= (2T =

Design Automation
of Random Testable Circuits

Arno Eunzmann
and
Hans-Joachim Wunderlich

Forschungszentrum Informatik
and
Institut fiir Informatik IV
(Prof. Dr.-Ing. Detlef Schmid)
Universitéat Karlsruhe

Zirkel 2
D-7500 Earlsruhe
Federal Republic of Germany

- 278 -

Abstracc:

This paper describes the integration of a
new tool for testability messurement and
improvement into a design system for
integrated circuits. The involved design
system, CADDY (Carlsruhe Digital Design
System), uses a functional description of
a circuit written in a PASCAL like
language and saynthesizes a list of nets
and real logical components. In this
resulting structure all storing elements
are configured o a scan path
automatically. Therefore testability
analysis and test generation may be
restricted to pure combinational networks.

This is done by the software tool PROTEST
(Probabilistic Testability Analysis).
PROTEST determines the testability of =a
combinational circuit by random patterns,
it computes the test length necessary to
reach a given fault coverage with an also
given confidence, and it proposes
modifications of the random pattern sets,
which leads to decreasing test lengths.

EKEeywords: Design for Testability, Random
Pattern Test, Design Automation.

1.0 Introduction:

In a recent paper one of the authors
presented the test tool PROTEST [WuB5],
which supports the test of the
combinational parts of a circuit by
random patterns.

By the increasing complexity of high
integrated circuits the importance of
testing by random patterns grows, since
the automatic test pattern generation
(ATPG) by deductive procedures (e. g.
D-algorithm) is one of the most expenrive
parts in VLSI design. The costs &are high
even if scan paths, scan sets, LSSD or
similar "design for testability” methods
are used (see [EiWi77], [MuSa81]). These
methods reduce ATPG for arbitrary digital
systems to ATPG for combinational
circuits. But the size of the resulting
combinational networks exceed the
capacity of the available algorithme on
general purpose computers. Test
generation for integrated circuits with
104 - 108 transistors requires a
computing time which can be counted by
magnitudes of deays [GoelB0],[GoelB1].

The test of digital systems by random
patterns makes it possible to dispense
with the generation of test patterns from
a description of the circuit structure.
Random testing can be done either by
using additional test hardware on the
chip for self testing or by an external
test.

In order to do self test all storing
components of the chip are usually
configured as one or more feedback shift
registers during testing [Much81]. In
this special testmode these registers
generate pseudo-random patterns for the
combinational part of the circuit and

manually.

compress the responses by signature
analysis [HeLeB83].

test is carried out by
generated patterns

An external
shifting randomly
through a scan path.

Both external eand self test reduce the
test problem to the test of combinational
circuits. The application of random
patterns requires the determination of
the necessary test length to get the
desired fault coverage of the commonly
used stuck-at fault model on the gate
level. The test length can be computed by
the procedure PROTEST.

This procedure is integrated into the
eynthesis system CADDY. The user of CADDY
has to specify the 1logical functionm of
the intended circuit in a PASCAL like
language and has to fix some other
constraints concerning chip area and
timing. Then CADDY generates a structure
description on gate level of a circuit
performing the specified function and
regarding the given restrictions. If
CADDY can not observe the restrictions a
message is given to the wuser. The
synthesized structure description
consists of a list of elements of a cell
library connected by nets.

This proceeding saves the expensive task
of circuit verification which would be
necessary for a manual or a npot fully
automatically generated design. But
verification is only superfluous, if the
synthesis system completely integrates
all those hardware features into the
generated structure, which are necessary
to get high testability. Therefore the
system has to produce designs with
integrated test control and scan path.

Since this is done, CADDY saves the two
expensive tasks of test generation and
verification. But as a disadvantage
sometimes the synthesized chips have
lower efficiency then those, which are
generated by an experienced designer
Optimizing stragies try to
minimize this disadvantage [SCHMB84]. But
CADDY is able to transform user defined
logical structures into a scan design too.

2.0 The = esis system

This chapter gives an overview of CADDY.
Starting point is a description of the
function of the intended chip. This will
be transformed into a description of the
logical structure on the gate level and
then converted by a placement and routing
system into a geometry. We mainly deal
with the first step, i.e. the
transformation of the behavioural into
the structural description. In order to
transform logic structures into chip
layouts several commercial tools are
available. The examples of this paper are
generated by the layout system VENUS
[GHHS84) for automatic placement and
routing of CMOS standard cells.

e

2.1 The digital system specification
languag-. (DSL)

The user of CADDY has to write the
functional description of his chip in the
Digital Design Specification Language
DSL. The language offers the data types
LOGICAL, ONE_COMP, TWO_COMP, BCD, FIXED
and FLOAT. The allowed operators include
the usual logical, arithmetic and
relational operators, which are
controlled by control structures similar
to PASCAL [SCHMS84].

2.2 Synthesis

CADDY transforms the functional
description into circuit structures.
Global actions not constrained to a
certain point in time, such as resets,
interrupts, etc. are naturally specified
in an applicative part of DSL. Sequential
algorithms, the behaviour of a finite
automaton and sequential behaviour in
general are often more comfortably
described by imperative procedures

(imperative part).

The transformation consists of five tasks
([CERB4], [RoCaB5]):

(1) Compilation of the DSL program

(2) Synthesis of the data path for the
imperative parts of the DSL program

(3) Synthesis of the sequential control
for the imperative parts

(4) Synthesis of data and control
structures for the applicative part
of the DSL programs

(5) Assembling of (2), (3) and (4) and
allocation of the global control.

First the DSL program is compiled and an
internal representation is created for
all the subsequent algorithms.

The second task consiste of the
construction of a dataflow graph, i.e. an
abstraction of the designers intended
dataflow from a DSL program. Them global
and local optimizations are performed.
Finally the mnodes of the optimized
dataflow graph must be transformed into
circuit components depending on
technology parameters.

The control synthesis (3) is carried out
by constructing a finite automaton. Based
on the DSL program and the data flow
graph above a state transition table is
constructed. The control automaton is
synthesized by LOGE [BiDiB84]), offering
different hardware solutions such as
random logic and PLAs.

The saynthesis of the applicative part is
done in a similiar way. The main
difference is the lack of an explicit
control structure.

The final result of all five parts is one
netlist, consisting of nodes and
components of a cell library end thus
representing the final structure of the
specified circuit.

S
=0
| Data fiow Abstraction | T--;:::::E“*E
v v v b
(_ Deta fiowGuph) [Optimization | 1
SN P
Data path Synthesis Timing
Structure Generation Requirements
L 4 v

Figure 2.1: Synthesis of the imperative
parts [RoCaB5]

Within the CADDY system these structures

are represented by STRUDEL[CaTrB84)
(STRUcture DEscription Language)
programs. In the following the

communication with tools for test pattern
generation or simulation is based on this
description.

.0 On rando t tin

Random pattern testing is a way to
dispense with ATPG and needs less
requirements for the test equipment too.
Feedback shift registers can generate
random patterns and can compress the
response data of the device under test.
But the problem arises to determine the
pumber of patterns which are necessary to
achieve a given fault coverage with a
given confidence. This test length
depends on the probabilities for each
fault to be detected by a randomly
generated pattern.

Let F be the set of all equivalence
classes of all detectable faults. Let pr
be the probability that a fault f @8 F is
detected by a random pattern. Furthermore
we make the simplifying assumption that
the detection of some faults by a pattern
forms statistically independent events.
Then the probability P that all faults of
F are detected by N random patterns can
be computed by

(1) P := Jj;(l-(l-pr)').

This formula is used by PROTEST in order
to compute the test lengths, since the
bias caused by statistical dependency is
low if N is large.

- 280 -

B in order to get a worst case
estimation of the size of pattern sets we
assume, all faults have the same Ilow
detection probability p. Setting m := I[F!
we get

(2) P = (1-(1-p)¥)".
Since N will be large we have
(3) In(P)= -n(1-p)*,

and naturally P shell be near 1 and
therefore

(4) (1-P)/mn = (1-p)*.
Finally this yields the estimation
(5) N = 1n(n/(1-p))/P.

Formula (5) shows how the necessary test
length depends on important circuit
parameters:

= the test length grows with In(m), n
is the number of faults;

= the test length grows with
In(1/(1-P)), P is the required
confidence to achieve the fault
coverage;

- the test length 1linearly increases
with 1/p, where p is the minimum
detection probability larger than 0.

All known procedures for ATPG have an
exponential worst case complexity and
their average complexity is between n?
and nd. For random testing the
exponential effort implicitly lies in the
third topic. If a combinational network
has I primary inputs, then the detection
probability of a detectable fault may
fall down to 2-!, - if a random pattern
set is wused, which sets each primary
input to logical "1" with probability 0.5.

In order to support random pattern test
PROTEST offers the following features:

3.1 Estimation of signal probabilities

An arbitrary tupel X := <(pi i i6I> €
[0,1]! determines random pattern sets,
which stimulate each primary input i @ I
with signals being logical "1" with the
signal probability pi. If the signal
probabilities at the primary inputs of a
combinational network are given, PROTEST
estimates the signal probabilities for
each node within the network. PROTEST
only estimates, because all known
algorithms to compute them exactly, show
exponential complexity and recently one
of the authors has proven that computing
signal probabilities is NP-hard [WuB4].

Whereas the recently proposed dividing
algorithm [BDSB4) computes upper and
lower boundaries for signal probabilities
and the tool STAFAN [AgJaB84] achieves its
results by simulation, PROTEST
analytically computes an estimaetion

of the signal probabilities with nearly
linear effort.

3.2 Estimation of fault detection
probabilities

For each stuck-at fault f PROTEST
estimates the probability that this fault
is detected, if the circuit is stimulated
by an element of a random pattern set
having the input wsignal probabiblities
<pi | i€I>.

Several approaches to transform the
computing of signal probabilities into
the computing of fault detection
probabilities have been proposed (see
[BDSB4], [AgJaB4], [WuB5]). They differ
from accuracy and npecessary computing
time. PROTEST offers three possibilities:

- estimation of the fault detection
probability by enalyzing a faulty
and a fault-free circuit.

- estimation of the probability that
the faulty value and the correct
value differ at the node under
regard and that a single path is
simultaneously sensitized to a
primary output.

- a simple wmodelling of the signal
flow.

3.3 Computation of the test length

For a given circuit PROTEST computes for
every fault an estimation of the fault
detection probability. With these
estimated values formula (1) is evaluated
in order to determine the number N of
patterns. This can be done very fast,
since only the faults with very low
detection probebilities will affect the
size of N.

3.4 Optimizing input signel probabilities

There exist combinational networks which
need a very large N to detect all faults,
if each primary input has signal
probability 0.5. But the tupels X :=
<pi | i6I> @ [0,1]' determine for each
primary input a specific signal
probability and for each fault a
detection probability pr(X).

With some natural number N the formula
(6) Ju(X) := J}?(i—(i—p!(x)).)

is an estimation of the probability that
a pattern set with size N and with the
input signal probabilities X detect the
whole F. For every combinational circuit
the real function Jw: [0,1]Y -=> [0,1]
can be maximized by a tupel <(p: | i6I>,
thus leading to maximal fault detection.

PROTEST includes an optimizing procedure,
which finde a local maximum of Jsw. The
examples in [WuB5)] and in sect. B8 show
that the necessary pattern count can be
drastically reduced in such a way.

- 281 -

3.6 Btatic fault simulation

One presumption of the scan design is
that the circuits are pure synchronous.
Therefore there is no need to regard time
delays within the combinational parts of
the circuits during fault simulation and
PROTEST only includes a package for
static fault simulation. This can be used
to validate the predicted detection
probabilities, test lengths and fault
coverages.

simulated which
probabilities

If random patterns are
obey optimized signal
proposed by PROTEST, a small test set can
be economically selected. Therefore
PROTEST can be used as a test pattern
generator similar to the D-algorithm or
the path sensitization algorithm, too.

4.0 Extractio f comb nal circuits

4.1 Bcan desigm

In order to yield testable designs, an
access to all the internal latches of the
synthesized network is necessary. To
provide controllability and observability
all storage elements are interconmected
into =& shift chain. Then test patterns
can be shifted in and test results canm be
shifted out. Thus the internal latches
must work as intended by the chip
specification during the functional
(normal) mode, but during the test mode
the shift capability has to be provided.
This is achieved by adding to each
internal latch a slave latch. The
physical combination of both these
latches is functionally representing =
single internal storage element. In the
following polarity-hold shift register
latches (SRL) are used. Figure 4.1 shows
the symbolic representation and
implementation in AND-INVERT gates of a
SRL with D as data input and C as clock.

Pg;; L1 1 —O Lot
A o0—

Figure 4.1: Polarity hold SRL

(a) symbolic representation
(b) Implementation in AND-INVERT gates

While the signals A and B are both 0, the

latch L1 operates exactly like a polarity
hold 1latch (input I, output L2). During
test mode, operating as a shift register,
data from the proceeding stage is gated
into L1 via I by a change of the A signal

to 1 and then back to 0. After A has
changed back to 0, the B signal gates the
data from the latch L1 into L2.

To extract the combinational logic of
circuits, transformations of the library
elements and of the STRUDEL description
must be performed.

4.2 Transformation of the library

Transformations of the library are needed
to yield a logic npetwork consisting of

storage elements which can be integrated
into a scan path. All the storage
elements wmust be replaced by a SRL and in

case of need, the individual control part
is added.
4.3 nsformations of the descri

There mainly exist three points how to

transform a given STRUDEL program into a

description suitable for the subsequent

extraction algorithm.

(i) Sequential circuits need accessable
storing elements.
Any sequential circuit (e.g.
counter) needs a description where
all its internal storage elements
are accessable. Figure 4.2 shows
the substitution of a cascadable
1-bit-counter cell and its

corresponding STRUDEL program.

]
Iy

TYPE counter (A1/0,A2/0,A3/0,B1/1,B2/1,
E3/1,E4/1,B5/1):
COMPONENT
HA1 / CHAO1A:
DFF / CDFO2A:
OR / CORO2A:
AND / CANOD3A:

HAout,Cout,Q,Cin;
Q,Qn,D,Clock,Clear;
D,HAout,ANDout;

ANDout ,Contreol,Cinlnv,

Load;
INY / CDRO1A: CinlInv,Cin;
ent / counter: Q,QN,Cout,Control,Cin,
Load,Clock,Clear;
END counter;
Figure 4.2: Substitution of the
cascadable i1-bit-counter cell and its

resulting STRUDEL-description

To transform the DSL operations into real
components on the gate level, the CADDY
system offers a generator,

- 282 -

waich generates multipliers and dividers
of different width and realization
(sequential or combinational). All the
elements generated by the
structure-generator consist theirselves
only of the admissible primitive storage
elements.

(ii) Representation of the control
signals.

All the synthesized logic networks
have clock signals, mnot connected
with data. This requirement is
fulfilled by the STRUDEL
descriptions created by CADDY and
must also be satisfied by external
descriptions.

For testability analysis all the
elements of a network must consist
of SRLs and a combipational part,
to control the according functionm.

Then control signals of
multiplexers (STROBE), ENABLE-,
SET-, RESET-signals are all

regarded as data signals.

bidirectional pads are
by primary outputs and

(iii) Primary
replaced
inputs.

If pads are used both as data input
and output they are transformed
into data-inputs and data-outputs.
During the test all these I/0Os are
controlled by the individual enable
controls, which changes the
direction of the corresponding pads
one clock period after the
propagation of the current test

4.4 The extraction algorithm

First of all the algorithm must check
that there exist only loops with storage
elements. For all the synthesized
networks, this is guaranteed by
construction.

Any storage element gets a so-called
"pseudo-input"” rsp. "pseudo-output”,
because at all these points a direct
access into the network is enabled. These
control and observation points increase
the amount of the "primary” inputs and
outputs. So prepared the following three
steps of the algorithm are executed:

1. Mark all the output nets of the inputs
and pseudo-inputs.

2. Mark all the output nets of those
components, whose inputs are
completely (i.e. every input net)
marked up to this point.

3. Fipish, if no more nets can be marked.

The result of the algorithm is a sorted
netlist.

The extraction of the combinational 1logic
net is done for the whole network,
consisting of the data and control part.
Circuits with control inputs, stimulated
by the control part, are stimulated
during the test mode by the test patterns
of the scan path, extending on both
control and data part.

4 Test control

All the chips wunder test have a Scan In
and Scan Out port, two clocks A and B,
and an enable-select input. During test
mode, either A or B are logic 1, else
both A and B are logic 0. Additionally to
these clocks, the clock C stimulates the
chip during its npormal mode (see fig.
4.1).

The maximum clock frequency to shift a
test vector through the scan path is not
dependent on the type of the flipflop
substituted by a SRL. Supplementary
combinational logic, needed to work as
the demanded flipflop type increase only
the resulting combinational logic network
and do not concern the shift chain itself.

To calculate an upper bound of the
propagation time, it is necessary to
allow all the combinatorial signals to
propagate at their worst case delays
through the combinatorial 1logic net. A
worst case simulation based on the
STRUDEL description estimates the maximum
propagation time.

(1) Shift-in/Shift-out

All the SRL's of the chip are
connected according to the
description of the STRUDEL program.
The number of the pseudo inputs
determines the number of necessary
non-overlapping independent clocks,
shifting the testvectors in and out
at high-speed. The shift frequency
is only dependent on the structure
of the SRL’s.

(2) Propagation

After the testvector is shifted in,
A and B are set to 0 for the needed
propagation time and the functional
latch clocks will be activated to
store the test results of the
combinational logic net into the
latches.

5.0 An example
5.1 The function of the designed chip

In the following we present a circuit
which evaluates the rational function

(7) (Aax3+Az2x2+Ai1x+Ao) /
((B2x2+Bo)-(Bax3+B1x)).

§o
MULTIPLIER Eilg
ADDER | [

-

MULTIPLIER
ADDER 1I
2
% most santicant pit |
)

Figure 5.1: The data part of the
exponentiation example

It is @assumed that the coefficients are
integers between 0 and 127 and that x is
in the intervall [0,1). If we set

Ao := Bo := 120, Ay := By := 60,
Az := B2 := 12, and A3 := Ba := 1, then
this rational function approximates the
exponential function with ACCuracy
2.8%10--5, If for some reasonable

integers i the values of e! are stored in
a table, then the exponential function
el+x = gl¥ex can be evaluated in high
speed.

5.2 The generated structure

Because of the disjoint generation of the
control and data part im the CADDY
system, the following description
concerns only the data part. Figure 5.1
shows its graphic representation of the
STRUDEL progranm.

Timing requirements cause the
implementation of two components (I +
I1), which compute according to the
HORNER scheme. The result of a
multiplication with X, followed by an
addition of Ai rsp. Bi is fed back into
the input register A rsp. B or C. Because
of the range of values for the Ai and Bi,
the addition terms are only of width 7.
These modules are marked as
"MULTIPLIER-ADDER". The second of these
modules seperately computes positive and
negative terms in order to substract the
intermediate results.

Finelly the division (III) is performed
by a divider, shifting the quotient,

I
]

‘L

scan out

quotient and
divisor

divisor and

comparing
subtracting (2-complement) the
from the divider, if the first operand is
less than the second.

5.3 The testability analysis of the
circuit

If conventional random pattern sets are
used, PROTEST recognizes a very poor
testability of the DIVIDER and very good
testability of the two MULTIPLIER-ADDER.
The DIVIDER is only a relatively small
part of the whole circuit, but as already
mentioned only the faults with the lowest
detection probability determine the
necessary test length. Table 1 shows the
sizes of each part, the transistor
numbers are based on a CMOS standard cell
library. This 1library will also be used
to compute delay times.

{ Complete circuit 44 932 E
! (comb. part) !
i DIVIDER 4 990 '
i MULT-ADD 17 510 ;

In order to detect all detectable faults
of the circuit with confidence 0.99
PROTEST demands the size of pattern sets
listed in table 2.

i Complete circuit 2.0 x 1011 H
; DIVIDER 2.0 = 10112 H
i MULT-ADD 1.2 = 103 H

Table 2: Necessary test lengths
(not optimized)

But wusing those test sizes random testing
becomes very ineconomical. A propagation
time of 730 ns within the combinational
part of the circuit and a shifting time
of 4200 ns for each complete pattern
yield a total test time of about 108
seconds.

The optimizing procedure of PROTEST
however yields input signal
probabilities, which require much less
patterns. Table 3 shows the necessary
test lengths for optimized random pattern

SRR AR R count

s

1 2 4 8 % 32 o @20 266 012 124 2048 4096 8192 10000

sets- Figure 5.2: Fault coverage vs. pattern
count (complete combinational part)
! Complete circuit 1.5 x® 105 H
. DIVIDER 4.0 * 10¢ ; Simulating 10 000 optimized patterns 99.2
: ! X of the faults of the DIVIDER are
! MULT-ADD 3.3 % 102 ! detected, but by using conventional test
H ! sets only a fault coverage of B1.2 X is
Table 3: Necessary test lengths reached. The high testable MULT-ADD
(optimized) yields a small difference between
optimized and not optimized patterms:
Using the optimized test set the testing 99.65 X of the faults of the MULT-ADD are
time will be less than 1 second. detected by only 235 patterns in the

optimized case and the same number of
conventional patterns detected 99.2 % of
the faults.

5.4 The validation of the testabilit
prediction

In order to validate the proposed test
lengths and input signal probabilities,
two random pattern sets were generated
for each circuit, one of them has the
conventional input signal probabilities
0.5 and the other set is optimized.

One can expect, that a rather small
number of optimized or not optimized
patterns will yield a high fault coverage
of the whole circuit, since only the
DIVIDER part requires a large pattern
count.

Fig. 5.2 shows that this indeed is the
fact. 10 000 optimized patterns detected
99.256 % of all faults and 10 000 not
optimized patterns detected 97.4 X%. In
absolute numbers these are 111 rsp. 367
undetected faults.

The advantages of optimizing the random
pattern sets will become even more
distinct, if the parts of the circuit are
separately regarded. Fig. 5.3 shows, that
optimized patterns detect a large number
of faults of the DIVIDER at a very early Figure 5.3: Fault coverage vs. pattern
stage. count (DIVIDER)

Refererces:
[AgJaB4] S.K. Jain, vV.D. Agrawal:
STAFAN: An Alternative to Fault

Simulation; Proc. of 21st Design
Automation Conference, 1984

[BDSB4] J. Savir, G.8. Ditlow, P.H.
Bardell: Random Pattern Testability;
IREE, Trens. Comp., Vol. C-33, No. 1,
Jan. 1984

[BiDiB4) a. Biehl, A. Ditzinger:
Programmsystem LOGE, Benutzerhandbuch
Version 3.1; ISDATA GmbH, Karlsruhe, 1984

[CaTr84] R. Camposano, L. Treff: STRUDEL
- Bine Sprache zur Spezifikation der
Struktur digitaler Schaltungen; Interner
Bericht Nr. 7, Fakultét fir Informatik
der Upiversitdét Earlsruhe

[CER8B4] R. Camposano, A. Kunzmann, W.
Rosenstiel: Automatic Data Path Synthesis
from DSL Specifications; IEEE, Proc. of
Int. Conf. on Computer Design, ICCD, 1984

[BiWiT7] E.B. Bichelberger, T.W.
Willieams: A logic design structure for
LSI testability; Proc. 14th Design
Automation Conference, pp. 462-468, June
1977

[GoelBO] P. Goel: Test Generation Costs
Analysis and Projection; Proceedings 17th
Design Automation Conference, pp. 77-84,
June 1980

[GoelB1 1 P. Goel: An implicit
enumeration algorithm to generate tests
for combinational logic circuits; IEEE
Trans. on Comp., Vol. C-30, No. 3, March
1981

[GEHHSB4] E. Goettler, L. Haschigh, E.
Hoerbst, G. Sandweg et al.: Entwicklung
von kundenspezifischen Schaltungen;
Blektronik, Hefte 19-22, 1984

[HeLeB3] J.H. Heckmaier, D. Leisengang:
Fehlererkennung mit Signaturanalyse;
Elektron. Rechenanl. 25, 1983, H. 3, 109
- 116

[Much81] J. Mucha: Hardware Techniques
for Testing VLSI Circuits Based on
Built-In Test; Proc. COMPCON 81, Feb.
1981

[MuSaB1] E.I. Muehldorf, A.D. Savkar:
LSI Logic Testing - An Overview; IEEE
Trans. on Computers, Vol. ©¢-30, No.1,
January 1981

[RoCaB5] W. Rosenstiel, R. Camposano:
Synthesizing Circuits fromw Behavioural
Level Specifications; Tth International
Symposium on Computer Hardware
Description Languages and their
Applications, Tokio 1985

[SCHM84] D. Schmid et al.: Automatischer
Bntwurf hochintegrierter Schaltungen aus
Beschreibungen der Schaltungsfunktion;
Informatik-Fachberichte 88, 14.
GI-Jahrestagung, Breunschweig Okt. 1984,
Springer-Verlag

[WuB4] H.-J. Wunderlich: Zur
statistischen Apalyse der Testbarkeit
digitaler Schaltungen; Interner Bericht
Nr. 18, Fakultét fir Informatik der
Universitidt Karlsruhe, 1984

[WuB5] H.-J. Wunderlich: PROTEST: A Tool
for Probabilistic Testability Anelysis;
Proc. of the 22nd Design Automation
Conference, June 1988, Las Vegas

