
Fail-Safety in Core-Based System Design

Baranowski, Rafal; Wunderlich, Hans-Joachim

Proceedings of the 17th IEEE International On-Line Testing Symposium (IOLTS’11)

Athens, Greece, 13-15 July 2011

doi: http://dx.doi.org/10.1109/IOLTS.2011.5994542

Abstract: As scaling of nanoelectronics may deteriorate dependability, fail-safe design techniques gain at-

tention. We apply the concept of fail-safety to IP core-based system design, making the first step towards

dependability-aware reuse methodologies. We introduce a methodology for dependability characterization,

which uses informal techniques to identify hazards and employs formal methods to check if the hazards oc-

cur. The proposed hazard metrics provide qualitative and quantitative insight into possible core misbehavior.

Experimental results on two IP cores show that the approach enables early comparative dependability studies.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/IOLTS.2011.5994542


Fail-Safety in Core-Based System Design

Rafal Baranowski, Hans-Joachim Wunderlich
Institute of Computer Architecture and Computer Engineering, University of Stuttgart,

Pfaffenwaldring 47, D-70569 Stuttgart, Germany

{baranowski, wu}@informatik.uni-stuttgart.de

Abstract—As scaling of nanoelectronics may deteriorate depend-
ability, fail-safe design techniques gain attention. We apply the
concept of fail-safety to IP core-based system design, making
the first step towards dependability-aware reuse methodologies.
We introduce a methodology for dependability characterization,
which uses informal techniques to identify hazards and employs
formal methods to check if the hazards occur. The proposed
hazard metrics provide qualitative and quantitative insight into
possible core misbehavior. Experimental results on two IP cores
show that the approach enables early comparative dependability
studies.

Keywords—fail-safe design, core-based design, IP reuse method-
ology

I. INTRODUCTION

The true potential of core-based system design to shorten time-

to-market has been enabled by reuse methodologies [1, 2].

Reuse methodologies comprise standard design and verifica-

tion practices, as well as guidelines for system integration [3].

Core quality is measured with the Quality Intellectual Prop-

erty (QIP) metric that assesses functionality, configurability,

verification completeness, and ease of integration [4].

While aggressive scaling of technology nodes results in in-

creased vulnerability and aging [5, 6], the QIP metric and

reuse methodologies in general fail to address dependability.

Generic third-party cores cannot directly be used in safety-

critical applications and require thorough dependability studies

prior to deployment. This incurs additional costs and may

involve redesign, compromising the benefits of reuse.

When building a design from reusable cores, the system

integrator has no knowledge about possible misbehavior of

the third-party cores. This is particularly true for encrypted

cores, as the lack of accurate models makes the dependability

analysis impossible. At the same time, the actual misbehavior

of a failing core and its influence on other system components

may be very complex. A single fallible core may considerably

compromise the overall system dependability. Considering the

increasing vulnerability of nanoelectronics, this clearly calls

for dependability-aware reuse methodologies.

To the best of our knowledge, this paper is the first effort

towards a methodology for reuse of safety-critical IP cores.

We analyze component failures with respect to their impact on

the system. A core is considered fail-safe if its failure does not

affect correct operation of other system components. We use

formal and informal techniques to analyze fail-safety. Results

of this analysis are expressed with hazard metrics that enable:

• qualitative statements about fault impact,

• quantitative assessment of fail-safety,

• comparative analysis of alternative designs,

• identification of critical faults and design weaknesses.

The approach presented in this paper serves the purpose of

dependability characterization. The analysis is done just once

by the core vendor and its results are documented and supplied

to the client as part of the deliverables, constituting added

value to the product. The system integrator can immediately

benefit from the additional information: The proposed metrics

enable direct comparison of cores with similar functionality,

and facilitate quantitative statements about failure modes. The

overall approach meshes well with the widely adopted IP-core

reuse practices.

Related Work. While our problem formulation is new in

the context of core-based design, similar concerns have been

identified in software reuse [7–9]. Our technique builds upon

studies that use formal methods to assess design vulnerability

to faults [10–13]. These methods verify the full functionality of

a core and provide statements about the level of fault tolerance.

Rather than proof of fault-tolerance, the aim of our analysis is

to verify properties which guarantee safety. We derive hazard

metrics using formal property checking on faulty netlists.

The faulty netlists are generated exhaustively according to

a circuit-level fault model, in contrast to random mutations

proposed for evaluation of assertion coverage [14, 15]. Unlike

other approaches, our methodology enables early quantitative

comparisons of safety for IP cores with similar functionality,

without detailed knowledge of the target application.

II. DEFINITIONS

The IEC 61058 standard for functional safety of safety-related

systems defines safety as freedom from unacceptable risk. A

failure is said to be safe if it does not have the potential

to put the safety related system in a hazardous or fail-to-

function state. Based on these definitions, fail-safety can be

defined as absence of unsafe faults. Although the standard does

not formally define fail-safety, it states that such a concept

is of value when the failure modes are well defined. In the

following, we formally define fail-safety and hazards in the

context of core-based design.

A. Fail-safety

We define that a core is fail-safe if, in the event of a failure,

all of the following requirements hold:



1) The core does not hinder correct operation of other

system components.

2) The core does not impair performance of other system

components.

3) If the core is self-testing, its state (healthy/faulty) is

reliably communicated to the system components that

depend on it.

The definition does not require the entire functionality of

a fail-safe core to be maintained in the event of a failure.

Instead, it puts limits to the possible misbehavior. While a

faulty fail-safe core is not guaranteed to maintain the service

it normally provides to the system, it must not disturb other

system components: Neither by preventing them from provid-

ing their service (first safety requirement), nor by deteriorating

their performance (second requirement; relevant for real-time

constrained systems). Whenever the service of a fail-safe core

is corrupt and the core is self-testing, the failure must be

reliably reported to the system (third requirement).

Note that a system composed of fail-safe components is not

automaticaly fail-safe or highly reliable. Such a system may

still fail if it cannot handle failures of single components. It

is the designer’s task to assure system operation under single

component failures. This task is, however, simplified by the

fact that the fault impact is confined to faulty components.

B. Hazard

We define hazard as any potential behavior of a core that

violates one or more safety requirements. For a given core,

the distinction between hazardous and safe behaviors must be

made with respect to the role of the device within a system.

In the following, we give examples of hazardous and safe

behaviors for some typical components of a System on Chip

(SoC).

Fig. 1 presents an exemplary SoC. A CPU, together with a

JTAG controller is connected to a high-performance bus. A

bus bridge connects the high-performance bus to a peripheral

bus.

CPU
JTAG

Controller
Bridge

Peripheral

Bus

arbiter

Fig. 1. Example system

Let us assume that the system is spanned by a scan-chain

that is controlled by the JTAG controller. While the system

operates in the functional mode, the scan chain is deactivated,

i.e., the JTAG controller drives the scan enable signal low.

In this mode, any erratic behavior of the scan enable signal

might corrupt the system state, causing violation of the first

safety requirement. Hence, for the JTAG controller we identify

that the erroneous assertion of scan enable in the functional

mode is a hazard. On the other hand, if a fault impairs debug

services of the JTAG controller, it is considered safe as none

of the safety requirements is violated.

Let us assume that the only operation performed by the

bus bridge is the transport of transactions from the high-

performance bus to the peripheral bus. Any data or address

corruption caused by a fault in the bridge is considered a

hazard, as it might violate the first safety requirement by

impairing communication of other system components. Often,

for infrastructure components such as the bridge, any deviation

from functional specification may be considered a hazard.

The peripheral core in fig. 1 is equipped with just the periph-

eral bus interface. It cannot hinder other system components,

except when it does not comply with the interface specifica-

tion. The majority of on-chip buses do not have any time-

out mechanism, and a deadlock is possible if a slave does

not acknowledge a request. In this case, the bus is blocked

and other system components cannot communicate. Hence, the

lack of acknowledgment from a peripheral core is identified

as a hazard.

III. METHODOLOGY

In the following, we present a methodology for characteri-

zation of core safety. The methodology is composed of four

steps: hazard identification (i), formal specification of hazards

(ii), core verification under fault condition (iii), calculation of

hazard metrics (iv).

A. Hazard identification

In this step, we identify faulty behaviors that have the potential

to violate any of the safety requirements. As presently there

is no method known that would identify potential hazards

automatically, the task is rather challenging. In our approach,

we tackle this problem with informal deduction, and – for

the sake of clarity and to bring more resolution to the hazard

metrics – we use the abstraction of fault-trees.

Fault-tree analysis is a mature analytical technique used to

find ways in which an undesired system state can be reached

[16]. A fault-tree itself is a graphical model of parallel and

sequential combinations of events leading to the root event,

i.e., an undesired system state. Fault-trees are constructed in

a top-down manner, starting from the root event (e.g. unsafe

behavior) and listing all contributing events. Dynamic fault-

trees [17] are used to model sequential dependency of events.

Here, for the sake of brevity, we restrict our discussion to

static fault-trees.

For each safety requirement, we construct a fault-tree with

violation of the requirement at the root. We then list all events

(or logical combinations thereof) that may contribute to the

unsafe behavior.

Fig. 2 presents an exemplary fault-tree for a bus bridge with

violation of the first safety requirement at the root node.

The bridge hinders other system components when it either

perturbs communication between other components, or when

it does not serve a communication request. Moreover, the



Bus bridge hinders other 

system components

Address decode 

failure

Wrong device 

activated
No device 

activated

Bus deadlock
Spurious

transaction issued

Communication

perturbed

Communication 

request not served

No 

acknowledgment

Device select 

asserted

Enable 

asserted

Fig. 2. Fault-tree of a bus bridge

system bus may be blocked by a faulty bridge, and the state

of other components may be affected if the bridge issues

spurious transactions. The disjunction of the identified events

is depicted in the fault-tree with an OR gate. In fig. 2, the tree

is developed further for the event of a spurious transaction. Let

us assume that the bus interface requires both a device select

and an enable signal. In this case, a spurious transaction can

only be issued if both the device select and the enable signal

are erroneously driven high. This is reflected in the fault tree

by an AND gate connected to the two events.

A cut-set of a fault-tree is defined as a set of events that

are required to occur together to cause the root event (unsafe

behavior). A minimal cut-set is a cut-set in which all the events

are essential for the root event to occur. Each minimal cut-set

of the fault-tree is identified as a hazard.

In the example, we identify that the simultaneous assertion

of the device select and enable signals leads to “spurious

transaction”, causing the root event to occur. The four events

constitute a minimal cut-set (marked gray in fig. 2), which

describes a hazard.

B. Formal specification of hazards

In the second step, each identified hazard is expressed for-

mally. To this end, the fault-tree is traversed bottom-up to

find logical and temporal properties of hazards. A formal

hazard property is expressed with Boolean or temporal logic,

or is described with any formal property specification language

such as PSL1.

For instance, let us specify a property for the hazard marked

in fig. 2. The hazard occurs only when both the device select

(SEL) and enable (EN ) are high: SEL = 1∧EN = 1. The

next level of the fault-tree reveals that the hazard occurs only

when no transaction is being requested, as the transaction is

spurious (REQ = 0). Hence, the hazard is formally captured

by the Boolean formula: SEL = 1 ∧ EN = 1 ∧ REQ = 0.

1http://www.eda.org/ieee-1850

C. Core verification under fault condition

In the third step, we check if the identified hazards occur when

the core is subject to faults. A realistic circuit-level fault model

is assumed to account for low-level failure mechanisms such

as aging and soft-errors. To keep the methodology generic, at

this point we do not restrict it to any specific fault model.

For each fault in the circuit-level fault model, a faulty netlist is

created. Formal property checking is then employed to check

whether the faulty netlist satisfies any hazard property, i.e., if

the core is not fail-safe.

While the use of formal techniques guarantees accuracy, their

effort is exponential in the worst case. Optimistic estimates of

fail-safety can be acquired by fault-injection and simulation

of typical workloads, as in [18, 19].

D. Calculation of hazard metrics

The previous step provided a set of circuit-level faults that

were proven unsafe. For each hazard, we define its hazard

metric as the number of unique faults in the circuit-level fault

model that were found to potentially trigger the hazard. The

overall hazard metric is defined as the number of unique faults

that caused any hazard in any of the fault-trees. Note that the

absolute metric was chosen to enable comparison of hazard

metrics for cores of different sizes.

The output of the characterization process consists of:

• The three fault-trees composed for all safety require-

ments,

• formal specification of hazards,

• hazard metrics, including the overall hazard metric.

E. Discussion

The process of hazard identification and specification requires

a considerable effort and knowledge about the core and

the interfaces that it should comply with. Moreover, as the

proposed approach uses deduction in fault-tree construction, it

cannot be guaranteed to identify all possible hazards. A formal,

inductive method for specification of hazards from core and

interface specifications remains a research challenge. However,

as hazard properties depend primarily on specification of inter-

faces, libraries of hazard properties can be shared for common

interfaces and bus architectures. To take full advantage of the

methodology, realistic fault models, synthesis libraries, and

hazard properties for common buses and core classes should

ideally be standardized and shared across different vendors.

IV. CASE STUDY

Within a bus-centric system, all components that constitute

the bus infrastructure are very critical, as they may directly

prevent other system components from correct operation. For

this reason, the case study is based on two AMBA AHB/APB

bus bridges:

• ahb2apb: A commercial IP core

• apbctrl: Part of the Gaisler Research IP (GRIP) library



Design

Model

Synthesis

Netlist

Fault

Injection

Property 

checking

Fault

Model

Generic

Library

Hazard metric

Fault-tree 

analysis

Hazard 

property

Faulty netlists

Design/Interface

Specification

Fig. 3. Characterization flow

The bridges are configured for 16 APB slaves residing at

consecutive addresses that are identical in the two cores.

The case study gives an insight into two perspectives: that of

the vendor (characterization process), and that of the system

integrator (comparative safety study).

A. Circuit-level fault models

Let us define a design model D as a set of combinational and

sequential components c ∈ D. We assume a generic library

consisting of arbitrary single-output components such as logic

gates and single-output flip-flops.

Based on the design model D, we define two fault models:

• Fp – permanent fault model – equivalent to the single

stuck-at fault model with a restriction that a fault fc ∈ Fp

may only occur on the output of component c (a gate or

a flip-flop).

• Ft – transient fault model – assumes that for fault fc ∈

Ft the output of component c (or its state in case of a

sequential component) is flipped in an arbitrary cycle, and

only once in a lifetime.

Fp models defects, whereas Ft addresses soft errors and

sporadic timing violations. The hazard metrics derived for Fp

provide predictions for yield, whereas the metrics related to

Ft give insight into design vulnerability.

B. Experimental setup

The characterization flow is presented in fig. 3. The design

models are synthesized for a generic cell library (lsi10k). After

synthesis, the examined cores consist of:

• ahb2apb: 1467 gates, 107 flip-flops

• apbctrl: 1905 gates, 91 flip-flops

The Ft fault model includes one fault for each component,

whereas Fp has two faults per component. This gives the

following number of faults in the examined cores:

• ahb2apb: 1574 in Ft, 3148 in Fp

• apbctrl: 1996 in Ft, 3992 in Fp

For each fault in the fault model, a faulty netlist is created

according to the rules shown in fig. 4. The inputs of the fault

injecting gates (sa0, sa1, spike) constitute additional primary

inputs that control fault injection.

We manually construct fault-trees based on the AMBA bus

specification and specify hazard properties. Then, formal prop-

erty checking is performed, employing a commercial property

checking tool. The tool is provided with: The faulty netlist,

formal hazard properties, as well as fault injection and AMBA-

related assumptions expressed formally in PSL language. The

total of n runs of the tool is performed, where n is the number

of faults in a fault model. For every fault, the tool is used to

prove that the fault may trigger a hazard (satisfy the hazard

property). For each hazard, we store the list of triggering faults.

C. Hazard properties and assumptions

As the cores have the same functionality and the same in-

terface, they are characterized by the same hazards. Since

they constitute bus infrastructure and just mediate in com-

munication between other components, almost any deviation

from their functional specification causes violation of the first

safety requirement. Through fault-tree analysis, we identified

13 hazards related to the first safety requirement. Due to

limited space, hazards that impair performance (second safety

requirement) are not considered here. The third safety require-

ment is skipped as the examined cores are not self-testing. For

the sake of brevity, instead of presenting the large fault-tree,

in the following we briefly describe the identified hazards:

1) wrong_data_read: Upon a valid AHB read transaction, the data
forwarded from the APB bus is corrupted.

2) wrong_data_write: Upon a valid AHB write transaction, the data
forwarded to the APB bus is corrupted.

3) wrong_decode: Upon a valid AHB transaction, the corresponding
APB slave is not enabled (PSEL signal or PENABLE not asserted).

4) wrong_address: Upon a valid AHB transaction, the address for-
warded to the APB bus is corrupted.

5) invalid_enable: APB enable state is longer than one cycle (PEN-
ABLE signal asserted for more than one cycle).

6) psel_onehot: More than one APB slave is enabled (the APB PSEL
signal vector is not one-hot encoded).

7) spurious_enable: APB bus is enabled although no valid transac-
tion was issued on the AHB bus.

8) read_on_write: Upon a valid AHB write transaction, an APB read
transaction is issued.

GATE

=1

>=1
&

D

Q

D

Q

D

Q

GATE

>=1
&

sa0
sa1

spike

sa0
sa1

GATE

=1

spike

Element Fp-type fault Ft-type fault

Fig. 4. Fault injection rules



9) write_on_read: Upon a valid AHB read transaction, an APB write
transaction is issued.

10) spurious_read: APB read transaction is issued although no valid
AHB read transaction occurred.

11) spurious_write: APB write transaction is issued although no valid
AHB write transaction occurred.

12) deadlock: A valid AHB transaction request is never acknowledged
(the HREADY signal is never asserted).

13) no_service: A valid AHB transaction is not followed by an APB
transaction.

The safety requirements must only hold under the assumption

that the environment of a core operates according to specifi-

cations. Here, the assumption is that the AHB arbiter, AHB

master (initiator) and all APB slaves operate according to

the AMBA specification. This assumption is expressed by the

following assertions:

1) C_ahb_decode: The AHB HSEL signal is asserted only when
HADDR signal corresponds to the selected AHB slave.

2) C_ahb_hsel_onehot: The AHB HSEL signal vector is either de-
asserted or one-hot encoded.

3) C_ahb_stable: Whenever a new AHB transaction has been issued,
the HSEL, HADDR, HTRANS, HWRITE, HSIZE, HBURST and
HWDATA signals remain stable until the HREADY signal is asserted.

4) C_apb_stable: Whenever an APB slave is enabled, the data on the
PRDATA bus is stable.

Additional assumptions are created to control fault injection.

In case of an Ft-type fault, the input to the fault-injecting

XOR gate (spike) receives a positive, one cycle long spike in

an arbitrary clock cycle. This is expressed with two formal

assumptions: The spike signal may be asserted in any cycle,

and after this occurs, it is deasserted forever. For an Fp-

type fault, the inputs to the fault-injecting OR/AND gate are

asserted to “0” or “1”, depending on whether a stuck-at-”0”

or stuck-at-”1” is to be injected, respectively.

D. Results

The property checking tool was most often able to prove or

disprove an assertion in less than 5 seconds on a desktop PC,

whereas the per-assertion time limit was set to 10 minutes.

The total analysis time of a single core with a single fault

model was from 20 to 51 hours. No hazard property was left

inconclusive, i.e., all of them were either disproved or proved

within the time limit.

Fig. 5 presents characterization results for the two cores

based on the transient fault model (Ft). The hazard called

unsafe_behavior represents the disjunction of all haz-

ards. Each bar indicates a particular hazard metric, whereas

the first bar corresponds to the overall hazard metric.

For the apbctrl core, out of 1996 Ft-type faults

about 71% were proven to trigger at least one hazard

(unsafe_behavior). Out of these 1417 unsafe faults,

more than 86% affect data in read transactions (cause the

wrong_data_read hazard). This is expected as the bridge

contains a large 16-way data multiplexer. Other hazards

are much less frequent – by one up to three orders of

magnitude. The most serious hazards occur relatively sel-

dom: For 7 faults data is written instead of being read

(write_on_read), for 3 faults there is a spurious write

transaction (spurious_write), and just 3 faults cause a

deadlock on the AHB bus (deadlock). It was proven that no

fault in apbctrl prevents forwarding of an AHB transaction

to the APB bus (no_service).

The overall hazard metric (unsafe_behavior) for

ahb2apb is higher by 10%. This means that, with respect to

the transient fault model, this core is in general less dependable

than apbctrl. Moreover, some serious hazards are much

more frequent for ahb2apb. For instance, address corruption

occurs 5 times more often, multiple slaves are enabled 3 times

more often, data is written instead of being read 2 times more

often, and 2 times more often a spurious write transaction

is generated. However, unlike apbctrl, the ahb2apb core

never causes a deadlock on the AHB bus.

Similar comparison is made for the permanent fault model,

as shown in fig. 6. The relations between metrics of the two

cores are close to those from the previous comparison. A clear

exception is the deadlock hazard: for Fp it is 3 times more

frequent in the ahb2apb core.

1
4
1
7

1
2
2
1

1
4
5

1
1
0

6
8

6
1

3
0

1
4

1
3

7

9

1
5
6
4

1
1
3
0

1
4
1

1
5
5

3
4
9

1
4
1

9
2

2
3 2
8

1
7

9

610

100

1000

10000
apbctrl

ahb2apb

1
4
1
7

1
2
2
1

1
4
5

1
1
0

6
8

6
1

3
0

1
4

1
3

7

9

3 3

1
5
6
4

1
1
3
0

1
4
1

1
5
5

3
4
9

1
4
1

9
2

2
3 2
8

1
7

9

6

1

10

100

1000

10000
apbctrl

ahb2apb

0 0 0

Fig. 5. Number of hazardous Ft faults

2
7
4
7

2
3
6
3

2
6
9

1
2
2

1
0
5

3
6

3
0

1
4

1
3

7

9

1
1

9
0

3
0
8
5

2
1
9
7

2
6
9

1
7
8

5
8
9

1
9

1
0
1

2
3 2
5

1
7

9

6

3
3

1
4
2

10

100

1000

10000
apbctrl

ahb2apb

2
7
4
7

2
3
6
3

2
6
9

1
2
2

1
0
5

3
6

3
0

1
4

1
3

7

9

3

1
1

9
0

3
0
8
5

2
1
9
7

2
6
9

1
7
8

5
8
9

1
9

1
0
1

2
3 2
5

1
7

9

6

3
3

1
4
2

1

10

100

1000

10000
apbctrl

ahb2apb

Fig. 6. Number of hazardous Fp faults



Hazard (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) wrong data read 1221 - - - - - - - - - - -
(2) wrong data write 12 145 - - - - - - - - - -
(3) wrong decode 89 13 110 - - - - - - - - -
(4) wrong address 8 9 25 68 - - - - - - - -
(5) invalid enable 43 9 60 25 61 - - - - - - -
(6) psel onehot 30 0 30 0 30 30 - - - - - -
(7) spurious enable 13 9 14 9 14 0 14 - - - - -
(8) read on write 11 13 13 9 9 0 9 13 - - - -
(9) write on read 7 7 6 3 3 0 3 6 7 - - -
(10) spurious read 8 9 9 9 9 0 9 9 3 9 - -
(11) spurious write 3 3 3 3 3 0 3 3 3 3 3 -
(12) deadlock 3 0 0 0 0 0 0 0 0 0 0 3

TABLE I
NUMBER OF Ft-TYPE FAULTS TRIGGERING PAIRS OF HAZARDS IN APBCTRL CORE

As ahb2apb contains less logic components than apbctrl

and none of the cores contains any explicit fault tolerance

mechanisms, it would be reasonable to expect that ahb2apb

is safer, i.e., less faults lead to its unsafe behavior. However,

our results show the opposite: Even though ahb2apb contains

less digital components, its overall hazard metrics are higher.

Although more expensive in terms of area, apbctrl is more

dependable with respect to both fault models.

Table I shows a matrix representation of the Ft-based charac-

terization results for the apbctrl core. The first column and

the first row list the hazards. The rest of the table constitutes

a symmetric matrix: Each element in the matrix represents the

number of faults that may trigger the two hazards referenced

by the row and the column. The elements on the diagonal

correspond to the hazard metrics.

The matrix representation allows to study the relationships

between hazards. For instance, read_on_write is trig-

gered by 13 faults, which include all faults that trigger both

spurious_read and spurious_write, and almost all

of the faults triggering write_on_read. If the core is

hardened against these 13 faults, four severe hazards can be

eliminated.

V. CONCLUSION

We presented a methodology for dependability characteriza-

tion that augments core-based design with qualification and

quantification of safety. We defined fail-safety as the ability

of a design to degrade in a way that does not prevent other

system components from correct operation. Unsafe behaviors

(hazards) are identified using fault-tree analysis. We check if

the hazards occur by formal property checking and calculate

hazard metrics as the number of faults in a circuit-level fault

model that potentially trigger them. Our definition of hazard

corresponds to the most critical system failure modes, i.e.,

problems that may lead to total system failure. The approach

is to be followed by core vendors, which are encouraged to

derive hazard metrics and supply them to the customer as a

standard deliverable.

Experimental results on an AMBA bus bridge showed that,

from the perspective of a system integrator, the character-

ization results provide valuable qualitative and quantitative

statements enabling early comparative dependability studies.

Hazard metrics explicitly point out the most probable failure

modes. They constitute valuable input for system safety stud-

ies, and provide justification for mitigation actions.

REFERENCES

[1] R. Gupta and Y. Zorian, “Introducing core-based system design,” IEEE Design Test

of Computers, vol. 14, no. 4, pp. 15–25, 1997.
[2] R. Ranjan, H. Akhiani, Y. Antonioli, C. Deaton, N. Ip, and L. Loh, “Towards

harnessing the true potential of ip reuse,” in DesignCon, 2009.
[3] M. Keating and P. Bricaud, Reuse methodology manual for system-on-a-chip

designs. Springer, 2002.
[4] K. Werner, “Can IP Quality be Objectively Measured?” in Design, Automation

and Test in Europe, ser. DATE’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 330–331.

[5] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” IEEE Micro, vol. 25, pp.
10–16, November 2005.

[6] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technolo-
gies,” IEEE Trans. on Device and Materials Reliability, vol. 5, no. 3, pp. 305–316,
Sept. 2005.

[7] J. Voas, “Certifying off-the-shelf software components,” Computer, vol. 31, no. 6,
pp. 53–59, Jun. 1998.

[8] D. Hamlet, D. Mason, and D. Woitm, “Theory of software reliability based on
components,” in International Conference on Software Engineering, ser. ICSE’01,
May 2001, pp. 361–370.

[9] F. Saglietti, F. Pinte, and S. Sohnlein, “Integration and reliability testing for
component-based software systems,” in Software Engineering and Advanced Ap-

plications, ser. SEAA’09, 2009, pp. 368 –374.
[10] R. Leveugle, “A new approach for early dependability evaluation based on formal

property checking and controlled mutations,” in IEEE International On-Line Testing

Symposium, ser. IOLTS’05, 2005, pp. 260–265.
[11] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft error resilience,” in

Design, Automation and Test in Europe, ser. DATE’07. San Jose, CA, USA:
EDA Consortium, 2007, pp. 1442–1447.

[12] G. Fey and R. Drechsler, “A basis for formal robustness checking,” in International

Symposium on Quality Electronic Design, ser. ISQED’08, 2008, pp. 784 –789.
[13] G. Fey, A. Sülflow, and R. Drechsler, “Computing bounds for fault tolerance

using formal techniques,” in Design Automation Conference, ser. DAC’09. New
York, NY, USA: ACM, 2009, pp. 190–195.

[14] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao, “Coverage estimation for symbolic
model checking,” in Design Automation Conference, ser. DAC’99, 1999, pp. 300
–305.

[15] H. Chockler, O. Kupferman, and M. Vardi, “Coverage metrics for formal
verification,” in Correct Hardware Design and Verification Methods, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2003, vol. 2860, pp.
111–125.

[16] W. Vesely and N. Roberts, Fault tree handbook. Nuclear Regulatory Commission,
1987.

[17] J. Dugan, S. Bavuso, and M. Boyd, “Dynamic fault-tree models for fault-tolerant
computer systems,” Reliability, IEEE Transactions on, vol. 41, no. 3, pp. 363 –377,
sep 1992.

[18] M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,” IEEE

Computers, vol. 30, no. 4, pp. 75–82, Apr. 1997.
[19] K. Goswami, “Depend: a simulation-based environment for system level depend-

ability analysis,” IEEE Computers, vol. 46, no. 1, pp. 60 –74, Jan. 1997.


