables, and 1o the required precision
(NeYu83) . The known global optimizing procedures like the
Newton or the gradient method will fail to handle large circuits with
hundreds or thousands of input variables resulting from scan
designs.

Thercfore we dont try to find a global optimum, but we use some
approximations to search a relative one. In [Wu87] it is shown that
the objective function is strictly convex with respect to one single
variable. Hence for each fixed Xj....Xj~j. Xj41s.0Xy there exists

exactly one x; € [0,1] with minimum Jp(X}....Xjs-.Xp).
Notation:
Let Z:=<zy,...2,> and y€ [0,1). We write f(Z,yy) :=
f(Z1s Zic1sYsZiw10e--120)-
One easily verifies that

PX) = pdX, 0p) +x;pdX.11)-p(X.0p) ).

Hence

Q. (X, NogK.y,

-—--—"f,x Y 3 NG X1)p K00

b feFt
and
2
N SN noxop’s ™ >0
d Y -k

The ">" holds since we assume irredundancy, and at some primary
input we have pdX,1;)-pdX.0y) =0. And now we have:

For ecach X e [0,1]! there exists exactly one y € [0,1] with
dIn(X.y)/dy =0 and JN(X,yy) has there its minimum.

Since all derivations of the objective function are explicitly available
this minimum point can be computed by simple iterations like the
Newton algorithm or the regula falsi

And now it tumns out that we need only to compute the values
pr(X.1y) and p(X,0;) for all faults additionally. This is done by the
same Monte-Carlo algorithm as before restricted to the two smaller
covers

1.2 2 0,2 2
C‘j qu de, uC,

instead of the cover C. Thus the effort to compute the optimal
probability for a pri input is in 'geneml only a little higher than
the effort needed to estimate fault detection probabilities

PEX)=pdX. 0 +x{(pAX.1;)- pX.0y))

The complete optimizing procedure successively tries (o optimize
each primary input of the PLA, and starts again if one cycle has
provided a significant enhancement of testability.

5. Applications and results

The estimation algorithm is implemented in [Kara87], and the
optimization procedure is part of the tool PROTEST (Probabilistic
testability analysis). The optimization yields in a reduction of test
sets by several orders of magnitude (see [Wu87] e.g.). As an
example see the PLA of Fig. 1:



Cubes.

C1a(1,1,1,1,0,1,1,1,2.2,2.22.2,1,0,0)
C2.(2,2,2,2,2,2,2.1,1,1.1,1,1,2,0,1,0)
€3-(2.2,2,2,2,2,2,2,2.2,2,2,0,0,0,0,1)

| 4

el

Fig. 1: PLA

For a conventional random Test with confidence & = 0.98 the
presented algorithm would require 14 664 equiprobable random
patterns. Using the optimizing algorithm based on Newton itcration
after 6 cycles only 750 optimized random pattems are necessary. The
computed input probabilities are:

el : 0.823 e8:0.825 a:0.480
€2:0.825 e9:0.797 b:0422
e3:0.827 el0:0.799 c:0.218
ed : 0.829 ell:0.800
e5:0.170 el2:0.802
e6:0.832 ¢13:0.680
e7:0.833 el4 :0.445
Table 1: Optimized input probabilities

These predictions were validated by fault simulation. By a sct of 750
optimized random pattems a complete fault coverage (100 %) was
achieved, whereas conventional sets of 750 patterns only lead to 70
% thru 75 %.

Self test by random patierns is the main goal of the optimizing
approach. A self test modul for unequiprobable random pattemns
similar to the well known BILBO is presented in (Wu86) and
(Wu87a).

Besides this direct test application the estimation procedure is also
used to support logic minimization [RoWu87]. Based on the Monte-
Carlo algorithm partitioning variables are selected in order to reduce
the PLA to pants which can be handled by a logic minimizer. Here it
turns out that test and minimization requirements are not
contradictory.
6. Conclusions

A Monte Carlo algorithm was presented estimating the random
pattern testability of a PLA efficiently, Moreover based on this
algorithm for each primary input a ific optimal probability can be
computed to set it logical "1". Using those input probabilities the
nccessary size of a random test set can decrease significantly.
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