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Time-optimal control policies for cascaded production-inventory
systems with control and state constraintst

J. WARSCHATYZ and H. J. WUNDERLICH §

In this paper time-optimal control policies are derived for models of production-
inventory systems consisting of a cascade of basic production-inventory systems with
control and state constraints. The analytic solution is due to a decoupling of the
complete system into its subsystems by a recursive definition of the cascaded system.
It is shown that there is at least one bang-bang controlled subsystem. For the
‘ other ' subsystems singular control policies are obtained. Introducing a pseudo-
hang-bang control for these systems it is demonstrated that by strengthening the
constraints there is & continuous transition from a singular to & bang-bang control.

1. Introduction

In a recent paper (Bradshaw and Erol 1980) sub-optimal control policies
were derived for a class of linear time-inyariant models of production-inventory
systems consisting of a cascade of m basic production-inventory systems with
bounded inputs. The control policies were obtained by the transformation of
the continuous-time model into a discrete-time model and a subsequent
application of a dead-beat control policy.

In this paper it is shown that the control policies can be derived by an
analytic solution defining the cascaded system in a recursive manner. Often it
is necessary to impose constraints on the state variables too. Concerning the
production-inventory systems this case could arise if the inventories must be
regarded with natural limits or if an overtension of the system must be avoided
which leads to a restriction of the production rate. In this paper we consider
the latter case.

The state constrained system is treated by the application of the theory
developed by Jacobson et al. (1971), Hamilton (1972) and Maurer (1977). The
theory is illustrated by the presentation of the state and control variables of
two production-inventory systems in cascade.

2. Systems with linear control. Necessary conditions

Before treating the cascaded production-inventory system a short
presentation of necessary conditions is given concerning state constrained
systems. The state of the problem and the necessary conditions follow Maurer
(1977). Thereby a modifcation is introduced by formulating the minimum
principle for multiple input and multiple state constraint. Moreover, as will be
clear in the sequel, only scalar input and scalar constraint will be necessary due to
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the decoupling of the system into its subsystems.  No Maurer's theory holds
for the following problem : determine a piecewise continuous control
u(t), te[0, 1], which minimizes the functional

J(u) := F(xr(l)) (1)
subject to
() = f(e(t), w()) : = f[(r(6)) + fola(t))u(t) (2)
r(0)=rxy, Qx(1))=0 (3)
u)el :={u|{;su;£¢, j=1,...,mj<R™ (4)
S,(x(t)<0, i=1,...h (5)

with the state vector x(f)eR", the control vector u(f)eR™, the functions
F: R"—R, Q: R"—RkK k=n, f: R*—R", f,: R"—R""™ and §: R"—>R",
h £m, which are assumed to be sufficiently many times continuously differen-
tiable.

Definition
The interval
I:= [t t5)<(0,1] (6)

is called the boundary arc and ¢, and t, are called entry- and exit-time,
respectively, of the trajectory z(t) concerning S,, if there exists a value ¢>0
with S;(z(¢))#0 for t,—e<t<t, and for {,<t<t,+¢ and S;(x(t))=0 for tel.
I is called interior arc if / is disjoint with any boundary arc.

Definition

For each component S;(x) of the constraint S(r), =1, ..., &, let the order
P, be the smallest integer. such that the p;th time derivative of S(x(t)) contains
u(t) explicitly.

For each optimal solution x(f), u(t) of the problem (1) to (5) there exists
an adjoint vector A(f)eR", a real vector c€R* and a measurable function
n: [0, 1]=R* with 5T()S(x(f))=0, where T denotes the transpose, te[0, 1],
satisfying (7) to (11)

AT = — ATf, (2) — ATfy (x)u —nTS,(x) (7)

AT(1)= F (x(1))+ oTQ, (x(1)) (8)

This relation holds for problems fulfilling the Slater condition (see Girsanov
1972). The stated problem is assumed to satisfy this condition. Setting

v(t) := n(t*)—n(t")
hence
AT(E4) = AT(t-) = vT(1)S (x(t)), w;i(t)20 (9)

Discontinuities (v;(¢) > 0) can only occur at entry- and at exit-points for S;.
With the hamiltonian

H(x(t), ut), A®R)) : = AT()f(x(8)) + AT(E)fg(x(®))u(t) + nT(1)S(x(t))  (10)
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the minimum principle takes the form

H(x(t), u(t), A(t)) = miI? H(x(t), u, A(t)) (11)

uel

Autonomous systems with a free end time 7" may be transformed into a
problem (1) to (5) by introducing an additional state variable and a subsequent
substitution. At last we get

E(t) = Ty (x(®) + Thy(z)u(t), te[0, 1] (12)

and as further condition

H(x(1), u(1), A(1))= -1 (13)
The switching function for the control u is
$T(t) 1= AT(t)fy(x(t)) (14)

For each component ¢,;T({) # 0 the minimum principle yields to the bang-bang

control
{(, if ;(1)>0
uj(t) =

& if ¢,(t) <0

(15)

3. Cascaded production—inventory systems
3.1. State equations

Any cascaded production-inventory system, consisting of m subsystems,
can be represented by the block diagram shown in Fig. 1.

Prg (t) Pig(t)

By (B) s, (t) p, (£) 5 (£)
L}—W T LAY LI F TS M

Figure 1.

The variables associated with the jth subsystem (j =1, ..., m) have the following
meanings : p;,(f) is the desired production rate ; p,(t) is the actual production
rate ; 1,(t) is the actual inventory level ; s;(t) is the shipping rate.

If it is assumed that the production process in each subsystem can be
represented by the first order exponential delay with the time constant 1/«

(=1, 2, ..., m), then the governing equations for the subsystems are
(1) =p;(t) —s4(2) (16)
j=1..,m
Pit) = o (pjalt) = (1)) (17)

It is assumed that

8j+lu)=pjd“)r j=lt seey M (18)
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The aim is to find a control policy py,(t) which transfers the system (16) to

(18) from a given initial equilibrium state

im(o)' im—l(o)s Friny ':1(0) }
Pmd(0)=Pm(0)=8,(0)= ... =p,(0)=p,(0)=5,(0)=28y,
to a given final equilibrium state
Sl T ) St T Yo vwvy 8T }
Pmd(T)=Pm(T)=8,(T)= ... =pa(T)=p,(T)=8,(T) =5,

in minimum time 7, subject to the constraints

sr—pSPult)Ser+p, j=1,...m, peR’
Throughout the paper we assume p=1. With

uy(t) =pya(t) — psalT)
Zyy 4(t)=3,(t)—1,(T) j=1, cocom

Tyy(t) =py(t) — py(T)
and the transformation (12) the following state equations are obtained
#(t)= T Az(t) + T Bu(t)

where
2T =[2y, ..., Tgn)s UT=[uy, ..., Up)
and 0 1 o o .. 0 o0 17)
0 —t‘ll 0 0 es 0 0
0 0 0 1 0 0
A=
0 0 0 =—o 0 o
0 0 0 0 0 1
0 0o o0 o 0 —ap]
" 0 0 0 0 0]
o 0 0 0 o
-1 0 0 0 0
B=
0 0 O -1 0
0 0 0 0 o j

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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From (19), (20) and (22) we get the initial conditions
Xy 4(0)=0, 29;(0) =80 8,7 (26)

3.2. Control policies for a submodel

First let us consider an unbounded subproblem of the cascaded system (23)
to (26).

(SP) We seek a control u(t)eR, te[0, 1] with |u(t)| £1 and T minimal, such
that the trajectory z(t)eR? is driven from zT(0)=[0,a] to zT(1)=[b, 0]
according to the equation

0 1 0
#Ht)="T [ ] xt)+T| |ut), tef0,1], a>0 (27)
0 —a a
The hamiltonian is
H(z(t), u(t), A(t))=(A,(t) — xAg(t))xq(t) + aAg(t)u(t) (28)

The adjoint equation becomes

0 o0
:\=-—T[ ] A. (29)
l -«

It follows from (9) that A is continuous and therefore one obtains
M) =c (30)
Ay(t)=d exp (Tod) + ¢/ (31)

with some integration constants ¢ and d.

The case A,=0 is excluded, since this would be a contradiction to (13).
Furthermore A, is & monotonous function with at most one zero. The switching
function is ¢(t) > aAy(t) and therefore the system (27) turns out to be bang-bang

controlled
1 if A(f)<0
u(t)= (32)
—1 if A(t)>0

Transforming (27) into integral equations with respect to the initial conditions
we obtain

z,()=T 6". zyo(7) d7 (33)
and
2,(t)=exp (— Tol)Ta of u(7) exp (Tar) dr+a exp (— Tod) (34)
From (34) we get with the final conditions of (SP)

f u(r) exp (Tar)dr=—a/Ta (35)
0
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Equations (33) and (34) and the final conditions yield in accordance with the
well known theorem of Fubini

b=T( ie""‘““‘m g‘ u(r) exp (Tar) dr di—a SPLT2 ] )
=T(

1 s -
=T( jl' u(r)dr—exp (—Ta) | u(r) exp (Tar) dr—aexp( TTQ) l)
0 0 o

T

O —
S -

exp (— Tad)Tau(r) exp (Tar) dt dr—a —- (=~ Ta)~-1 )

Together with (35) we now obtain

: b
§ u(r) df=?~%t (36)

Because of (32) u is a bang-bang control, i.e. there exists a ¢,€[0, 1] with

1, 0stst,
u(t) =+ (37)
[ -1, t,<t=]
or
=1, 0StSt

="s

u(t) =+« (37")
1, t,<tgl

Integrating (33) and (34) with (37) and (37') respectively the following two
systems of equations turn out

2exp (Td,)—exp (Ta)—1=—a
! (38)
8 i
T Ta
2 exp (Tod,) —exp (Ta)—1=a
> (38)
2‘,—1:—2——-2
Ta T

From (38) and (38') respectively we take the solution with minimal time 7'
as the optimal solution.

Now let us consider the bounded subproblem.

(SPB) This consists of the (SP) with the additional state constraint

S(x(t)) := z,(t)~BSO, te[0, 1] (39)
The time derivative of S(z(t)) is
SY(z(t)) = T[0, — ] 2(t) + Tou = Tory(t) + Tou(t) (40)

Thus p=1 is the order of the constraint and if there exists any boundary
arc I then 8'(z(t))=0 for tel is valid. This yields to the boundary control :

u(t) =z4(t)=p (41)
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Maurer (1977) has shown that the adjoint vector function is continuous at
entry- and exit-points for constraints of order p=1. If the constraint is
active, i.e. the solution of the (SP) violates (39), the switching function vanishes
on the boundary arc : ¢(t) = Ay(f)=0. Consequently the equation (7) takes the
form

0 0
= A at an interior arc
A=

1 -« (42)

0 at a boundary arc

This yields to the monotonous function A as for the (SP) and hence the structure
of the optimal trajectory is  interior arc '—‘ boundary arc ’—° interior arc’.
Thus the optimal control becomes

1, 0st<t,
-1, t,sts]
In (34) we set z(t,)=p and get
1 a—-1
. __B-1 (44)
| 1™ s
Applying (43) to (35) and (36) the following equations hold
b a
ll+B(3,—t1)+t,—l=T—ﬂ (45)

and
exp (Taty)— 1 + B(exp (Taty) —exp (T'ad,)) +exp (Taty) —exp (Ta)= —a (46)
It is evident from (44), (45) and (46) that we are able to compute ¢,, ¢, and 7.

3.3. Control policies for the cascade system

Let us now proceed to the complete cascade problem. For the sake of
simplicity the system (23) to (25) is driven from

z7(0)=[0, a, O, ..., 0, a]
to (47)
ZT(1)=[0, ..., 0]
in minimal time 7.
Analogously to (33) and (34), the trajectory is determined by
[
2,(t)=T | zg(7)dr (48)
0

t
Zgs(t) =exp (— Tat)Toy [ uy(r) exp (Toyr) dr+aexp (— Tag),
0 j=1,..,m (49)

Zyalt)=T f zylr)dr=T § w,y(r)dr, j=2, ... m (50)
0 0
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From (36) we know for ) =1 with respect to (47)

] —-a
6[ ul(-r) d'r—'=ﬁ-; (51)
therefore we have
1

Now we state the new system
2, [0 1 [ 0]
=T +T Uy (53)
I.. _0 -~ Qg _I‘ La,_
Z0)] [0] [Z(M] [b,]
=] I = (54)
z4(0) | a | 24(1) L]
where b, = —a/a,.

The system (53) resembles (27) and thus it can be solved in the described
way. With a solution (u,, 7'), we obtain

with

zy(8) =Z4(t) - T 6[' u,(7) dr (55)
Considering the final condition of z; we have
z(1)=T ojl zg(r)dr-T j uy(7) dr
With (36) the second term is
/ i j Uy(r)dr=by—alay

Substituting by we get for b, as final-condition of z;

by= —a(l/ay + 1/ay)
Now we can proceed to the recursive definition of (23) to (25). Set

b,=0
j (56)
bj1:= —a ¢§1 o, j=1,...,m—1

Introducing subsystems as follows

(&), ji=1...m

Zagy 0 1 [zy 0
=T +7| |y (57)
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with

Z9;1(0)=0, z4 ,(1)= b,‘}
(58)

z,;(0)=a, Zg(1)=0

the recursive definition is complete and therefore we are able to solve the
entire system (23) to (25) analytically.

If the production rates r,; are restricted the following constraint holds for
each system

Sj(x) =295~ B; S0 (59)

These subsystems with bounded production rates are solvable by means
described in § 2.

Let (t7, T7) in the case of unbounded subsystems and (¢,7,t,7, 77) for
constrained subsystems be the optimal solution of (&;). The adjoint equation
related to the cascade problem is

A(t)y= — ATA(t) (60)

and as switching function we have

PT(E) = (g Ag(t) — Ag(t), cxgAy(t) — Aglt), .., cpAgn(t)) (61)
Each component ¢,(t) is composed of a constant and an exponential function
or zero, respectively. The assumption ¢,(t)=0 for all j=1, ..., m contradicts

(13). Thus there exists a je{l, ..., m}, such that u,f) is a bang-bang control
which governs the subsystem (%;). As a consequence the slowest subsystem
(&;) determines the time T for the entire cascade.

More formally : set T':= max {T7|j=1, ..., m}. For all subsystems (&)
with 77=T determine the bang-bang control u; as described above (see (37),
(43)). For all unbounded subsystems with 7 < T, i.e. which are governed by a
singular control we introduce a ‘ pseudo-bang-bang control * as follows

1, O0st<t)
uy(t):= ¢ —1, tIStse) (62)
0, otherwise

This means that the ‘ faster ’ subsystems are controlled as fast as possible by a
bang-bang strategy in the first part of the control. In the second part the
control is set to zero. Though there are many other possibilities to choose the
singular controls it seems to be a reasonable strategy for a minimum time
problem.

Thus for all subsystems with 7 < T we seek the two switching points ¢,/
and tJ. Therefore we have to solve the following equations

2 exp (Tap’)—exp (Tat))= —a (63)
2Tt —-Tt)=b;—alu (64)
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Concerning restricted subsystems we seek the entry-point ¢/, the exit-point ¢,/
and the end-point of the bang-bang control t/ with 0t <t <t/ <1. With

[ 1, osti<y,

ﬂ}' tl t tl
u(t) = < (65)
-1, ty<tst,

A
A

| 0, otherwise

the switching points are obtained by solving the following equations (see (44)
(45), (46))

Inl-—a
i 1-B; (66)
3 TG’
b a
') P B IS BT e b F i s s
O+ Bty — )+t —t, T Ta (67)

exp (Tag,’) — 1+ Bj(exp (Tayty!) —exp (Tayt,?))
+exp (Tagy’)—exp (Tat )= —a (68)

An important property of the chosen ‘ pseudo-bang-bang control ’ is the
fact that there is a continuous transition between singular and bang-bang
controls. If the constraints of the singular controlled subsystems are strength-
ened, t./ approaches one. At the point (/=1 we have T/=T and the regarded
subsystem becomes a bang-bang controlled one. If the constraint is strength-
ened further the subsystem remains bang-bang controlled and all other sub-
systems will be pseudo-bang-bang controlled.

|

Figure 2.
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Remark
If all production rates are unbounded the last subsystem %, is bang-bang
and the other systems are singular controlled.

3.4. Numerical example

As illustration of the theory presented in §3.3 we consider a system
consisting of two subsystems. For the ease of demonstration the parameters
are assumed as follows : a;=a,=1, 85= —0-25, 8,=0-0. The time scale is let
unnormed. Figures (2) and (3) show the history of the optimal control and
state variables for the subsystems 1 and 2, respectively, in the unconstrained

Y2

.-.ir

-

e e e e wm = o e -

Figure 3.
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case. The minimum time period is 7' = 1-2999, the switching times for the first
subsystem are 7'!=0-4008 and 7, !'=0-5516. For the second subsystem the
switching time is calculated as 7,2=0-8999. Figure (4) illustrates the con-
strained case. Assuming for the second production-inventory system a
maximum production rate 8,=0-25 which cannot be exceeded the state con-
straint takes the form S,(x(f))=x,(t)-0:2550. The trajectories of the first
subsystem remain exactly the same as in the unconstrained case, excepted the
minimal time period which becomes 7 =1:5832. The variable xr,() of the
second subsystem lies on the boundary between the entry time 7',2=0-5108 and
the exit time 7T,2=1-3601.

In this paper time-optimal control policies have been derived for cascaded
production-inventory systems with control and state constraints. It has been
shown that the problem can be solved analyvtically due to a recursive definition
of the cascaded system by means of the minimum principle for state con-
strained systems. It has been pointed out that at least one subsystem is
bang-bang controlled whereas the others are singular controlled. By intro-
ducing a ‘ pseudo-bang-bang control * the transition from bang-bang control
to6 singular control and vice versa has been realized particularly for constrained
problems.

The theory has been illustrated by the presentation of calculated results
concerning two production-inventory subsystems in cascade for the uncon-
strained and the constrained case.
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