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Abstract—Fault simulation of digital circuits must correctly
compute fault coverage to assess test and product quality. In
case of unknown values (X-values), fault simulation is pessimistic
and underestimates actual fault coverage, resulting in increased
test time and data volume, as well as higher overhead for design-
for-test. This work proposes a novel algorithm to determine fault
coverage with significantly increased accuracy, offering increased
fault coverage at no cost, or the reduction of test costs for the
targeted coverage. The algorithm is compared to related work
and evaluated on benchmark and industrial circuits.

Index Terms—Unknown values, fault coverage, precise fault
simulation

I. INTRODUCTION

In Design-for-Test and test generation, as well as in test ap-
plication, signal lines may take unknown (X) values. These X
values result from partially specified test patterns, or stem from
X sources within the circuit. X sources comprise uninitialized
or uncontrollable sequential elements in the circuit, clock
domain crossings or tristate circuitry. In sequential ATPG, the
problem of uninitialized sequential elements and resulting X
valued signals is known and has been solved by heuristic,
precise and hybrid test generation algorithms, which are able
to generate test sequences even in presence of X values.

Fault simulation algorithms such as the PPSFP (parallel
pattern single fault propagation) and the concurrent algorithm
[1–4] can be used to pessimistically estimate fault coverage for
stuck-at and transition faults in presence of X values. Prin-
cipally, these algorithms use an n-valued logic with limited
number of symbols to compute the signal states in the fault-
free and faulty circuit.

In presence of X values at circuit inputs or internal signals,
a logic with a limited number of symbols is unable to correctly
compute the propagation of X values in the circuit as it fails
to correctly evaluate all reconvergences of X valued signals.
An example is given in figure 1, where a 3-valued simulation
computes the state of the output signal as X, while the signal
actually takes the value 1. Consequently, in fault simulation
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Fig. 1. Pessimism in 3-valued logic simulation and fault simulation

less faults can be classified as detected by a particular pattern
since fault activation and propagation require well-defined
logic values. State-of-the-art fault simulation cannot classify a
single stuck-at fault in figure 1 as detected, because the faults

are either not activated or propagated. A precise analysis how-
ever reveals that two stuck-at-0 faults are actually detectable
with the given input pattern.

Correctly evaluating fault coverage in these cases is impor-
tant to guarantee product quality with low defective part level.
A less pessimistic analysis may also increase fault coverage
without inferring any costs in terms of test data volume,
test time or design-for-test hardware overhead. In contrast,
this knowledge gives an additional potential for optimization
during test generation and design-for-test, promising reduced
overhead, or increased test quality without cost increase, or a
combination thereof.

Yet the computational effort of a precise analysis is very
high. Accurate logic simulation is already an NP-complete
problem [5], and each faulty machine must be evaluated
precisely w.r.t. each pattern. Here, we propose a novel algo-
rithm to compute fault coverage with significantly increased
accuracy and which is able to correctly classify a large number
of faults otherwise marked as undetected by state-of-the-art
fault simulation. This work focusses on the evaluation of fault
coverage and test quality of test sets for BIST, embedded
deterministic or external test in presence of X values resulting
from both partially specified patterns and X sources internal
to the circuit under test. In ATPG each fault needs to be
considered only once for the pattern under construction. In
contrast, fault simulation has to analyze all the generated
patterns w.r.t. all faults, or at least all patterns until fault
detection if fault dropping is used. Hence, for each fault, not
a single NP-complete problem has to be solved, but multiple,
and in the worst case as many as patterns are applied.

The reminder of this paper is organized as follows: The
next section presents the related work in logic and fault sim-
ulation, followed by a concise problem statement. Section IV
introduces the details of the proposed algorithm for improved
fault coverage computation. Section V compares the proposed
algorithm with related work, determines an upper bound on
fault detection and evaluates the approach by using benchmark
and industrial circuits. Finally, a short conclusion summarizes
the work.

II. RELATED WORK

Both approximative and exact methods have been proposed
to overcome the pessimism in logic and fault simulation.

A. Logic Simulation with Increased Accuracy

Precise logic simulation in presence of X values can be
mapped to symbolic simulation or expressed as a satisfiability
instance. In a symbolic simulation of the circuit, the Boolean
function of each signal is expressed symbolically. This can
be implemented by use of reduced ordered binary decision
diagrams (ROBDDs) [6]. ROBDDs provide a canonical rep-
resentation of Boolean functions and allow a fast test whether



a signal depends on an X source or not. In this latter case,
the signal actually has a fixed binary value ∈ {0, 1} and is
represented by a terminal node in the ROBDD. However, the
memory requirements for BDDs prohibit their use for some
circuit structures, such as multipliers.

A different approach for exact logic simulation is based on
computing the forward implication at each gate by analyzing
the intersection of the input cube with the implicants of the
function and its inverse [7]. While the authors report results
for circuits with up to 10 inputs, it is unclear whether this
cube-based algorithm scales to circuits of thousands of inputs.

The recent work in [8] investigates the propagation of X-
values resulting from uninitialized registers in high-level RTL
models by mapping the design to a quantified Boolean formula
(QBF) and solving it with an QBF solver. The proposed
algorithm can accurately identify whether uninitialized register
values are propagated over a limited number of clock cycles
and whether they are observable at sequential elements.

Determining the circuit behavior in presence of X values is
related to the problem of formal verification of circuits with
black boxes, where methods based on additional X constraints
and symbolic simulation techniques are applied [9, 10].

Since the computation effort for formal methods may
render the application to larger circuits impossible, pessimistic
algorithms have been proposed which still offer increased
precision compared to classical n-valued logic simulation. If
the domain of symbols is restricted, as e.g. in [11] or applied to
test generation as in [12], the simulation result cannot be exact.
However, runtime and space requirements are much lower than
for unbound symbolic simulation.

Indirect implications which are derived during static learn-
ing can also be used to increase the accuracy of logic simula-
tion [13, 14]. The idea stems from the ATPG domain and is
based on evaluating the contrapositive of signals in the circuit.
A learning critereon selects a subset of indirect implications
which are not trivially found by following all transitive direct
implications. While methods based on static learning require
only moderate computational effort, the number of the result-
ing indirect implications may be very high and increase the
size of the circuit representation significantly.

The approximative algorithm of [15] is based on circuit
partitioning of reconvergent regions. A partition starts at an
X-valued fanout stem and comprises all gates in the transitive
fanout until the fanout signal reconverges. If the reconverged
signal has an X-value in 3-valued simulation, the partition is
subject to 3-valued logic simulated twice, once with the fanout
stem set to 0 and then 1. The result at the reconvergence is
then fed back to the simulation of the whole circuit.

B. Fault Simulation with Increased Accuracy

The use of indirect implications in fault simluation has been
proposed by [16]. Due to the limitations of static learning
methods, the achievable precision is limited, i.e. only a small
subset of actually detectable faults is identified.

As in logic simulation, ROBDDs can also be used for
a symbolic simulation of the fault-free and faulty circuit
and fault classification. The application for symbolic fault
simulation of MOS circuits is described in [17].

Especially for sequential circuits, where Xs originating
from uninitialized sequential elements spread over the whole
circuit and significantly impair fault coverage, symbolic simu-
lation has been applied. Restricted symbolic simulation is used
in [18] for synchronous sequential circuits.

The use of ROBDDs for exact simulation in synchronous
sequential circuits has been proposed in [19]. Since this
approach is limited by the memory requirements of the BDD,
the authors of [20] propose a hybrid fault simulation approach
which uses exact ROBDD-based symbolic simulation until the
ROBDD memory requirement exceeds a given limit. In that
case, the hybrid approach switches to conventional 3-valued
simulation and potentially loses accuracy.

III. PROBLEM STATEMENT

This work targets the correct classification of stuck-at faults
in fullscan or combinational circuits for a given set of test
patterns in presence of unknown values from either partially
specified patterns or X sources internal to the circuit. This
section explains the used terminology and outlines an exact
solution for this problem.

Classical 3-valued logic simulation distinguishes between
the binary logic values 0 and 1, and a state with unknown
value, usually denoted U or X. For the following discussion,
we distinguish three types of X values, namely

• Pessimistic X values (PEX): The set of X values com-
puted by 3-valued logic simulation

• Real X values (REX): PEX values which can be proven
to depend on the assignments of X sources

• False X values (FEX): PEX values which do not depend
on the assignments on X sources. FEX values have a
logic value ∈ {0, 1}.

It follows that PEX = FEX ∪ REX and FEX ∩ REX = ∅.
To compute whether a fault in the circuit is detected by a

given test pattern, the test responses of the fault free and faulty
circuit must be computed and compared. One way to compute
the exact response of the fault free circuit is enumerating all
possible assignments of the X sources. If the output is constant
for all assignments, it is a FEX and the corresponding output
stuck-at fault is detected by the pattern.

This method is able to compute the exact fault coverage
of a test pattern set if the number of X sources is small.
Symbolic approaches based on ROBDDs, e.g., may allow a
larger number of X sources. However, they are not applicable
for all circuits due to known shortcomings of ROBDDs, as
for example dependence on variable ordering or exponential
growth for multipliers. The following section describes a
hybrid algorithm for the computation of fault coverage which
is more pessimistic than the exact method but practically
feasible even for large circuits.

IV. SAT-BASED EVALUATION OF FAULT COVERAGE

To reduce the high computational effort of a precise
analysis of every fault in a circuit with unknown values as
described in the previous section, the proposed algorithm uses
an efficient SAT-based method to classify the signal states
in the fault-free circuit under a given input pattern. The
accurately computed signal states are then used as basis for
the fault classification. This way, the serial analysis of all yet
undetected faults for each pattern can be avoided. By trading-
off computing time and precision in the fault classification
step, a significant improvement in accuracy compared to con-
ventional n-valued fault simulation is achieved with reasonable
computational effort.

The next section outlines the overall algorithm. Section
IV-B explains the SAT-based classification of signal states,
followed by the optimizations in the fault classification.



A. Overview

In contrast to pessimistic n-valued simulation, which only
computes the set of PEX values, the proposed logic simulation
algorithm is able to efficiently distinguish all REX and FEX
values. This information is then exploited during fault analysis.
The fault analysis step incorporates ideas from PPSFP fault
simulation [2–4]. Figure 2 shows the overall flow of the
algorithm. To determine the detected faults of a test set, each
pattern is precisely simulated. This is performed by an initial
pessimistic 3-valued logic simulation and by generating a
SAT instance which is then processed by a SAT solver. Only
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Fig. 2. Overview of fault coverage computation in presence of Xs

reconvergences of PEX values have to be handled by the
SAT solver. The results are the sets of REX and FEX valued
signals in the fault-free circuit (step I and II in the figure).
Based on this information, the activated faults and the exact
logic values in the fault free case are known. To determine
the observability of activated faults in fanout-free regions of
the circuit, the corresponding fanout stems are evaluated by
explicit fault injection and simulation. For the simulation of the
transitive fanout of the stems, however, computational effort
and precision of fault simulation are traded off.

A fault effect will be propagated through the circuit and
may turn an X-value into a constant 0 or 1, or vice versa. If
an output is altered from a constant value to an X, a "possible
detect" can be reported. However, if the fault is propagated
along reconverging paths with X-values, the output in the
faulty case might be a false X as well, and in principle it
is possible to decide about a "definite detect" or a "definite
undetect" in the same way as we decide about REX and FEX
in the fault free case. Yet this computation has to be performed
for each fault separately and is only possible for small circuits
due to complexity limitations.

To avoid excessive simulation times for the stems, a fast
3-valued logic simulation is performed in step IV. For the
input values of the transitive fanout of the stem, the PEX
classification from step II is used. The values of PEX signals
whose state may be impacted by a fault are thus evaluated
pessimistically. Finally, using stem observability and fault
activation information, the detected faults are enumerated.

B. Accurate 3-Valued Simulation

As the first step of the proposed algorithm, a precise 3-
valued logic simulation is performed which classifies all PEX
signals accurately as either a FEX or REX signal. This step

is correct and complete, i.e. firstly it correctly identifies all
REX-valued signals in the set of PEX-valued signals, and
secondly, it determines the actual binary value for all FEX-
valued signals. This value is independent of assignments to
the X-valued inputs or other X-sources.

The simulation algorithm is a hybrid approach that com-
bines reconvergence analysis, event-based logic simulation and
exact SAT-based analysis. FEX signals can only emerge if a
REX is propagated along multiple paths which reconverge at a
gate as illustrated in the example in Fig. 1. The convergence of
unrelated unknown values cannot produce a FEX state. With
the information of a reconvergence analysis, a SAT instance
is generated which is used for the exact computation of the
signal states at FEX reconvergences under the given input
stimuli. A breadth-first traversal of the subset of PEX-valued
signals, starting at the circuit inputs, invokes the SAT-based
evaluation at REX reconvergences. At all other gates where
the value can be correctly and quickly computed without SAT-
based analysis, the netlist traversal performs direct forward
implications of the signal states. The flow of the algorithm is
depicted in Fig. 3.

Given pattern p and PEX signals:

Perform reconvergence analysis of PEX signals

Generate SAT instance under pattern p

(I)

(II)

(III)Breadth-first traversal of PEX-valued signals 

starting at inputs, for each gate: 

True:

Evaluate SAT instance 

and update state of 

gate output signal

(IV) False:

Compute state of gate 

output signal by table 

lookup

Gate is reconvergence of 

REX signals?

(V)

Fig. 3. Precise logic simulation flow

1) Reconvergence Analysis: From 3-valued simulation, the
set of PEX-valued signals is known. At PEX-valued fanout
stems, a quick reconvergence analysis is executed. This anal-
ysis is implemented as an event-based forward traversal of the
PEX signals starting from the fanout stem. It derives the list of
gates where disjoint paths reconverge. Found reconvergences
are stored for subsequent generation of the SAT instance.

2) Generation of the SAT Instance for Signal Classifica-
tion: A SAT solver is used to exactly classify the PEX-valued
signals in the circuit in presence of X-sources. For a considered
PEX reconvergence, a SAT instance is constructed that is
satisfiable if and only if the reconverged signal is a real X
(REX). This is achieved by searching for two assignments to
the X sources of the circuit that result in complementary values
at the reconverged signal.

A single SAT instance is generated for each pattern and
evaluated under different unitary constraints such that all
PEX reconvergences for that pattern are classified. The SAT
instance does not comprise all gates of the circuit, but is
restricted to those gates which generate PEX-values at their
output. The SAT instance models two copies of these gates.
Additional clauses are introduced at PEX reconvergences for
comparison as illustrated in Fig 4. For each reconvergence
s ∈ SR

x , the two clauses {s, s′}, {¬s,¬s′} are satisfied only



if the values of signal s in the CUT and s′ in the copy have
different values. To allow to evaluate each reconvergence s
separately, the clauses for comparison can be directly satisfied
via an additional selector variable sSEL per reconvergence.
The resulting clauses {s, s′,¬sSEL}, {¬s,¬s

′,¬sSEL} are
added to the SAT instance for each PEX reconvergence.
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To evaluate a particular PEX reconvergence s, the corre-
sponding selector variable sSEL is contrained to false and all
other selector variables are constrained to true. The SAT solver
then searches for two assignments to the X sources which
cause complementary values at s and s′. If such assignments
exist, then the signal value is a real X (REX) which depends
on the value of the X sources. If the SAT solver proves that no
such assignments exist, then s has a FEX-value independent
of the assignment to any of the X sources.

3) Exact Logic Simulation: The exact logic simulation of
the circuit with a given pattern is performed by a breadth-first
traversal of the PEX-valued signals in the circuit, starting from
the inputs. The PEX signals are classified either by invoking
the SAT solver (c.f. step II) or by forward implication based
logic simulation. The SAT solver is invoked at a reconvergence
if and only if at least two inputs of the corresponding gate have
been classified as REX values. If only one of the inputs is a
REX and the others are constant signals including FEX, the
correct output value can be derived without the SAT solver.

The result of the SAT-based computation (step IV) is
then propagated along the unclassified PEX signals towards
the circuit outputs as far as possible. A table-based lookup
simulation is used for this evaluation. Propagation stops at
convergences with X-valued signals or at circuit outputs. The
exact simulation ends once all PEX signals have been visited
and classified.

C. Fault Classification

The signal classification gained in the previous step is used
in the fault classification step to increase the accuracy com-
pared to n-valued fault simulation. By applying algorithmic
optimizations as found in state-of-the-art fault simulators, the
efficiency of this step is increased: Fault activation in fanout-
free regions is evaluated separately from fault propagation
from the corresponding fanout stem [2–4].

For each fanout-free region, the activation of each fault in
the region is determined using the signal classification from
the exact logic simulation. For the local propagation of the
faults to the corresponding fanout stem, these exact values are

used as well. Within the fanout-free region, the fault effect
can only propagate along a single path towards the next fanout
stem. Off-path signals are not affected by the fault. Thus, local
propagation is correctly computed using the values from the
exact logic simulation.

If faults are activated and propagated to a stem, an ex-
plicit fault injection and simulation originating at this stem
is conducted to determine stem observability at the circuit
outputs or at an intermediate signal dominator [4]. Here, signal
reconvergences may be affected by the fault. We trade-off
the computational requirements and the accuracy of the fault
classification by using pessimistic 3-valued logic simulation
for the stem simulation. This introduces some pessimism com-
pared to the exact solution. At the boundary of the transitive
fanout of the considered stem, the values from the exact logic
simulation of step are used.

Fanout stem

Fanout-free 

region

Transitive 

fanout of 

stem

OutputsInputs

V
a

lu
e

s
 Î

 {
 0

,1
,R

E
X

 }

Values Î { 0,1,REX }
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V. EVALUATION AND RESULTS

The proposed algorithm has been verified and applied
to numerous benchmark and industrial circuits. This section
presents a comparison with related work and a discussion of
the achieved accuracy. Here we assume that X values occur at
the pseudo primary inputs of the circuit.

A. Verification by Exhaustively Filled Patterns

To verify the correctness of the algorithm, a simulation
based strategy is applied. For input patterns with less than
16 X-valued inputs, the partially specified patterns are filled
exhaustively, i.e. all possible assignments for these X-valued
inputs are enumerated. The resulting patterns are subject to
logic resp. fault simulation. If lines carry a constant signal
for all the patterns, they cannot be a REX, and if a fault is
detected by all the patterns, it is a definite detect. For both
cases, verification of the proposed algorithm was successful.

For larger circuits and patterns with more than 16 X-valued
inputs, the required computing effort prohibits the exhaustive
verfication. Here, a validation approach is chosen. Instead of
enumerating all possible patterns that originate from a partially
specified one, only 128 patterns are chosen. From these 128
patterns, two are chosen deterministically (all X-valued inputs
set to 0, and to 1) while the rest is randomly filled. Again, no
mismatches between the result of the proposed algorithm and
the logic resp. fault simulation were found.

In addition, the fault simulation of 128 filled patterns
(originating from a single partially specified pattern), followed
by intersection of the set of faults detected by each pattern,
allows to derive an upper bound of the number of additionally
detectable faults in the circuit due to precise analysis. This



information is used to assess the precision of the proposed
algorithm (c.f. section V-C). Due to the small sample size
of 128 patterns only, the computed coverage is an optimistic
upper bound. Thus, the derived precision of the proposed
algorithm is a pessimistic lower bound of its actual precision.

B. Comparison with Enhanced Fault Simulation based on
Indirect Implications

The fault simulation method of [16] exploits indirect
implications found by static learning. In [16] the authors
report the number of identified FEX signals, FEX outputs and
additionally detected faults for a subset of ISCAS’85 and 89
circuits. The conducted experiments consider 32 randomized
input patterns per circuit. The probability of an X-value at a
particular circuit input is set to 50%. The authors report the
average and maximum number of FEX signals and outputs
over these 32 patterns and the improvement of fault coverage
over 3-valued fault simulation.

These experiments are repeated with the proposed algo-
rithm. However, the number of patterns is increased to 128
to limit the impact of outliers in the much smaller set of
32 patterns. Table I presents the results w.r.t. identified FEX
values at all the signals, at the (pseudo primary) outputs, and
the improved fault coverage. The first number in each column
is the ratio of the average number of identified FEX values
per pattern of the 128 patterns evaluated with the proposed
algorithm, and the 32 patterns of [16]. The second number is
the best value out of the 128 or 32 patterns, resp., which is
biased in favor of our approach due to the larger sample size.
For instance, the last entry of circuit c5315 denotes that in
average we can classify 17.01X times more possibly detected
faults as definitely detected than [16], and if we compare the
best outcomes of both series, the improvement is 9.25X.

Circuit FEX signals FEX outputs Fault detection
c2670 2.33, 8.52 2.34, 5.50 1.60, 18.50
c5315 18.06, 13.60 15.46, 7.50 17.01, 9.25
s5378 1.97, 1.49 2.08, 1.90 1.89, 2.85
s9234 6.40, 8.44 3.35, 4.66 5.06, 6.37

s13207 4.64, 3.29 6.79, 3.00 10.21, 6.58
s15850 2.54, 1.75 2.80, 2.31 2.64, 2.02
s35932 6.79, 5.65 24.28, 24.00 5.40, 34.00
s38417 4.40, 2.73 23.40, 6.81 7.87, 2.16
s38584 2.59, 4.33 2.80, 2.54 3.77, 5.05

TABLE I
IMPROVEMENT OVER ENHANCED FAULT SIMULATION BASED ON INDIRECT

IMPLICATIONS [16]

For all circuits, the proposed algorithm is able to classify
more FEX signals and outputs, for c5315 as example, the
average number of FEX signals increases by 1706% over
the result of [16]. For this circuit, the average fault coverage
increase over all patterns rises by 1601% over the fault
coverage increase by [16].

C. Results on Industrial Circuits

The algorithm has been applied to a wide range of industrial
circuits provided by NXP. For these circuits, we investigated
the fault classification of random pattern resistant faults for
multiple configurations.

For each circuit, different X-source configurations are eval-
uated. In each X-source configuration, a fixed set of pseudo
primary inputs is randomly selected as X-sources. Then, a
collapsed list of stuck-at faults in the support [21] of the

X-valued inputs is generated. The faults are restricted to
this subset since the precise analysis of the X-valued signals
only affects the support of X-valued inputs. Random pattern
testable faults are removed by 3-valued fault simulation of
10000 random patterns. For the remaining hard faults, a
commercial tool is used to generate X-aware deterministic
patterns with high abort limit. The fault coverage of the test
set is computed with classical 3-valued fault simulation. An
upper bound of fault coverage is computed using the validation
technique discussed in section V-A. Finally, the fault coverage
is computed using the proposed algorithm.

In the configurations, 0.5%, 1.0%, 2.0% and 5.0% of
the inputs are randomly selected as X-sources. 16 different
configurations are generated for each of these four X-source
ratios. From these 16 configurations per circuit and X input
ratio, results for two configurations A and B are selected and
reported here. The selection of A and B is based on the number
of discovered FEX valued signals in the circuit during the
precise logic simulation. The number of discovered FEXs is a
coarse indicator of the number of faults that can be detected in
addition to n-valued fault simulation. In configuration A the
number of discovered FEXs is close to the average number of
discovered FEXs over all 16 configurations. Configuration B
has the maximum number of discovered FEX signals.

Table II shows the results for the industrial circuits and the
four different X-source ratios. For each circuit, the number of
pseudo primary inputs and gates are given in column 2 and
3. The following columns present the number of additionally
detected faults in the proposed algorithm compared to 3-valued
fault simulation and the achieved precision w.r.t. the method
of section V-A for each X-source ratio.

The algorithm is able to classify a large number of addi-
tional hard faults as detected by the generated test set com-
pared to 3-valued fault simulation. The number of additionally
detected faults depends on the particular circuit, X-source
configuration as well as the test set. The number reaches up
to 209031 uncollapsed faults for circuit p286k, where ATPG
could only reach a fault coverage of 10.19%. For many circuits
and X-source configurations, the precision of the proposed
algorithm exceeds 70% w.r.t. the optimistic upper bound.

The runtime of the proposed method depends on the circuit
size, the number of patterns to be evaluated, and the number
of X sources. The runtime is in the order of ATPG for
most circuits, e.g. 452 up to 7042 sec for circuit p100k
for configurations with 0.5% and 5% X-input ratio. With
increasing circuit size, patterns and X sources, the runtimes
reach a couple of hours for larger circuits, e.g. 48676 sec
for circuit p418k and a configuration with 2% X-input ratio.
Memory usage from 262 up to 1849 MB. The algorithm has
been implemented in JAVA. First experiments with a C++ SAT
solver promise a speedup of 2x-3x.

VI. CONCLUSIONS

Computation of fault coverage of a test set in presence of
unknown / X values results in a pessimistic under-estimation
if algorithms based on n-valued logic are used. This work
presented a SAT-based algorithm to compute fault coverage
with high precision. The algorithm is applicable to large,
recent industrial circuits and substantially improves the state-
of-the art. Experiments show that fault coverage of test sets
can be significantly higher than estimated by classical fault
simulation. The algorithm can be easily modified to target
transition fault coverage.



Num. Num. Conf. 0.5% 1.0% 2.0% 5.0%
Circuit PPI Gates Type FC Inc. Prec. FC Inc. Prec. FC Inc. Prec. FC Inc. Prec.

p35k 2912 41443
A 20 90.9% 8 100.0% 187 55.0% 239 88.2%
B 33 100.0% 159 42.0% 379 99.0% 271 53.8%

p45k 3739 38811
A 28 19.6% 16 27.6% 244 36.4% 633 29.4%
B 231 67.5% 369 55.7% 13 20.0% 94 40.2%

p77k 3487 65015
A 0 0.0% 260 21.3% 127 49.8% 1043 73.6%
B 482 17.1% 19774 99.7% 608 22.5% 545 66.0%

p78k 3148 68263
A 492 43.5% 768 43.6% 2318 49.4% 5463 51.9%
B 255 49.6% 4759 86.5% 2697 53.8% 8173 55.6%

p81k 4029 106450
A 23 2.3% 77 4.1% 99 2.6% 611 6.6%
B 8 0.8% 51 2.0% 79 2.5% 553 6.3%

p89k 4632 80963
A 113 60.4% 328 66.4% 204 33.6% 1841 80.5%
B 68 67.3% 1737 94.6% 2434 91.6% 10593 96.0%

p100k 5902 84356
A 12 6.2% 113 26.3% 378 37.6% 79 5.7%
B 575 98.6% 9462 95.5% 6933 70.2% 2546 62.6%

p141k 11290 152808
A 568 91.2% 850 87.6% 827 81.2% 5090 89.0%
B 2154 94.7% 20417 91.8% 1914 62.8% 20626 89.1%

p239k 18692 224597
A 473 25.8% 1657 25.4% 2861 22.3% 7609 26.3%
B 844 20.5% 908 21.3% 8251 35.2% 5951 19.6%

p259k 18713 298796
A 384 18.2% 2795 33.4% 5594 37.3% 11205 28.6%
B 493 19.6% 2279 29.4% 4534 33.1% 6495 23.8%

p267k 17332 238697
A 97 36.7% 1336 51.3% 1201 60.4% 3869 71.1%
B 320 53.2% 1682 17.2% 604 48.1% 6054 75.0%

p269k 17333 239771
A 550 63.1% 91 18.0% 275 26.5% 4812 64.5%
B 771 61.9% 469 59.4% 1678 51.6% 928 60.8%

p279k 18074 257736
A 215 83.7% 660 65.0% 2003 68.7% 4292 74.1%
B 623 64.4% 1158 85.9% 1989 89.6% 15100 76.3%

p286k 18351 332726
A 321 75.7% 1944 90.5% 1324 89.2% 3188 77.6%
B 220 98.7% 209031 83.3% 4596 92.0% 13276 92.7%

p295k 18508 249747
A 138 61.3% 269 89.1% 595 87.1% 1863 45.3%
B 1129 98.7% 738 88.6% 244 59.5% 122 95.3%

p330k 18010 312666
A 2712 85.0% 2803 70.0% 3246 65.6% 10899 63.0%
B 3448 87.0% 9459 89.3% 5940 75.1% 18044 67.3%

p378k 15732 341315
A 2314 43.9% 5873 53.0% 14386 56.6% 34203 57.7%
B 4591 53.1% 10534 58.1% 15579 56.7% 17814 57.8%

p388k 25005 433331
A 1935 74.1% 3995 77.7% 6423 52.3% 14986 64.0%
B 1049 77.7% 6424 86.2% 58665 93.4% 68691 89.2%

p418k 30430 382633
A 553 46.6% 685 51.9% 3000 61.1% 4996 46.5%
B 865 56.3% 1969 52.2% 5577 57.6% 7233 57.3%

TABLE II
INCREASE IN DETECTED FAULTS AND ACHIEVED PRECISION FOR DIFFERENT X-SOURCE RATIOS
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