
Soft Error Correction in Embedded Storage

Elements

Imhof, Michael E.; Wunderlich, Hans-Joachim

Proceedings of the 17th IEEE International On-Line Testing Symposium (IOLTS’11)

Athens, Greece, 13-15 July 2011

doi: http://dx.doi.org/10.1109/IOLTS.2011.5993832

Abstract: In this paper a soft error correction scheme for embedded storage elements in level sensitive designs
is presented. It employs space redundancy to detect and locate Single Event Upsets (SEUs). It is able to
detect SEUs in registers and employ architectural replay to perform correction with low additional hardware
overhead. Together with the proposed bit flipping latch an online correction can be implemented on bit
level with a minimal loss of clock cycles. A comparison with other detection and correction schemes shows a
significantly lower hardware overhead.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/IOLTS.2011.5993832


Soft Error Correction
in Embedded Storage Elements

Michael E. Imhof, Hans-Joachim Wunderlich
Institute of Computer Architecture and Computer Engineering

University of Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany

email: {imhof, wu}@iti.uni-stuttgart.de

Abstract—In this paper a soft error correction scheme for
embedded storage elements in level sensitive designs is presented.
It employs space redundancy to detect and locate Single Event
Upsets (SEUs). It is able to detect SEUs in registers and employ
architectural replay to perform correction with low additional
hardware overhead. Together with the proposed bit flipping latch
an online correction can be implemented on bit level with a
minimal loss of clock cycles. A comparison with other detection
and correction schemes shows a significantly lower hardware
overhead.

Keywords—Single Event Effect, Correction, Latch, Register

I. INTRODUCTION

Transient faults caused by neutron and alpha particle strikes

have become the main source for reliability degradation of dig-

ital systems. For circuits being composed out of memory and

random logic blocks, both parts can experience soft errors [1].

In recent years the combinatorial logic and sequential elements

of a typical design contributed about 60% of the overall Soft

Error Rate (SER) [2]. In actual technologies random logic can

be seen as the main source of soft errors due to two trends: The

proliferated use of protection schemes for dedicated memory

blocks like SRAMs or caches leads to a significantly reduced

contribution to the overall SER. Continued technology scaling

and decreasing feature sizes increase the absolute soft error

rates for the unprotected random logic.

The SER contribution of combinatorial logic is considerably

smaller than that of the sequential elements [2, 3] as SETs

produced in the combinational logic are filtered by several

mechanisms: Transient pulses or glitches are attenuated by the

transistors of a gate or happen on off-path inputs (electrical

and logical masking). The pulses reaching a latch result only

in an error when they are latched (latch window masking).

Sequential elements embedded in random logic have the

highest potential of sacrificing the overall SER. Single Event

Upsets (SEUs) directly affecting a latch can permanently alter

the stored value. They are directly visible at the latch output

and often affect large portions of a design. Therefore, soft error

protection techniques for sequential elements such as latches

will contribute most in improving a circuits robustness.

Several schemes have been proposed to protect sequential

elements in random logic. Space redundancy, first proposed as

triple modular redundancy (TMR [4, 5]) and triple latches [6]

was later on extended by time redundancy. The correction is

performed either by recomputation (RAZORII [7]), restoring

the good value from a shadow element (GRAAL, RAZOR,

BISER [8–10]) or by information redundancy (Parity or Ham-

ming [11, 12]). Other solutions filter explicitly input signals

(DF-DICE [13]).

The scheme presented in [12] analyzes the protection of

registers with a hamming code, and the authors state a not

negligible hardware overhead.

The scheme proposed here is also based on a linear code and

it is able to detect and correct single event upsets in registers

embedded in random logic. Information redundancy is added

to all registers and used to detect single event upsets with

significantly less hardware costs than what was reported in

[12]. The used code is able to localize the affected bit within

a register. Using this information to control the developed bit

flipping latch corrects the single event upset while loosing

one clock cycle. No additional clock cycles are used when no

upsets occur and no additional gates have to be inserted in the

data path.

The presented scheme is composed of the following contribu-

tions:

1) Efficient error detecting and correcting (EDAC) code

computation: A modulo-2 address characteristic is used

to derive a log(n)-bit checksum of the n-bit register con-

tent [14]. The characteristic computation is implemented

using standard cells, resulting in a low area overhead.

2) Protected storage of the error condition: The properties

of the characteristic yield in the detection of a state

change together with the localization of the affected

bit. An additional parity protection detects soft errors

directly altering the stored characteristic.

3) Bit flipping latch: The localized soft error can be cor-

rected with the help of the developed bit flipping latch

standard cell.

This implies that (i) all single event upsets can be detected and

corrected by recomputation with a low hardware overhead.

(ii) the computed checksum is effectively protected against

SEUs and no unnecessary recomputations (false positives) can

happen. (iii) the used code allows a localization of the affected

bit. (iv) the localization information can be fed back to the

developed bit flipping latches to correct a happened SEU in

one additional clock cycle. (v) the time vulnerability factor is

very low. (vi) the overall scheme results in a low hardware

overhead.

The rest of this paper is organized as follows: Section II dis-

cusses the related work for soft error detection and correction

while section III discusses the basic ideas of the proposed

scheme. Section IV depicts the area efficient implementation



of the used EDAC code. Section V discusses how the stored

checksum can be protected against soft errors. Based on that

information section VI describes the design of a new latch

standard cell that is able to flip its internal state and how

it can be used to enable soft-error correction. Section VII

shortly describes the timing behavior. Section VIII presents the

experimental results and gives a comparison to other schemes.

II. STATE OF THE ART

Due to the non regular structure and the composition of

random logic most protection schemes introduce local space

redundancy for each bit. Working at bit level makes correction

feasible but limits the reachable efficiency in terms of achiev-

able hardware overhead. The most prominent schemes include

BISER, DF-DICE, RAZOR and GRAAL [8–10, 13].

Triple modular redundancy [4, 5] describes the composition

of a reliable system out of unreliable components. The basic

building blocks get triplicated and their results are combined

using a synchronous majority voter. Triple latches extend TMR

by time redundancy and an asynchronous voter to improve

the detection probability [6]. Triplication is able to correct all

single bit upsets. The hardware overhead of around +400%

(two latches plus voter) can be reduced by different techniques.

The BISER scheme [2] combines one latch and the voter of

TMR into an asynchronous majority voter, the C-Element. If

the register is scanable, the scan portion can be reused to

implement one of the two remaining latches. BISER is able

to detect single bit upsets and hinders them from propagating

to the output using the voter.

The GRAAL scheme proposed by Nicolaidis is based on space

and time redundancy [8] and was proposed for a level-sensitive

design style. The value of a redundant sequential element is

compared to the value of the functional latch. In case of an

error the correct value is restored from the shadow element.

The RAZOR approach proposed by Ernst et al. [9] is similar

to the GRAAL scheme. Both use the same basic gates, but

RAZOR targets an edge-sensitive design style. It was designed

to protect combinational logic in front of registers against

Single Event Transients (SETs) it can also be used to protect

the registers against SEUs. In case of a detected error the

scheme restores the flip-flop content from the latches for all

bits of a register. At the same time the clock of all other

registers in the module is gated to hinder the fault effect from

propagation.

The DF-DICE storage element [13] is based on pulse filtering,

where all inputs are filtered for transient glitches up to a given

duration. Longer lasting transient glitches are not filtered.

Single event upsets in the internal storage element changing

the stored value and are not detected.

The RAZOR2 scheme proposed by Das et. al in [7] allows

in situ detection of soft errors in registers, where spurious

transitions in the state-holding latch node are detected as

errors. The correction is performed by architectural replay,

which requires several clock cycles to recompute the correct

result.

The time redundant parity proposed in [11] uses information

redundancy implemented by a parity tree to detect SEUs.

Thereby a localization of the affected bit is not possible and the

correction is performed by recomputation. [12] proposed the

protection with hamming codes. While being able to detect

and correct SEUs the scheme incorporates a high hardware

overhead. The use of information redundancy for a whole

register is promising, but needs to be carefully designed and

implemented to limit the introduced disadvantages to a feasible

degree.

Most schemes for sequential elements embedded in random

logic introduce space redundancy for each bit of a register.

This enables the detection of soft errors by comparing the orig-

inal and the redundant bit value. The correction is performed

by voting, restoring the correct value from the redundant copy

or architectural replay.

Several non optimal properties of the discussed solutions can

be identified: Space redundancy combined with voting results

in a large area overhead. Restoring the correct value from

a shadow element implies a better, but not negligible area

overhead. If the correct value is generated by recomputation,

the further minimized area overhead is gained by the need for

several clock cycles to perform the recomputation. The use

of information redundancy allows the area efficient detection

of upsets if a parity bit is used, but as a localization is not

possible the correct value needs to be recomputed.

III. PROPOSED CORRECTION FLOW

Let figure 1-a be a unprotected register composed of n latches.

Figure 1-b depicts an abstract view on the proposed detection

of SEUs when the correction can be performed using re-

computation. The register is complemented with the proposed

area efficient modulo-2 address characteristic computation.

The reference characteristic is stored in log(n) additional

latches. It is then compared to the current characteristic. If

a difference is detected the fail signal is raised and triggers

the recomputation.

n
 b

it
 f
lip

p
in

g
 l
a

tc
h

e
s
 ...

lo
g

(n
) 

la
tc

h
e

s

1-out-of-n 

Decoder

log(n)

n

nn

n
 l
a

tc
h

e
s

...

lo
g

(n
) 

la
tc

h
e

sfail

nn

n
 l
a

tc
h

e
s

nn

fail

a) Unprotected
b) Detection and 

Recomputation
c) Correction

I

IIIII

Fig. 1. Proposed Configurations

If a recomputation is not feasible or too time consuming the

scheme can be extended with a correction mechanism (Fig.

1-c). The n latches get replaced by n bit flipping latches,

which are inherently able to invert their internal state. The

difference between the reference and current characteristic



directly derives the address of the affected bit. The address

is decoded and used to control the BF-latches to restore the

correct state in one additional clock cycle. All other sequential

elements are clock gated during this period using the fail
signal.

For all proposed configurations no additional elements are

inserted into the data path. No additional delay is added to the

circuits operation if no SEUs occur. If a SEU occurs, either the

global recomputation is triggered (Fig. 1-b) or one additional

clock cycle is used to correct the SEUs effect.

Section IV provides more details on the properties of the used

code and its efficient implementation (block I in fig. 1-c).

Section V explains how the storage of the error condition can

be protected (block II). Section VI describes the developed bit

flipping latch used for the correction (block III).

IV. MODULO-2 ADDRESS CHARACTERISTIC

The proposed scheme uses space redundancy by a special

modulo-2 address characteristic to protect the register con-

tent. Adding this characteristic to regular memory arrays for

transparent testing was proposed in [14, 15]. This transparent

test technique was adapted to random logic in [16] and used

for error detection and localization on registers embedded in

random logic.

The modulo-2 address characteristic of a register is computed

by a bit-wise XOR of the addresses of those register cells

containing a 1 (Figure 2). Its detection capabilities are identical

with a single error correcting (SEC) hamming code, but the

characteristic can be computed more efficiently and correction

is implemented easily, as the faulty bit address is computed by

the bitwise XOR of the reference and observed characteristic.

Register R

correct

0

0

1

1

0

0

0

0

0001

0010

0011

0100

0101

0110

0111

1000

0011

0011

0100

0111cref =

adr radr
Register R’

faulty

0

0

1

1

1

0

0

0

0001

0010

0011

0100

0101

0110

0111

1000

adr r’adr

0100

0110

0001ccur =

Faulty address is computed by diff = cref ccur = 0111  0001 = 0110

Fig. 2. Modulo-2 Address Characteristic

Example (Figure 2) Let R be a register of n bits (|R| = n)

labeled radr (1 ≤ adr ≤ n), where adr is the address of the

according bit. The modulo-2 characteristic c is then computed

by a bit-wise XOR of all addresses adr where radr = 1.

The bit r0 is not used, as address 0 does not contribute to

c. Therefore |c(R)| = ⌈log2(n + 1)⌉ . Then ct(R) is the

characteristic of R at time t with |ct(R)| = ⌈log2(n+ 1)⌉.

To detect an error, the characteristic of the original register

content is computed at time t1 and stored in |ct1(R)| additional

sequential elements. We call ct1(R) reference characteristic

cref .

If a soft error changes the register content from R to R′ the

current characteristic ccur := ct2(R
′) computed at time t2

(t1 < t2) differs from cref . The difference vector diff= cref⊕
ccur contains the address of the changed bit (fig. 2).

To locate the error, the scheme needs to distinguish if the soft

error affected R and changed ccur or if it directly affected

cref . We first assume that soft errors only occur in R. Later

a generalization will be shown that allows to distinguish if R
or cref was affected (section V).

If an error is detected the difference diff= cref ⊕ ccur
contains the address of a single affected bit. In case of double

errors the derived address is invalid as the used code was

designed for the localization of single errors to allow an area

efficient implementation. The overall aliasing probability of

any multiple error is 2−n, where n is the size of the register.

Area efficient implementation: The attached characteristic

computation can be efficiently implemented by XOR2 standard

cells [16]. The routing overhead can be minimized if only

significant bits are passed between the levels (Figure 3).

value

adr

0

001

1

010

1

011

0

100

1

101

0

110

0

111

0 1 1 1 0 00

0 1 1 0 1

1 0 0

k=2

k=1

k=0

Fig. 3. Block I) Area efficient characteristic computation.

V. PROTECTED STORAGE OF THE ERROR CONDITION

Let us now assume that soft errors can either affect the register

R or the register added to store cref (fig. 4). If one of the

latches storing the reference characteristic is affected by a

SEU the difference between cref and ccur indicates an error

and triggers the correction while the data on the data path is

unaffected and correct. To avoid this behavior it is mandatory

to distinguish if the stored reference characteristic was altered

or not, once a difference is observed.

This is achieved by computing the parity of the reference

characteristic cref as p(cref ) and storing it in one additional

latch (Fig. 4). This solution is able to differentiate between

all relevant areas while minimizing the hardware overhead.

With this, three areas where a soft error can take place are

distinguished:

fail

diff

log(n)

fail in

checksum

correct

... L

... &

log(n)

Diff in 

Checksum ?

diff != 0 ?

cref,

|cref|= 

log(n) 

R

|R|= n

L

n
 l
a

tc
h

e
s

Fig. 4. Block II) Deriving and protecting the error condition



• Original register (R): Characteristic protection shows

a difference (cref 6= ccur), the parity bit does not

(p(cref ) = p(ccur)). The error affected the data path and

the correction is triggered.

• Reference characteristic (cref ): Reference characteristic

and the parity bit show a difference (cref 6= ccur and

p(cref ) 6= p(ccur)). The error changed cref , not the data

on the data path, no correction is needed.

• Parity (p(cref )): Reference characteristic shows no differ-

ence, parity bit does (cref = ccur and p(cref ) 6= p(ccur)).
The reference parity (p(cref )) was altered, nothing else.

The data path is correct, no correction is needed.

The correction signal correct can thereby be defined as

correct = (cref 6= ccur)∧(p(cref ) = p(ccur)). By adding the

parity protection of cref the scheme is able to detect any SEU

in the embedded storage elements and perform a correction

when the data path was affected.

Detection probability: All single faults are detected, correctly

localized and can be corrected. Double faults are detected, but

can not be corrected as a localization is not possible. Multiple

faults are not guaranteed to be detectable due to the hamming

distance of the used characteristic. In general, the hamming

distance of the used error correcting code can be increased to

allow the detection and correction of multiple faults.

VI. BIT FLIPPING LATCH

The previous section described how a SEU can be detected and

localized. In this section the scheme is extended to perform

online correction at bit level. The derived information is used

to flip the affected bit while preserving the state of all other

latches. The resulting scheme is self-contained and does not

rely on the presence of architectural replay or clock gating. If

those concepts are present they can be reused to further reduce

the introduced hardware overhead.

Performing the correction depends on the detection of an

altered data path and the localization of the affected bit. The

latter information is already encoded in the difference diff

of cref and ccur. The difference is gated by the correct
signal and decoded by an 1-out-of-n decoder into a n bit wide

correction vector cor with |cor| = n (Figure 4). The correction

vector is then used at bit level to perform the correction within

the register.

Transmission Gate Based Latch A latch consists of two invert-

ers (INV) and two transmission gates (TG). The schematic

view is depicted in the gray box in figure 5 with a direct

connection between Q and TG5 (dotted line). Both transmis-

sion gates are controlled by the control signal pair {L,L},

which controls if a new value is latched from D (the latch is

transparent) or if the internal state is preserved (the latch is

opaque).

Bit Flipping Latch This latch is now extended with the ability

to flip its internal state. The Bit Flipping Latch (BFLATCH)

contains an additional inverting feedback loop consisting of

TG4, an inverter INV3 and TG3 (Figure 5). TG2 and TG3 are

controlled by a new control signal pair {HI,HI} selecting

between the original and the inverting feedback loop. To

prevent the inverting feedback loop from oscillating, TG4

3

HI

HI

Di Qi

Latch

L

L

1

HI HI
4

HI

HI

2

3

L

L

5

BF-Latch

1 2

3

Fig. 5. Block III) Bit Flipping Latch: Schematic

precharges the inverter whenever the loop is not active and

is blocking otherwise. An additional transmission gate TG5

controlled by {L,L} is added in front of both loops. Together

with TG1 it is used to control if new data is latched or the

internal state is preserved.

To change the value stored by the bit flipping latch it is

sufficient to invert {HI,HI} which feeds the inverted value

of Q to the inverter chain. If the inversion of {HI,HI} is

canceled the non-inverting loop stores the inverted value.

VII. TIMING BEHAVIOR

Figure 6-a visualizes the timing of an unprotected register

(Fig. 1-a), while figure 6-b shows the timing of the proposed

correction scheme (Fig. 1-c). A soft error hits the register at

time t1 and is visible at its output at t2. It gets detected at t3
and corrected at t4. The falling fail signal at t5 indicates the

successful correction.

Correct Faulty Corrected

Correct Faulty New DataA

B Old Faulty New Data

A

Fail

Old CorrectedB

Clk B Gated

Old

Old

Clk A

Clk B

a)

b)

t1 t2 t3 t4 t5

Fig. 6. Timing: a) Unprotected Register (Fig. 1-a), b) Protected register with
correction (Fig. 1-c)

VIII. EXPERIMENTAL RESULTS

The OpenCellLibrary (OCL, [17]) is used to determine the

introduced area overhead. It contains standard cells for a 45nm

technology specified by the Predictive Technology Model

(PTM, [18]). The high enable latch DLH X1 has a cell height

of 1.4 µm, a width of 2.09 µm and a total area of 2.929 µm2.

Section VIII-A shows the hardware overhead introduced by

implementing the proposed detection using OCL standard

cells. Section VIII-B present a new standard cell for the bit-

flipping latch and section VIII-C describes the overhead of



the correction. Section VIII-D examines the time vulnerability

factor of the scheme.

All area results presented in sections VIII-A and VIII-C

include the complete routing overhead to compute, store

and protect the characteristic respectively to feed back the

correction vector and control the bit flipping latches. Only

one global signal is needed to trigger the recomputation or to

perform clock gating for one cycle during the correction.

A. Detection at Register Level

An unprotected register was implemented using the high

enable latches from the OCL. This unprotected area will be

used as a baseline in the following. The register equipped with

the proposed detection scheme and the introduced hardware

overhead is determined for different register sizes. The detec-

tion extends the n bit register block (using DLH X1 cells)

with the characteristic computation, the additional register for

cref together with the comparator. An OR-tree aggregates the

computed difference to a one bit signal and an additional

parity protection for the cref register determines if a soft error

affected R or cref . Table I shows the results for different

register sizes. Columns 1 and 2 contain the register size and the

area for an unprotected register in µm2. Columns 3 and 4 show

the sequential and combinational area needed to implement

the detection while the last column presents the area overhead

compared to the unprotected implementation.

The observed overhead depends on the register size and de-

creases with growing register sizes. Equipping a register with

the proposed detection introduced an area overhead reaching

from +202% for a 7 bit register to +127% for a 127 bit register.

Comparison to other schemes: RAZOR2 consists according

to [7] of three parts. The latch, a transition-detector (TD)

and a detection clock generator (DC), which can be shared

among multiple latches. It uses 47 transistors if the detector

and the generator are implemented for each latch. If shared

across several latches 39 transistors are used for each bit plus

8 transistors for the global DC generator. One additional OR-

gate is needed per bit to aggregate the fail information on

register-level. The overhead by implementing the RAZOR2

scheme amounts to +537.5% in the worst case and +437.5%

in the best case.

B. Standard Cell: Bit Flipping Latch

To show the area efficiency of the correction scheme a standard

cell was implemented for the bit flipping latch.

Register Unprotected Proposed (Fig. 1-b)
Size Seq. (Fig. 1-a) Seq. Comb. Overhead

3 8.78 18.89 14.1 +275.63%

7 20.48 33.78 27.93 +201.32%

15 43.89 61.45 54.26 +163.64%

31 90.71 114.65 108.0 +145.44%

63 184.34 218.92 209.87 +132.61%

127 371.6 425.33 417.89 +126.92%

TABLE I
HARDWARE OVERHEAD - DETECTION (µm2)

As shown in section VI the addition of an inverting feedback

loop incorporates the addition of one inverter and three trans-

mission gates. The standard cell for the bit flipping latch is

shown in figure 7. The order of the single gates from the left

to the right is as follows: TG1, TG5, INV1, INV2, TG2, TG4,

TG3, INV3.

Fig. 7. BFLATCH X1: LATCH X1 with Inverting Feedback

The cell was designed according to the design rules and

electrical rules of the FreePDK process design kit [19]. The

cell height is - as in the OpenCell Library - 1.4 µm. The bit

flipping latch has a width of 2.28 µm and a total area of 3.192

µm2. Compared to the OCL DLH X1 latch the additional area

for implementing the inverting feedback is as low as 9%.

C. Correction at Bit Level

To show the feasibility of the proposed correction scheme we

synthesized it for different register sizes using the designed

standard cells together with additional cells from the OCL.

The results are shown in table II for different register sizes.

The introduced relative hardware overhead decreases with

increasing register sizes. An overhead of +281% is introduced

for a 7 bit register while implementing the correction for a

127 bit register results in 183% additional area compared to

the unprotected register.

Comparison to other schemes: The hardware overhead for

the detection schemes from section II is given in table III.

Columns 1 and 2 show the used basic gates together with

their transistor count. The other columns depict the needed

transistors of every gate type per scheme together with the

total number for the protection of 1 bit. The line labeled

”Register per Bit” includes the additional OR-tree to combine

the local error signals. TMR introduces a hardware overhead of

400%. GRAAL protected latches results in a transistor count

of 38 adding 375% to the 8 transistors for an unprotected

implementation. If RAZOR1 is implemented using the effi-

cient implementation from [9], the total transistor count with

metastability detection is 52 while the scheme without that

detector uses 38 transistors (as depicted in table III). The error

signals computed for every bit slice then have to be aggregated

Register Unprotected Proposed (Fig. 1-c)
Size Seq. (Fig. 1-a) Seq. Comb. Overhead

3 8.78 18.89 20.75 +351.37%

7 20.48 33.78 44.16 +280.57%

15 43.89 61.45 87.25 +238.78%

31 90.71 114.65 169.18 +212.89%

63 184.34 218.92 326.65 +195.96%

127 371.6 425.33 623.5 +182.25%

TABLE II
HARDWARE OVERHEAD - DETECTION & CORRECTION (µm2)



Gate # Trans. TMR GRAAL RAZOR1

Per Bit LATCH 8 24 8 24

FF 16 16

Voter 16 16

XOR 6 6 6

OR 4

MUX 4 4 4

INV 2 4

AND 4

Total 40 34 38

OR 4 4 4

Reg. per Bit 40 38 42

Overhead +400% +375% +425%

TABLE III
HARDWARE OVERHEAD - CORRECTION SCHEMES

at register level by an OR-tree, needing 4 transistors per bit.

In total 42 transistors result in an hardware overhead of 425%.

D. Time Vulnerability

To determine the time vulnerability factor of the proposed

scheme, soft errors were injected into an 8-bit register pro-

tected with the proposed scheme. The used clock period was

4 ns with a 25% high phase (as depicted in fig. 6). During the

high phase of the clock the latches are transparent; soft errors

hitting the latch can lead to glitches, but can not permanently

alter the sequential state. During the low phase, the latches

are vulnerable to soft errors. A series of simulations was

performed, where a soft error is injected into a randomly

chosen latch by forcing the output of the first feedback inverter

to its opposite value (injection time). A test bench then

recorded the following time points: Visibility at the register

output, raising fail signal indicating the upset, visibility of the

corrected value at the output and a falling fail signal. The

experiments were conducted for the whole low period of 3 ns,

while the injection time point was moved forward by 100 ps

for every experiment. The results in table IV show, that SEUs

during the complete low phase are detected and corrected.

Example: According to figure 6 b): The line starting with ”200

(bit 6)” represents the experiment where an error is injected

at time t1 = 200 ps, visible at t2 = 300 ps and detected at

t3 = 400 ps. It is corrected at t4 = 3200 ps, the falling fail

signal indicates the successful correction at t5 = 4300 ps.

IX. CONCLUSION

A soft error correction scheme for embedded memory el-

ements was presented. It is based on a characteristic that

Time (ps) Visible Detected Corrected End

Injection at output (fail rising) at output (fail falling)

0 (bit 4) 100 300 3200 4300

100 (bit 6) 200 300 3200 4300

200 (bit 6) 300 400 3200 4300

... ... ... ... ...

2600 (bit 0) 2700 2800 3200 4300

2700 (bit 1) 2800 2900 3200 4300

2800 (bit 5) 2900 3000 3200 4300

TABLE IV
TIME VULNERABILITY: 8 BIT REGISTER WITH DETECTION &

CORRECTION

encodes the register content and can be implement area

efficiently. The scheme is able to detect and locate SEUs

in registers with an hardware overhead between +202% (7-

bit) and +127% (127-bit) depending on the register size.

The protected storage of the error condition eliminates false

positive corrections due to SEUs affecting the checksum. The

Bit Flipping Latch enables an efficient correction of SEUs on

bit level utilizing the localization information from register-

level. The hardware overhead for the correction scheme ranges

from +281% for a 7-bit register to +183% for a 127-bit reg-

ister. It was shown that the protection of embedded memories

using checksums is feasible and that the combination with an

efficient correction at gate level results in an significant lower

overhead as other solutions.

X. ACKNOWLEDGMENT

This work has been supported by the DFG Project Realtest

under grant Wu245/5-2.

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design & Test of
Computers, vol. 22, no. 3, pp. 258–266, May–June 2005.

[2] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system design with
built-in soft-error resilience,” IEEE Computer, vol. 38, no. 2, pp. 43–52, 2005.

[3] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue nanometer
technologies,” in IEEE VLSI Test Symposium (VTS99). IEEE, 1999, pp. 86–94.

[4] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms from
unreliable components,” in Automata Studies, C. E. Shannon and J. McCarthy, Eds.
Princeton University Press, 1956.

[5] R. E. Lyons and W. Vanderkulk, “The use of triple modular redundancy to improve
computer reliability,” IBM Journal of Research and Development, vol. 6, no. 2, pp.
200–209, 1962.

[6] J. Wang, W. Wong, S. Wolday, B. Cronquist, J. McCollum, R. Katz, and I. Kleyner,
“Single event upset and hardening in 0.15 µm antifuse-based field programmable
gate array,” IEEE Transactions on Nuclear Science, vol. 50, no. 6, pp. 2158–2166,
2003.

[7] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. Bull, and
D. Blaauw, “RazorII: In Situ Error Detection and Correction for PVT and SER
Tolerance,” IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 32–48, 2009.

[8] M. Nicolaidis, “Graal: a new fault tolerant design paradigm for mitigating the flaws
of deep nanometric technologies,” IEEE International Test Conference (ITC07), pp.
1–10, 21-26 Oct. 2007.

[9] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, et al., “Razor: a low-power pipeline based on circuit-level timing
speculation,” Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 7–18, 2003.

[10] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S. Kim,
N. R. Shanbhag, and S. J. Patel, “Sequential element design with built-in soft error
resilience,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 12, pp. 1368–1378, 2006.

[11] D. Palframan, K. N.S., and M. Lipasti, “Time redundant parity for low-cost transient
error detection,” in Design, Automation and Test in Europe (DATE11), 2011, pp.
52–57.

[12] R. Hentschke, F. Marques, F. Lima, L. Carro, A. Susin, and R. Reis, “Analyzing
area and performance penalty of protecting different digital modules with Hamming
code and triple modular redundancy,” in Symposium on Integrated Circuits and
Systems Design, 2002, pp. 95–100.

[13] R. Naseer and J. Draper, “The DF-dice storage element for immunity to soft errors,”
Proceedings of the 48th IEEE International Midwest Symposium on Circuits and
Systems, 2005.

[14] S. Hellebrand, H.-J. Wunderlich, A. A. Ivaniuk, Y. V. Klimets, and V. N. Yarmolik,
“Efficient online and offline testing of embedded drams,” IEEE Trans. Computers,
vol. 51, no. 7, pp. 801–809, 2002.

[15] S. Boutobza, M. Nicolaidis, K. M. Lamara, and A. Costa, “A transparent based
programmable memory bist,” in 11th European Test Symposium (ETS2006), 2006,
pp. 89–96.

[16] M. Imhof, H. Wunderlich, and C. Zoellin, “Integrating scan design and soft
error correction in low-power applications,” in IEEE International On-Line Testing
Symposium (IOLTS08). IEEE Computer Society, 2008, pp. 59–64.

[17] “Nangate Open Cell Library v1.3 v2009/07.” [Online]. Available:
http://www.si2.org/openeda.si2.org/projects/nangatelib

[18] “Predictive Technology Model (PTM).” [Online]. Available:
http://www.eas.asu.edu/˜ptm

[19] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis, P. Franzon,
M. Bucher, S. Basavarajaiah, J. Oh, et al., “FreePDK: An Open-Source Variation-
Aware Design Kit,” in IEEE International Conference on Microelectronic Systems
Education. IEEE Computer Society Washington, DC, USA, 2007, pp. 173–174.


