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Abstract—Networks-on-Chip (NoCs) are implicitly fault tol-
erant due to their inherent redundancy. They can overcome
defective cores, links and switches. As a side effect, yield is
increased at the cost of reduced performability. In this paper,
a new diagnosis method based on the standard flow of industrial
volume testing is presented, which is able to identify the intact
functions rather than providing only a pass/fail result for the
complete switch.

The new method combines for the first time the precision of
structural testing with information on the functional behavior
in the presence of defects to determine the unaffected switch
functions and use partially defective NoC switches. According
to the experimental results, this improves the performability
of NoCs as more than 61% of defects only impair one switch
port. Unlike previous methods for implementing fault tolerant
switches, the developed technique does not impose any additional
area overhead and is compatible with any switch design.

Index Terms—Network-on-Chip, Graceful Degradation, Per-
formability, Logic Diagnosis

I. INTRODUCTION

Networks-on-Chip (NoCs) have emerged as a new message

passing infrastructure to supersede the traditional bus struc-

tures and meet the communication requirements in large SoCs

[1], [2], [3]. An NoC contains a large number of switches

and interconnects that form a structure spanning across the

chip. To maintain acceptable yield, such large scale structures

must provide redundancy and tolerate spot defects. In many

cases, yield may be traded off against performance. The most

popular example is speed binning for high-end processor chips.

Flash memories may be delivered, even if a few blocks are not

functional and not accessible. Cache structures are inherently

fault tolerant, and defects can be mastered by disabling the

corresponding lines and reducing the cache capacity [4].

In a similar way, defective switches of an NoC can be

discarded after testing as long as the available redundancies

ensure connectivity, perhaps with degraded performance. The

hardware structure of each switch in an NoC is tested after pro-

duction [5], [6], [7], at power-up or on demand [8]. Switches

that fail these structural tests are disabled and isolated [9]. The

NoC compensates for this loss to a certain degree by fault-

tolerant routing. Packets are routed over alternative paths to

ensure connectivity between as many cores as possible [9],

[10], [11], [12].

By disabling defective switches, the overall performance of

the system decreases because cores can get isolated from the

network and the diverged traffic can cause congestion. The

ability of preserving performance while tolerating a certain

number of defects in a design is called performability. The

performability is increased, if not only complete switches can

be disabled but also defective links and ports in a more fine

grained way [13].

Graceful degradation in the NoCs has been already dis-

cussed in the literature. But, none of the previous studies

have used the standard test flow for identifying fault-free

switch ports. This is the main contribution of the current

work. In this paper, for the first time, a technique based

on structural test and diagnosis methods is presented for

identifying and retaining the fault-free switch ports for system

use and therefore improving performability and yield.

The approach here is a completely new technique based on

the standard testing scheme, which can deal with an arbitrary

class of switches in order to handle graceful degradation.

Unlike the method presented in [8], the method does not

impose any additional hardware overhead since we assume

the standard flow and architecture of industrial volume test

to determine defect locations inside the NoC switches. By

mapping the structural defect information to NoC switch

functions, we provide detailed information for fault tolerant

routing.

The rest of this paper is organized as follows: The next

section introduces the general concept of the approach and

compares it with the state of the art. Section III, IV, and V

describe the identification of the remaining functionality of

a switch. Section VI applies this method to a typical switch

and presents a thorough performability analysis with NoCs of

various configurations.

II. PROBLEM DEFINITION AND STATE OF THE ART

The overall flow of the approach is depicted in figure 1.

The main challenge is to identify the remaining capabilities

of a defective switch from structural test data. It must be

guaranteed that deactivating certain ports indeed confines all

fault effects of the defect. The method to achieve this consists

of three steps:

1) The structural test data is analyzed by an efficient logic

diagnosis algorithm to identify the defect location within

the random logic of the switch (Logic Diagnosis block

in figure 1).

2) For each possible function of the switch, it is determined

if it may be affected by the identified defect (Functional



Fig. 1. Overall flow

Mapping block of figure 1).

3) Finally, the ports associated with the affected functions

are disabled (Function Lookup & Switch Reconfigura-

tion block in figure 1).

The method can be applied to any NoC architecture with

arbitrary switches adhering to the following conditions:

• A requirement for degrading an NoC is that high fault

coverage must be achievable in test mode. As a con-

sequence, each individual switch must be accessible by

ATE, test data must be transported to the switch and test

responses have to be propagated to the outside. Many

efficient NoC test strategies [6], [14], [7], [15] already

satisfy these requirements. This condition generally has

to be fulfilled for a proper production test.

• To efficiently utilize the test results for degradation, a

switch must allow independent deactivation of any input

or output port. This feature is already supported by many

fault tolerant NoCs to isolate defective switches [9], [11],

[8] through adding a single bit to any input and output

port, which indicates the faulty / non-faulty status of that

port. A faulty input is deactivated by configuring the

router to ignore any data and requests coming from the

respective input port. A faulty output port is deactivated

by redirecting packets destined for the respective port to

an alternative output port.

• The NoC must implement a fault tolerant routing scheme

like [16], [13], [17], [9] to guide diverged traffic over

alternative routes to the correct destinations.

To formalize the functionality of a switch in general, we

define the set of P ports of the switch and we denote a switch

function x⊲y as the routing of data from input port x to output

port y (x, y ∈ P ). As an example, consider a switch in a 2D

mesh with four ports to neighboring switches and one port to

the connected core. In this case P = {N,E,W, S,C}. Such a

NoC switch can forward data from every input port to every

other output port (if 180◦ turns are not allowed), this results

in 5 ·4 = 20 distinct functions. This sort of function definition

in the switch has already been used as functional fault model

for NoCs [15], [18], [19], [20].

Compared to the previous fault tolerant approaches for iden-

tifying switch portions to be deactivated [11], [8], our method

does not introduce any hardware overhead and utilizes the

available test structures which must be added for production

test. Also, it is not designed for online operation but to be

applied after production test. Thus, it can make use of recent,

powerful diagnosis techniques, which are able to track down

defects to signals instead of defective units.

The following chapters provide a detailed description of the

diagnosis flow and the mapping of structural defect informa-

tion to NoC functions.

III. STRUCTURAL FAULT DIAGNOSIS

According to section II, the first step of the proposed method

consist of well-established test and diagnosis techniques. The

new contribution is the mapping of all possible structural faults

f from a fault model F to switch functions, which is described

in detail in section IV (step 2). The first step is performed

once for every NoC during production test and explained in

the following paragraphs.

Structural fault diagnosis [21], [22], [23], [24] uses the

available test fail data to locate the defects within the random

logic of faulty switches. Often it is sufficient to locate a fault

site, i.e. some signals or structures affected by a defect, to

guide physical failure analysis or to provide data for volume

diagnosis. This is not sufficient here, because additional fault

sites may be present in other parts of the circuit which are not

part of the diagnosis result, and we must have evidence that the

remaining circuit structures are defect-free. To achieve this, the

logic diagnosis algorithm has to classify the faulty behavior

of the circuit to be either completely explainable by the

identified defects or not. If the signature of the circuit cannot

be completely explained, some unknown interactions among

multiple fault sites are present and the switch is completely

disabled. If the identified defects can explain the signature of

the circuit completely, there is no indication that the remaining

circuit structure is defective.

Simulation based cause-effect diagnosis by using the single

location at-a-time (SLAT) paradigm [23] is an appropriate

technique for finding single defects. This technique uses the

simulation results for all single stuck-at faults. As we cannot

assume that a punctual defect really behaves like a stuck-at

fault, a more general fault model of single fault sites will be

used.

A defect can disturb a victim signal v in arbitrary ways. In

any case the victim signal v will carry a faulty value at least

in some situations. In the worst case, the victim signal v will

always generate a faulty value, i.e. the opposite of the good

value. We call this model unconditional line flip or v ⊕ [1].
The so-called conditional line flip model consists of a fault

site b and a condition [cond] which is described by a Boolean,

temporal or even random expression. The term b⊕ [b−1 ∧ b],
for instance, describes a slow to rise transition fault from time

t = −1. More details are found in [25]. By using a test set

with sufficiently high resolution, the algorithm from [22] is

able to identify all faults affecting a single site, and reports,

if the test responses can or cannot be explained by a single

conditional line flip.

Now, consider the diagnosis outcome reports that the faulty

responses generated by one specific switch in the NoC can be



explained by a single fault f . Let us assume, the functional

mapping described in the next chapter (step 2) has identified,

which switch functions are affected by f . The affected func-

tions and ports are looked up and the according reconfiguration

is initiated (step 3).

Figure 2 presents an example of using a semi-faulty switch

in the NoC. In this 2D mesh, production test, subsequent

diagnosis and functional mapping have evaluated that defects

affect the southern output port of switch (1, 0) and the northern

input port of switch (1, 1). Both are deactivated. If core A

sends a packet to B, the data will be rerouted via switches

(2, 0), (2, 1) or (0, 0), (0, 1) alternatively using an appropriate

fault tolerant routing as described in [13], e.g.

Fig. 2. 2D grid topology

The following chapters explain, how to determine, which

functions and ports are affected by a fault f .

IV. MAPPING STRUCTURAL FAULTS TO SWITCH

FUNCTIONALITY

This section describes the mapping between structural faults

and switch functions, which is done once during the NoC

development. The result is stored into a dictionary and looked

up after completion of the first step and prior to the third step

of our diagnosis approach.

While the diagnostic procedure described above delivers

both fault sites and fault conditions, the reconfiguration has to

be based on worst-case conditions and assumes unconditional

line flip faults. This way, the remaining functionality will not

rely on the behavior of the fault, which may change over time.

The mapping of every fault f to the set of switch functions,

which it may influence, is determined in two steps. The first

is a topological preprocessing and the second is functional

reasoning. A switch can be represented in a combinational

model. Figure 3 provides an example for such a representation.

The depicted switch has five ports P = {N,S,W,E,C} and

additional inputs and outputs from and to its own control logic.

Besides, the control input assignments for forcing the switch

into any of its functions x ⊲ y are known.

A. Topological Preprocessing

A fault f can disturb the signals within the combinational

circuit in arbitrary ways. Let v be the signal associated with f .

If there is no topological path from the victim signal v neither

to the output port o ∈ P nor to the router states, the fault f

does not affect the functions x⊲o (x ∈ P ). Only the remaining

functions for every o′ �= o have to be analyzed.
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Fig. 3. Combinational logic of the switch with a fault f .

This simple observation already provides a good approxi-

mation of unaffected functions for all faults close to the output

ports of the switch. However, most signals near the input

ports have structural paths to many outputs and the router

state. Hence, the topological preprocessing is pessimistic and a

complementary analysis technique is needed to obtain a better

approximation for unaffected functions.

B. Functional Reasoning

Functional reasoning determines exactly the switch func-

tions that are affected by a fault, and the according ports that

have to be disabled. This is achieved by means of constrained

ATPG. The fault f is injected and the control inputs are set

(constrained) to enable a certain switch function under which

the switch needs to be checked. Those output ports which are

not of interest for the current check are masked out by ATPG

constraints as well (in every check, only one switch output port

remains unmasked). Then, ATPG is performed, and if ATPG

is able to generate a test pattern activating and propagating the

fault under the given constraints, this proves that the fault f in

combination with the recent function may affect the unmasked

output port. Depending on the function and the output port, it is

either sufficient to disable a certain function or the output port

has to be disabled. The distinction between these two cases

is done by categorizing the checks into two classes (output

port conditions and function conditions). In consequence, the

complete analysis for every fault f may have the following

implications for reconfiguration:

1) Switch condition.

The switch is disabled completely in case of:

a) Logic diagnosis cannot explain the faulty behavior

by pointing to a single fault site.

b) ATPG is able to propagate the error signal to the

router states.



2) Output port conditions.

For each output port o and each control signal assign-

ment selecting a function x ⊲ y �= o, we mask all the

ports o′ �= o and try to propagate the fault f to output o.

If this is successful, the port o may generate erroneous

traffic even if it is not selected by the control logic. Thus,

it has to be disabled.

3) Function conditions.

For each function x ⊲ y not ruled out by the topological

preprocessing and y not disabled in step 2: We mask

now all the outputs o �= y and assign the control signals

to select x⊲y. If ATPG is able to propagate f to y under

this constraint, x ⊲ y has to be avoided.

ATPG should always be able to generate the test or to prove

redundancy, since the switch is a rather small circuit. However,

if ATPG would fail due to a timeout and abort a fault, the

corresponding functions have to be removed as well.

V. SWITCH RECONFIGURATION

The reconfiguration of a switch affected by a fault f is

now determined by finding a minimal vertex cover in a

graph constructed with the outcome of conditions 2 and 3

of functional reasoning. The graph contains a vertex for every

input and every output port of the switch. In the example with

P = {N,S,W,E,C} there are in consequence 10 vertices.

We add an edge from input port x to output port y, if the

function x ⊲ y was disabled in step 3. Then, all output ports

disabled in step 2 are marked as part of the vertex cover in the

graph. Additional vertices are marked using a simple heuristic

until all edges (avoided functions discovered in step 3) are

covered. The marked vertices are the ports to be disabled in

order to confine the effects of fault f . This information is now

stored in a dictionary for fast look-up after test application to

the NoCs.

As an example, assume in a switch with P =
{N,S,W,E,C} step 3 indicates that functions N ⊲C, N ⊲S,

and W ⊲E are disabled. Also, step 2 denotes that output port

E is disabled. The graph is constructed like figure 4(a). Since

vertex out E is marked, the function W ⊲E has been covered

already. To avoid functions N ⊲ C and N ⊲ S the efficient

decision is to mark input port N. Marked vertices of figure

4(b) are the ports that have to be disabled in order to confine

the fault effects.
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Fig. 4. Minimal vertex cover for a faulty switch

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results on a typical

switch designed for NoC mesh architectures. Figure 5 shows

the internal structure of the NoC switch from [7] used in our

experiments. It consists of 5 output ports and 5 input ports.

An output port contains a multiplexer to select data from any

other input ports. The multiplexers of all output ports form the

crossbar switch, which is controlled by the router. An input

port contains a FIFO which buffers all received flits until they

are processed by the router. Corresponding to [7] and [16],

the router implements a fault tolerant wormhole XY routing

scheme and processes each input port in a round robin fashion.
...

Port N
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o

r
t W
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r
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E

Port S

Router
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controllers, send/

receive control logic, 
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Control Logic
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Fig. 5. A typical NoC switch

The benefit of retaining the degraded switches for system

use is evaluated by measuring the performability of NoCs

under the influence of randomly injected defects.

The router, the crossbar and additional control logic to

generate and process the handshake signals of the ports are

random logic synthesized from VHDL and mapped to the

lsi10k technology library. Since recent commercial ATPG tools

do not support the line flip fault model, we conducted our

experiments on the conditional stuck-at fault model.

A. Remaining Functionality

The switch has been analyzed using the method presented,

and the dictionary was created, which maps each fault to

specific input or output ports to be deactivated. Table I shows

the statistics of the generated dictionary. We observe that more

than 61% of the total random logic of the switch is dedicated to

a single input or output port. In other words, a defect within

this portion of the switch can be tolerated by disabling one

input or output port while the remaining nine input/output

ports of the switch are still available to transfer packets.

TABLE I. Portion of dedicated random logic for each port.

Port Stuck-at faults
count %

input C 194 5.90%
output C 200 6.05%
input S 195 5.90%
output S 209 6.32%
input W 195 5.90%
output W 215 6.50%
input N 195 5.90%
output N 212 6.41%
input E 195 5.90%
output E 213 6.40%

Sum 2023 61.18%



B. Performability

This section details the amount of performance preserved by

our scheme under a certain number of defects in the switches

of the NoC. Each experiment was performed with 100 defect

conditions, where a defect condition is a subset of all possible

stuck-at faults, and the results were averaged. For each defect

condition, a defined number of stuck-at faults are randomly

injected into the random logic of the switches in each NoC. A

structural test and the proposed diagnosis method are applied.

The test results are used to create two cycle accurate

SystemC simulation models [13] of the degraded NoC. In

the first model, every failing switch is completely isolated by

deactivating the ports of all adjacent switches. This represents

the state of the art. In the second model, only the ports

necessary to tolerate the faults are deactivated according to

our proposed diagnosis approach. If a degraded switch looses

its direct connection to a core but is still able to forward

traffic through neighboring switches, the number of cores

decreases while the available bandwidth remains unchanged.

If a degraded switch looses connections to some neighboring

switches but the core remains connected, the available band-

width decreases with constant number of cores. Therefore, two

performability measurements are considered independently:

(1) the connectivity, and (2) the communication performance.

1) Connectivity: The user expects from the system that all

available cores can communicate with each other. Let a and

b be two arbitrary nodes visible to the user. To ensure the

requirement above, there must be a communication path both

from a to b and from b to a. If we consider the cores to be

nodes in a graph and add edges between all node pairs which

are able to communicate bidirectionally, then the available

cores are just the ones contained in the largest clique of this

graph.

Table II compares the average number of linked cores (the

average clique sizes) in both models for various fault counts

in a 20x20 NoC. We observe that the number of usable nodes

increases significantly by using degraded switches. This is due

to two factors. First, cores adjacent to defective switches are

often still reachable because only a port towards a neighboring

switch is affected. This is of course not possible, if a switch

is completely disabled. Second, a completely disabled switch

may lead to a partitioning of the network.

TABLE II. Number of linked cores in a 20x20 NoC

#faults #linked cores
(averaged over 100 defect conditions)

with degraded switches removed defective switches

1 399.57 399.00
2 399.25 398.00
3 398.94 393.55
4 398.49 392.52
5 394.24 391.01
7 390.04 371.15
9 393.28 365.34

11 392.03 368.14
13 385.14 347.36
15 387.45 329.74
17 362.06 294.92
20 365.95 273.42

2) Communication Performance: The second performabil-

ity measure is concerned with the communication performance

provided to the available cores. The performance is measured

by recording the number of packet drops under various net-

work loads.

In both models, each switch is connected to a traffic

generator core, which generates uniform traffic with various

loads. Each core is sending messages to any other core with

equal probability. Let ∆tmin be the minimum time interval

between two consecutive packet injections of a core. If a core

sends a packet at time t, it may send the next packet at time

t′ ≥ t+∆tmin. With ∆tavg ≥ ∆tmin being the average time

between two actual packet transmissions, the load per core is

defined as

loadcore =
∆tmin

∆tavg
· 100%.

All active cores in the network produce traffic with the same

load, loadcore. In a degraded network, some cores may be

deactivated as described before and the overall load of the

network decreases by the ratio of the number of linked cores

over the network size:

loadnet = loadcore ·
linked cores

network size
.

If the network is fault-free and all cores are active, then the

network load is the same as loadcore.

In a fault-free network, no packets are dropped because a

switch only accepts new data if its delivery can be guaranteed.

When we increase the load on a degraded network, packets

will be dropped due to overflowing FIFO-buffers. The ratio of

dropped packets

drop ratio =
number of dropped packets

number of injected packets
· 100%

indicates the communication performance retained in the de-

graded network.

The drop ratio is now measured separately under different

loads and different numbers of faults both on the network with

completely disabled switches and the network with degraded

switches. Figure 6 compares the average drop ratios in pres-

ence of various number of faults in 20x20 NoCs with a fixed

loadcore=14.5%.
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Compared to NoCs in which all defective switches are

completely disabled, the drop ratio is almost cut in half

by using the proposed method if more than 4 faults are

present in the network. This shows clearly the value of the

additional communication paths provided by the degraded

switches especially with high fault densities. Moreover, the

overall network load (loadnet) handled by the NoCs with

degraded switches is actually higher than the load handled

by the NoCs with disabled switches. This is due to the fact,

that the number of linked cores (table II) is higher in this

case and each additional core adds to loadnet. For instance,

with a constant value loadcore = 14.5% the network loads

for NoCs with 9 faults are loadnet = 13.24% in the case

of disabled switches and loadnet = 14.26% in the case of

degraded switches.

Similar performance gains can be observed under all net-

work loads. Figure 7 shows a plot of average drop ratios

over all network loads (loadnet) in 20x20 NoCs with 9

faults injected. The network with degraded switches is able

to deliver more packets under every traffic condition, too.

Moreover, figure 7 shows that even the maximum possible

loadnet improves from 66.22% to 71.28% in this case.
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VII. CONCLUSION

We presented a new testing approach to determine the

intact functions of defective switches in an NoC. Instead

of disabling defective switches completely, these unaffected

functions are retained to improve the total NoC performance.

The experiments show that about 61% of faults in the random

logic of a typical switch can be tolerated by deactivating

only one switch port. This fine-grained configuration increases

the number of pairwise connected cores and improves the

communication performance compared to an NoC where every

faulty switch is disabled completely.
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