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Abstract—Small Delay Faults (SDFs) are an indicator of
reliability threats even if they do not affect the behavior of
a system at nominal speed. Various defects may evolve over
time into a complete system failure, and defects have to be
distinguished from delays due to process variations which also
change the circuit timing but are benign.

Based on Monte-Carlo electrical simulation at cell level, in this
work it is shown that a few measurements at different operating
points of voltage and frequency are sufficient to identify a defect
cell even if its behavior is completely within the specification
range.

The developed classifier is based on statistical learning and
can be annotated to each element of a cell library to support
manufacturing test, diagnosis and optimizing the burn-in process
or yield.

Index Terms—Small delay faults, variations, reliability, defect
modeling, statistical learning.

I. INTRODUCTION

In a recent paper, significant progress has been reported to

diagnose Small Delay Faults (SDFs) in combinational circuits

[1]. It has been left as an open problem to decide whether

the increase of the delay of a certain gate is due to a defect

or due to process variations. A solution of this problem

is especially urgent as today’s complex circuits in FinFET

technology are often able to overcome timing variations by

voltage and frequency scaling which may also hide certain

defects.

The failures due to defects can become catastrophic in

the field, like gate oxide breakdown, hot carrier effects and

electromigration [2] [3] [4] [5]. Although traditional delay

test methods have primarily focused on gross delays, there

is growing evidence that SDFs should be considered to detect

marginal defects [4] [6] [7] [8].

Many efforts have been taken to consider process variations

in the test process [9] [10] [11] [12]. Increasing random pro-

cess variations can contribute to significant timing variability

which is often indistinguishable from the effect of defects

[13]. However, the former stays the same during the lifetime

of a circuit and can be overcome by adapting voltage and

frequency, but the latter would degrade further in the field and

is a threat to reliability.

Fig. 1 shows the outcome of a Monte-Carlo experiment

based on the SPICE [14] simulation of a NAND gate from the

FinFET Open Cell Library (OCL) [15] in 15nm technology

with a standard deviation of σ = 0.1 on channel width

and length. The green bars show the timing distribution of

the defect-free cell instances, while the red bars show the

distribution after injecting a defect at the source of a nFET

transistor in the cell. In this experiment, 1000 defect-free and

1000 defect instances of the NAND gate were simulated and

the striped blue part denotes instances with ambiguous delays.

Most of the defect instances show a timing at nominal voltage

which could also be produced by a defect-free instance.
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Fig. 1. Simulated delay histograms for defect-free and defect NAND cell

Depending on the process parameters values, cells can

get slower or faster than their nominal timing, which are

called slow or fast instances of the cell. Although the process

variation in the specified range is acceptable [16], a fast cell

with an injected defect (fast-defect) gets slower, and it is

possible that it would be still faster than the slow defect-

free cell. Fig. 2 shows the simulated delay for three slow

defect-free instances of the NAND cell, as well as for a fast-

defect instance of the same cell. By considering only one

delay measurement at nominal voltage, it is not possible to

distinguish the defect instance from defect-free ones, since

the timing of a fast-defect cell is within the defect-free timing

range of the cell. Even worse, for each specified voltage, there

may be a defect-free instance which is slower than the defect-

fast one.

Distinguishing defect and defect-free cells obviously re-

quires more sophisticated analysis techniques, than just com-

paring the timing point by point.

The rest of the paper is organized as follows. The next

section gives some orientation of the state of the art for defect

detection under variations. Section III describes the simulation

model to generate the data set for creating classifiers based

on statistical learning. Section IV presents how classifiers are
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Fig. 2. Simulated delay under varying supply voltage for three defect-free
instances with different process parameters and a fast-defect instance of a
NAND cell

trained and validated. Section V evaluates the efficiency of the

three most appropriate learning techniques. Remarks on further

work and applications conclude the paper in Section VI.

II. STATE OF THE ART

Resistive bridges, resistive opens and gate-oxide pinholes

are considered as defect mechanisms which may cause Early

Life Failures (ELFs) and appear as delay faults [17] [18] [19]

[20] [21] [22] [23] [24] [7].

The impact of operating conditions, in particular voltage,

on delay faults has been investigated thoroughly. Reducing the

supply voltage increases the transistor channel resistances in

the circuit, thereby reducing the relative value and increasing

the electrical impact of a gate drain (or gate source) resistive

short defect [21].

The articles [25] and [26] showed the significant effect of

operating conditions on electrical performance. [27] and [28]

proposed Very-Low-Voltage testing to detect defects resulting

in Early Life Failure (ELF). However, for newer technologies

Very-Low-Voltage testing does not necessarily give the best

fault coverage [29]. The impact of Dynamic Voltage Scaling

(DVS) on the quality of manufacturing tests to detect perma-

nent delay faults is also investigated in [19].

On the other hand, it is observed that resistive defects and

non-resistive defects such as a slow transistor, behave quite

differently as the supply voltage is varied. In [23] authors

discussed the delay behavior associated with classic gross

resistive defects and compares it with transistor variation

due to lithography. In [20], [13], [21] and [17], methods

to distinguish process variation from resistive defects have

been provided, but the defect model in all these papers adds

some fixed amount of delay to the nominal delay without

considering the process variation impact also at the same

defect part.

The delays introduced by process variations depend on the

operation voltage [30], and the voltage impact on the joint

marginal defect and process variations has to be considered.

All the mentioned works are on conventional planar technol-

ogy instead of the recently emerging FinFET technology [31].

In the paper at hand, the delays of defect-free and defect

cells in the standard FinFET library are observed not only

under nominal supply voltage, but also under other voltages in

a specific range. Accordingly, varying voltage as a controllable

parameter is being used actively for test purpose and provides

the parametric behavior of defect-free and defect cells for

training Machine Learning (ML) schemes. As far as we know,

this is the first time that statistical learning algorithms are

being used for marginal defect classification.

III. CELL MODELING

A. Overview

The overall flow of the cell characterization strategy is

shown in Fig. 3. It consists of 2 phases for library prepro-

cessing and one phase for cell classification based on the test

outcome.

Simulation data is generated for the class of defect-free and

the class of defect cells, while the latter class can be subdivided

according to the defect-types injected.
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Fig. 3. Classification flow

B. Modeling defect-free cells

Cells have various performance characteristics due to pro-

cess variations. Threshold voltage (Vth ) fluctuations due to

Random Dopant Fluctuations (RDF) and Line Edge Rough-

ness (LER) are considered often as the major source of process

variations [18] [13]. However, since FinFET has very lightly

doped channels, no significant random dopant fluctuations

may happen [32]. Therefore, in this work variations in device

geometry, in particular gate length (L) and gate width (W ) are

considered. Each of the process parameters follows Gaussian

distribution with 10% standard deviation (σ = 0.1) for Vth . A

standard deviation of σ = 0.1 on Vth was also guided by ex-

perience with real processes in FinFET transistors [16]. Monte

Carlo SPICE simulation is performed with many iterations to



model defect-free instances of each cell. An instance is a cell

with specific process parameter values. N shows the number

of Monte Carlo iterations and subsequently the number of the

defect-free instances.

C. Modeling defect cells

For each cell-type in the library, various defects can be

injected based on the defect mechanisms and fault locations.

Since this paper reports on a prototype study we dispense

with layout based defect injection as originally proposed as

inductive fault analysis [33] and later commercialized as cell-

aware test [34]. Instead, the most relevant defects are injected

at electrical level as seen in the NAND example of Fig. 4
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Fig. 4. 2-input NAND cell and investigated defect-types

In this example, only one defect from the sets of symmetric

defects (e.g. in1 and in2) is shown. A complete charac-

terization has to cover more locations and defect sites as

it is done in cell-aware testing. In general, n denotes the

number of possible defect-types for each cell-type. A single

defect corresponding to each of the n defect-types is injected

into a whole population of N instances for each cell-type,

which guarantees considering process variations also in defect

models. As a result, n ·N single faults are injected. The size

of the faults is set in a way to produce a small amount of extra

delay which is comparable with a slow instance. This assures

the challenging overlap between defect-free cells and defect

ones and provides a difficult case for defects to be classified.

In addition this keeps the fault size smaller than 3σ which is

within the size of small delay faults [8].

D. Data generation

Electrical level SPICE simulation is performed on the

defect-free cells and defect ones to observe the delay of each

instance under varying supply voltage. The supply voltage

range has ω different values and is given to the SPICE

transient analysis. Simulation results represent the parametric

behavior for each instance. Populations of defect-free and

defect parametric behaviors make the defect-free class and

defect one, where the defect-free class has N members and

defect class has n · N ones. Each member of these classes

has ω simulated delay values, where ti, i = [1..ω] are the

simulated delays at the supply voltage Vi.

IV. CLASSIFICATION BY MACHINE LEARNING

A. Learning schemes

For each defect or defect-free cell instance, an array of

ω elements is generated which contains the cell delay for

each operation voltage, as the result of the electrical simu-

lation. Based on this data, supervised learning is performed

with three different statistical learning schemes: Multi-Layer

Perceptron (MLP) [35], k-Nearest Neighbors (kNN) [36] and

Support Vector Machines (SVM) [37]. These schemes have

been selected to minimize the requirements for memory and

computation time, since the resulting classifier has to be

mapped to the cell library elements.

MLP: The Multi-Layer Perceptron classifier is a feed-

forward artificial neural network [38]. The MLP classifier

used here consists of three layers of nodes: an input layer, a

hidden layer and an output layer. Except for the input nodes,

each node is a neuron that uses an activation function which

maps the weighted inputs to the output of each neuron. Based

on the comparison of the actual output to the expected one,

connection weights after each data process are changed and

learning occurs in the perceptron. The adam [39] and relu

[40] are used as solver function for weight optimization and

activation function for the hidden layer respectively.

kNN: The k-Nearest Neighbors algorithm assigns a data

point to the class to which the majority of the k-nearest data

points belong.

The distance between two instances is computed by the

Euclidean metric, where the ti is as discribed above.

Distance =

√

∑

i=1..ω
(|ttest

i
− ttrain

i
|)
2

SVM: Support Vector Machines construct a hyper-plane to

separate data points with the largest amount of margin, which

means the largest distance to the nearest training data points.

The Support Vector Classifier (SVC) [41] with rbf [42] kernel

is used in this approach.

For each cell, the data set comprises (n+ 1) ·N arrays of

length ω, one for the defect-free case and n for the defects

times the sample size N . The goal of classification is defect

detection but not defect diagnosis. Hence, it is sufficient to

output just the defect detect information. However, internally,

n classifiers Cli, i = 1, ..n, are trained, one for each defect-

type. If just one of the Clis classifies the corresponding defect,

a defect cell is announced.

B. Evaluation of the learning schemes

There are (n + 1) · N instances available for each cell-

type, to be used either for training or for test. These instances

are partitioned randomly in 10 sets for cross-validation [43].



One of the sets is used as the test set while the union of

the nine other sets provide the training data. This forms 10

experiments, and the quality metrics Recall, 6Precision and

F1-score are computed based on the confusion matrix for each

set and reported also as the average from all experiments [44].

Let TruePositive(TP ), TrueNegative(TN),
FalsePositive(FP ), and FalseNegative(FN) be the

numbers of instances ”correctly classified as defect”,

”correctly classified as defect-free”, ”incorrectly classified as

defect”, and ”incorrectly classified as defect-free” respectively.

The quality metrics for the defect cells are defined in Eq. 1

and Eq. 2.

Recall :=
TP

TP + FN
(1)

Precision :=
TP

TP + FP
(2)

and for the defect-free cell we have in an analog way:

Recall :=
TN

TN + FP
(3)

Precision :=
TN

TN + FN
(4)

In both cases the F1− score is defined as:

F1− score :=
2

1

Recall
+ 1

Precision

(5)

”Recall” denotes the ratio of the instances in the related

database which are classified correctly. For instance, for defect

cells as presented by Eq. 1, recall shows how much of the

defect instances in the database are detected. In consequence,

it shows the rate of defect escape. Secondly, ”precision”

represents the proportion of the classified instances which

actually belong to that class. For example, for defect cells as

demonstrated by Eq. 2, precision represents how much of the

detected instances are actually defect. In contrast, it indicates

the rate of overdetection. These numbers will be reported in

the next section for the complete data sets. However, this

validation has two major drawbacks. It does not consider how

difficult the classification is. If the two histograms in Fig. 1

have only a small overlap area, any ML approach will have

high quality. The same is true if the histograms of Fig. 1 are

separated over some range. For this reason, a more challenging

validation has been performed as well.

From all the generated instances, only those are selected

for the test set which overlap at least for some voltages. This

means the defect cell is faster than some defect-free cells.

This method is called overlap-based validation in this work.

Fig. 5 describes how training data and test data are selected

from the defect-free and defect instances in this method.

(n+1)*N 

Overall simulated 

data set

C[i] ω Delays Label

100% 

(n+1)*N – ϕ/2 
Training data set
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C[i] ω Delays Label
ϕ Overlap delay 

data set

C[i] ω Delays Label

(n+1)*N – ϕ 
Non-overlap delay 

data set

C[i] ω Delays Label

Fig. 5. Selecting training data and test data for the overlap-based validation
method

The overlapping instances can be chosen so that defect

and defect-free cases are balanced, which has the additional

advantage that a single number metric can be applied as well.

Accuracy :=
TP + TN

N ′
(6)

Here N ′ is the size of the overlap test data. ”Accuracy”

denotes how much of the test data are generally classified

correctly.

V. SIMULATION RESULTS

In the following, the NanGate 15nm OCL [15] is investi-

gated for modeling, characterization and simulation. Experi-

ments on the 2-input NAND gate of Fig. 4 are demonstrated

as a case study.

A. Cell modeling

Monte Carlo simulation is performed with N = 1000
iterations to simulate the Gaussian distribution of gate length

(L) and gate width (W ). It models 1000 defect-free instances.

Fig. 4 shows n = 13 defect-types which are investigated to

model the defect cells. One single defect is injected in each

fault simulation and 13000 defect instances are modeled after

all fault simulations.

The defect-free class and defect class are built by applying

SPICE transient analysis on 1000 defect-free and 13000 defect

instances. Supply voltage as controllable parameter gets the

values between 0.3V and 1.2V with the step of 0.05V (ω =
19). The simulated delay is observed and stored. Overall, the

data set is represented by a 14000 x 19 matrix.

B. Classification by Machine Learning

The generated data is inserted into 3 different ML algo-

rithms: MPL, kNN and SVM. Each entry shows the parametric

behavior of the instances of the defect-free or defect classes.

Each of these classifiers is evaluated based on the 10-set

cross validation as well as on three iterations for the more

challenging overlap-based validation. TP , TN , FN , and FP

are extracted for each set and classifier using Python [45]. The

minimum, average and maximum of the Recall, Precision, and



TABLE I
SIMULATION RESULTS FOR QUALITY METRICS USING 10-SET CROSS VALIDATION

kNN SVM MLP

Defect Defect-free Defect Defect-free Defect Defect-free

min avg max min avg max min avg max min avg max min avg max min avg max

Precision 1.0 1.0 1.0 0.98 0.99 0.99 0.89 0.91 0.92 0.95 0.91 0.91 0.92 0.92 0.92 0.97 0.97 0.98

Recall 0.98 0.99 0.99 1.0 1.0 1.0 0.97 0.97 0.98 0.89 0.90 0.92 0.97 0.98 0.98 0.92 0.93 0.95

min avg max min avg max min avg max

F1-score 0.99 0.99 1.0 0.93 0.94 0.95 0.95 0.95 0.97

TABLE II
SIMULATION RESULTS FOR QUALITY METRICS USING OVERLAP-BASED VALIDATION

kNN SVM MLP

Defect Defect-free Defect Defect-free Defect Defect-free

it.#1 it.#2 it.#3 it.#1 it.#2 it.#3 it.#1 it.#2 it.#3 it.#1 it.#2 it.#3 it.#1 it.#2 it.#3 it.#1 it.#2 it.#3

Precision 1.0 1.0 0.99 0.91 0.91 0.91 0.85 0.87 0.83 0.68 0.67 0.71 0.88 0.87 0.78 0.75 0.81 0.84

Recall 0.91 0.91 0.90 1.0 1.0 0.99 0.6 0.59 0.66 0.89 0.91 0.86 0.71 0.82 0.89 0.9 0.87 0.87

it.#1 it.#2 it.#3 it.#1 it.#2 it.#3 it.#1 it.#2 it.#3

F1-score 0.95 0.95 0.95 0.74 0.74 0.76 0.80 0.84 0.78

Accuracy 0.95 0.95 0.95 0.74 0.74 0.76 0.80 0.84 0.80

F1-score metrics from Eq. 1 to Eq. 5 are presented in Table. I

for 10-set cross validation.

Cross validation on the entire data set shows for all the

three classifiers high values for precision, recall and the F1-

score. However, the kNN classification uniformly outperforms

the two other techniques by values close to 1.0. Only the

average recall of 0.99 for defect cells indicates that a very

small number of defect instances is overlooked. The precision

value of 1.0 for the defect case shows there will be no yield

loss of the kNN classification.

The results of the more challenging overlap-based valida-

tion is shown in Table. II. Here, only defect instances are

considered as test data, which have a delay similar to defect-

free cells under variations. This pre-selection of hard test

cases prevents the use of 10-set cross validation, instead three

random iterations are used.

Also for these more challenging experiments, kNN outper-

forms both SVM and MLP, but recall for defect cells and

precision for defect-free cells are now just above 0.9. Still we

have only 10% of defect escape, which match the timing of

certain defect-free cells for some voltage values and no yield

loss. All together, in this classification an accuracy of 0.95 is

reached, which shows only 5% of the whole challenging test

set including defect and defect-free instances are classified

incorrectly.

The superiority of kNN is also underlined by the imple-

mentation cost of the classifier in terms of memory. For the

NAND cell, 24985.6 Bytes have to be stored, while SVM need

228966.4 Bytes and MLP 1093222.4 Bytes. Memory usage is

relevant since these data will be stored and added to the cell

library. In addition, for all schemes the computation time is in

the order of seconds.

VI. CONCLUSION AND FURTHER WORK

Cells with marginal defects may behave like cells under

process variations, but they can form a reliability risk. A

method for statistical learning is developed based on electrical

simulation data which can classifiy defect and defect-free cells

with high accuracy. The method uses kNN, and can classify

with very moderate time and memory requirements.

The results obtained so far are extremely encouraging for

work towards automizing the classification. Further steps are

on the extraction of defects causing SDFs from the layout

like in cell-aware test, and the minimization of observation

points (delay, voltage) to allow the classification based on a

low number of frequencies and measurements. For the analysis

of cells in an entire circuit, the propagation along paths and the

reduction of the slack by Faster-than-At-Speed Test (FAST)

techniques [3] will be investigated further.
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