Efficient Fault Simulation on Many-Core Processors

Michael A. Kochte, Marcel Schaal, Hans-Joachim Wunderlich, Christian G. Zoellin
Institut fuer Technische Informatik, Universitaet Stuttgart
Pfaffenwaldring 47
70569 Stuttgart, Germany
{kochte,schaal,zoellin}@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

ABSTRACT

Fault simulation is essential in test generation, design for test
and reliability assessment of integrated circuits. Reliability
analysis and the simulation of self-test structures are particu-
larly computationally expensive as a large number of patterns
has to be evaluated.

In this work, we propose to map a fault simulation algo-
rithm based on the parallel-pattern single-fault propagation
(PPSFP) paradigm to many-core architectures and describe
the involved algorithmic optimizations. Many-core architec-
tures are characterized by a high number of simple execution
units with small local memory. The proposed fault simula-
tion algorithm exploits the parallelism of these architectures
by use of parallel data structures. The algorithm is imple-
mented for the NVIDIA GT200 Graphics Processing Unit
(GPU) architecture and achieves a speed-up of up to 17x
compared to an existing GPU fault-simulation algorithm and
up to 16x compared to state-of-the-art algorithms on conven-
tional processor architectures.

Categories and Subject Descriptors
B.6.2 [Hardware|: Logic Design—Reliability and Testing

General Terms
Algorithms

Keywords
Parallel Fault Simulation, Many-Core Processors, PPSFP

1. INTRODUCTION

Fault simulation determines for a given circuit and a given
set of input patterns all the faults of a structural fault model
that are observable at the outputs. It is an essential step in
the verification of design for test methods and in assessing
the quality of test sets and fault tolerance techniques. In
particular, applications in built-in self-test and in reliability
assessment require the computationally expensive evaluation
of a large number of patterns.

Many-core processor architectures maximize the number of
execution units in a given chip area. These architectures pro-
vide extremely favorable cost-performance trade-offs for sig-
nal processing, computer graphics or in linear algebra compu-

tations [1]. For all these applications, there is a beneficial ra-
tio between computation and communication. Furthermore,
the memory accesses are easily predicted to take advantage
of the small local memories.

In contrast, fault simulation is performed on a circuit graph
and the numerous fault injections are implemented as traver-
sals of the graph. Graph traversal has a low ratio between
computation and communication and it is difficult to predict
the memory accesses [2]. In general, graph-based algorithms
are difficult to map to many-core processors and often only
a moderate speed-up compared to large conventional proces-
sors is achieved [3-7]. Since the circuit graph is directed and
acyclic, it is possible to use partitioning and topological or-
dering to parallelize the traversal. Logic simulation imple-
mented in this way yields reasonable speed-ups compared to
logic simulation on conventional processors [8].

However, fault simulation has to consider each fault and
requires many more graph traversals than regular logic sim-
ulation. Hence, the fault simulation techniques used for con-
ventional processors focus on algorithmic optimizations that
avoid most of the graph traversals entirely. Common tech-
niques for combinational circuits are the simulation of mul-
tiple patterns in parallel (Parallel-pattern single-fault propa-
gation, PPSFP) [9], structural analysis [10, 11], and the use
of signal dominators and stem regions [12, 13]. Efficient data
structures can further decrease simulation time [14, 15].

Parallel implementations of the above techniques either tar-
get classical vector computers [16-19] or use coarse grained
parallelization for symmetric multi-processors or clusters [20—
24]. But all the techniques assume a complex conventional
processor architecture with significant memory hierarchy.

Existing evaluation of the suitability of many-core or Gen-
eral Purpose GPU (GPGPU) architectures for fault simula-
tion has indicated that it is difficult to implement the algo-
rithmic optimizations above and that a brute-force approach
already yields high utilization of the hardware [25]. How-
ever, the speed-up by the brute-force method is very small
compared to simulators such as [14].

For the first time, this paper presents how algorithmic opti-
mizations can be implemented on many core processors, sim-
ilar to those in state-of-the-art fault simulators for conven-
tional processors. The approach simulates multiple patterns
and multiple faults in parallel. Structural analysis takes into
account local sensitization and can take advantage of already
detected faults to significantly reduce the number of graph
traversals. Efficient data structures enable very high data-
parallelism with thousands of execution threads, make best
use of available memory and use single-instruction multiple-
data (SIMD) execution units effectively.

The technique is implemented for an NVIDIA graphics pro-
cessor with 30 cores and 8 SIMD execution pipelines per core
[26]. The architecture exhibits the typical properties of many-
core architectures of simple in-order SIMD execution units,
i.e. support for a large number of threads of execution, little

or no cache hierarchy and small local scratch-pad memories.
In contrast to the existing approach, the technique presented
here scales to large multi-million gate circuits. For a set of
benchmark and industrial circuits, it achieves a considerable
speed-up of 17x compared to the GPU-based approach in
[25] and of 16x compared to a state-of-the-art fault simulator
running on an Athlon X2 processor with conventional archi-
tecture.

The rest of the paper is organized as follows: After the
introduction, known algorithmic optimizations for fault sim-
ulation are reviewed. The third section evaluates these opti-
mizations regarding their suitability for many-core processors
and introduces a set of algorithms and data structures that
allow for efficient fault-simulation on many-core processors.
Section four presents the implementation details as well as
the evaluation for a set of benchmark circuits.

2. FAULT SIMULATION

For fault simulation, the circuit is modeled as an acyclic,
directed graph G(V, E) in which the gates are represented by
the vertices V and the nets or signals of the circuit are the
edges F (Fig. 1). The value of a signal edge is given by a
mapping v : E — {0, 1}. Fault simulation is performed with
respect to an abstract fault model. The most common fault
model is the stuck-at fault model, which assumes that a given
vertex = has a constant value v(xz) € {0,1} independent of
the input pattern. While the techniques below mainly target
stuck-at faults, they can be extended to other fault models
using the concept of conditional stuck-at faults [27].

Figure 1: Example of a circuit graph

The two most common fault simulation techniques are the
PPSFP technique [9] and the concurrent algorithm [28].

If only the combinational logic is considered (e.g. in full-
scan circuits), the single fault propagation technique is more
efficient than the concurrent approach [29]. This is due to the
fact that in concurrent fault simulation multiple faults are
simulated in groups and simulation of the fault propagation
has to continue as long as at least one of the faults in the
group is observable. This is particularly disadvantageous if
the faults exhibit highly different sensitivities. In the PPSFP
algorithm, fault propagation of only a single fault at a time is
evaluated and multiple patterns are encoded into a machine
word [9].

The fault propagation is usually computed with event-based
simulation, since most faults cause only a small number of
nets to change. The event-based simulation is implemented
as a breadth-first traversal of the graph. The traversal stops
at vertices that do not propagate an event. To efficiently im-
plement the traversal, the vertices of the graph are stored in
topological order (i.e. levelized) and vertices to be evaluated
are kept in a priority queue or a level queue [14, 15]. This
reduces the cost of traversal. But even then, the simulation

of the fault propagation is the computationally most inten-
sive part of fault simulation. Hence, additional algorithmic
optimizations are employed to reduce the number of fault
propagations as much as possible.

If a vertex of the graph has only a single successor (i.e. the
represented gate in the circuit does not fan-out), the fault de-
tection at the gate may also be determined locally using the
critical path tracing method, which is based on the Boolean
difference [10]. Combined with PPSFP, this technique sub-
stantially reduces the number of fault propagations to be ex-
plicitly computed by simulation to just faults at vertices with
more than one successor (i.e. fan-out stems) [11] (Fig. 2).

@\
©)

@
o

®

© Fan-out stem

Figure 2: Fan-out stems and fan-out free regions
(FFR) in the graph

The number of gate evaluations for a fault propagation
analysis can be further reduced by taking advantage of signal
dominators [12]. A vertex d is a dominator of vertex v if all
forward paths from v go through d.

The aforementioned techniques are combined with fault-
dropping: Faults that have been detected are not considered
any more for critical path tracing or fault propagation. The
effect of fault-dropping can be improved by analyzing a fan-
out free region (FFR) with critical path tracing before per-
forming an explicit fault propagation computation. If no fault
in the FFR can be detected at the stem, the explicit fault
propagation analysis for this stem is avoided entirely [13].
This technique is also called check-up [15].

Taking all of the optimizations into account, this leads to
the following sequence of combinational fault simulation:

1. Simulation of the fault-free circuit for n patterns in par-
allel (good-simulation).

2. For each fan-out stem:

(a) Backward traversal in the FFR of the stem to de-
termine the local sensitivity of each fault at each
vertex regarding the n patterns. Accumulation of
the overall sensitivity at the fan-out stem regarding
all the faults and vertices in the FFR.

(b) For the patterns that sensitize faults at the fan-out
stem, the observability of the stem is determined
by explicit computation of the fault propagation.
This explicit fault simulation stops at dominators.

3. The local sensitivities of step 2a) are combined with
the results of the propagation analysis in step 2b) and
the observabilities of the dominators to determine fault
detection.

The algorithmic optimizations above improve the speed of
fault simulation by several orders of magnitude. However,
they are not directly suitable for implementation on SIMD
many-core architectures.

3. PPSFP AND OPTIMIZATIONS ON
MANY-CORE PROCESSORS

In this section, we discuss the basic properties of many-
core architectures and evaluate the implications to the algo-
rithm presented in the previous section. We show how the
algorithmic optimizations and the fault propagation can be
efficiently executed on these processors. For this, regularity
is introduced to the algorithm and the problem is split into
tasks that contain independent, data-parallel sub-problems.

Many-core architectures try to effectively use the transistor
budget of recent process technologies. They contain a large
number of simple compute cores with relatively little mem-
ory on the chip. Their architecture often allows for partially
good chips to be used, such that manufacturing yield can be
improved and they are available at relatively low cost.

Several architectures are commercially available today or
in the near future that exhibit these properties. Amongst
others, we find GPGPUs such as the NVIDIA GT200 and
Fermi architectures, the AMD Evergreen architecture or In-
tel Larrabee. Similarly, the Cell processor, although provid-
ing only 8 cores per Chip, exhibits all the architectural prop-
erties of many-core processors. The Tilera TILE-Gx100 im-
plements a MIPS-derived architecture with up to 100 VLIW
cores. The ClearSpeed processors target scientific floating-
point workloads and offer up to 192 compute cores with small
local memory.

The common aspects of many-core architectures are:

e The execution units are very simple in-order pipelines.
This requires static instruction scheduling to avoid stalls
and the avoidance of difficult to predict branches to
avoid pipeline flushes.

e The execution units are usually arranged in a SIMD
micro-architecture to further reduce the overhead for
control logic. This requires that the execution flow for
parallel data matches exactly.

e The memory associated to each core is just the regis-
ter file and a very small local memory that is directly
addressed. Accesses to the local memory have very low
latency.

e An on-chip network allows to exchange data between
cores and with external main memory.

e No caching occurs when communicating with main mem-
ory. Hence accesses to main memory always suffer from
extremely long latencies of several hundred clock cycles.

e The control logic and register file in each core provide
hardware-support for multiple threads of execution. As
a result, threads can be switched rather quickly on long-
latency stalls caused by communication with other cores
or with main memory.

Thus, the following effects have to be taken into account
regarding the algorithm from the previous section: The trans-
fer of the graph-based data structures requires a significant
amount of bandwidth. To achieve maximum data paral-
lelism with the available memory, data structures must be
space-efficient. The event-based traversal of the graph has
very unpredictable memory access patterns, making it diffi-
cult to effectively use the memory hierarchy. The interleaving
of forward and backward traversals further reduces the pre-
dictability of memory accesses and requires additional storage
of backward edges. The level queue must be managed con-
currently when multiple gates are evaluated in parallel using
SIMD, causing considerable overhead. And finally, to take
advantage of SIMD, simply extending pattern-parallel simu-
lation does not yield sufficient benefits [9, 14] and reduces the
number of signal values that can be kept in local memory.

Here we show how the algorithmic techniques can be mapped
to many-core processors. This requires both modifications of
the data structures and the algorithms involved. The under-
lying ideas of this mapping are:

e Retain the algorithmic optimization that reduce the num-
ber of required fault injections.

e Separate the forward and backward traversals in the
algorithm to make memory accesses more regular.

e Extract subgraphs that allow all of the fault propaga-
tions to be evaluated in parallel.

e Encode the gate information so that the storage for the
subgraph is minimized. Since latency and bandwidth to
main memory are an issue in these architectures, some
additional computations for decoding of data structures
are acceptable.

e Implement fault propagation such that multiple ver-
tices can be efficiently evaluated with a simple in-order
SIMD-architecture.

Hence, the resulting flow of the mapped algorithm is:
1. Forward traversal of the graph: For each vertex, com-
pute the following:
(a) Evaluation of the Boolean function associated with
the vertex for the fault-free simulation.

(b) Computation of the local sensitivities taking into
account already detected faults and propagation of
the sensitivities up to the fan-out stems.

2. In parallel, evaluate fault propagation for all fan-out
stems that observe sensitized faults.

3. Backward traversal of the graph: For each vertex com-
pute the following;:

(a) For all vertices with only one successor (fan-out
free gates), evaluate the sensitivity of the vertex
based upon the sensitivity of the successor.

(b) From the sensitivity of each vertex determine the

observability of the faults and update the fault list.

The most computation effort is spent on step 2 of the al-

gorithm and only this part is described in all details due to
the limited space available.

3.1 Step 1: Fault-free simulation and local sen-
sitivities
The netlist graph is topologically sorted (i.e. levelized) and

avoids the expensive priority queue of gates. The number of
patterns evaluated in parallel matches the machine word size.
For the initial forward traversal, the following data structures
are employed for the graph and the values:
type Vertex {

int inputO, inputl;

int function;

short isFanout;
short faultList;

Vertex [| graph;
int [] faultFreeValues;
int [] sensitivities;

The values faultFree Values and the evaluation of local sensi-
tivities are kept in separate arrays to facilitate efficient access
to these values in step 2 of the algorithm. Only gates with two
inputs can be mapped to a vertex in the graph. Supporting
a variable number of inputs increases memory requirements
and results in branching and divergent control flow during the
graph traversal. The fault list is stored as a simple bit-field
of the six stuck-at faults that can occur at the gate.

For step 1 of the algorithm, all vertices of identical topo-
logical rank can be evaluated in parallel. To improve the

efficiency of SIMD, all branching during the evaluation can
be avoided by use of select instructions available in these ar-
chitectures.

3.2 Step 2: Fault propagation from the fan-out
stems

For evaluation of the fault propagation, the graph is par-
titioned such that each partition contains a limited number
of fan-out stems including their transitive successors. These
partitions may overlap. The maximum size of the partitions is
determined by the size of the local memories and the address
range of indices in the partition data structure.

Event-based simulation reduces the efficiency of SIMD com-
putation and requires additional storage and clock cycles for
management of the event queue. It turns out that evaluation
of all gates of the partition starting from the fan-out stem is
more efficient. Similarly, it did not prove efficient to check
for signal dominators and the required merging of dominator
sensitivities.

Now the vertices are encoded as tightly as possible. The
gate functions are mapped to the most common types which
can be one-hot encoded in just four bits. The ordering and
size of the subgraph allows to encode the predecessor indices
with a reduced number of bits as described below. This infor-
mation can be decoded with just a few machine instructions.
For 32-bit machine words, the encoding is as follows:

31 30 29 28 27 .. 16
AND | OR | XOR | INV IN1

15..0
INO

Table 1: Encoding of a gate for fault propagation

Table 2 lists the encoding of the supported Boolean func-
tions.

[Function | Code |

AND 1000
NAND 1001
OR 0100
NOR 0101
XOR 0010
XNOR 0011
BUF 0000
NOT 0001

Table 2: Encoding of the Boolean function of a gate

Each partition is topologically sorted with all outputs placed
at the end of the partition. Due to this ordering, at least one
predecessor of a vertex is of the preceding rank. The input
IN1 points to that predecessor and is stored relative to the
current vertex index. That way, fewer bits are required for
encoding. The input INO can point to any vertex in the par-
tition.

To reduce the number of random memory transfers from
main memory, only the fault-free simulation values at the
boundary of the partition are copied. All fault-free simulation
values internal to the partition are then computed again by
the core. A partition can then be described by the following:
type Partition {

int offPart[]; // indices to partition boundary
int subgraph[]; // encoded gates
int numOutputs; // number of outputs in part.

Fanout fo []; // fan—out stems in reverse
// order w.r.t. subgraph/[]

type Fanout {
int inPart; // index of fan—out stem in part.

int global; // mapping to global mnetlist

In the event-based fault propagation, the consequences of a
fault propagation need to be undone (e.g. the fault-free sim-
ulation values need to be restored). This step is avoided here
as fan-out stems are evaluated in reverse topological order.
Thereby, results of previous fault propagation computations
are implicitly overwritten. Only copies of the fault-free out-
put values have to be retained for final comparison. This
results in the following algorithm for the fault propagation:
procedure evaluate_partition(Partition p)

int values|[];
int outputs[];

for i =0 .. |p.offPart|—1
values [i] = faultFreeValues[p.offPart[i]];

// fault—free simulation by fwd. graph trav.
for i =0 .. |p.subgraph|—1
evaluate (i);

// retain fault—free outputs
for i = 0 .. numOutputs—1
outputs[i] = values[|p.subgraph|—i]

for all f in p.fo[]
continue if sensitivities[f.global] = 0;
values [f.inPart] = not values[f.inPart];
// fault propagation by partial fwd. trav.
for i = f.inPart+1 .. |p.subgraph|—1
values[i] = evaluate(i);

//evaluate fan—out sensitivity
int sens=0;
for i =0 ..

sens = sens |

p.numOutputs—1

(outputs[i] xor

values [|p.subgraph|—i]);
sensitivities [f.global] = sens;

3.3 Step 3: Computation of global fault observ-
ability

The computation of the global fault sensitivities is a back-
ward traversal through the data structure used for step 1. To
obtain the final observabilities for all vertices, the observabil-
ities for fan-out stems as computed in step 2 are propagated
to the stems’ predecessors in the FFR. For each gate, the fi-
nal detectability of the faults is computed and the fault list
is updated. As in step 1, all the vertices with identical rank
can be evaluated in parallel.

4. RESULTS

This section evaluates the implementation of the proposed
algorithm for the NVIDIA GT200 GPGPU with 30 execution
units. The implementation is evaluated on a set of the IWLS
benchmark circuits [30] and industrial circuits (c.f. Table 3).
The runtimes are compared to the existing GPGPU-based
fault simulator of [25] which does not exploit any algorithmic
optimizations. Instead, that approach tries to use the execu-
tion units to full capacity by regularity in the computations.

Furthermore, the results are compared to the event-based
PPSFP algorithm in [14]' which implements the discussed
optimizations and yields runtimes comparable to state-of-the-
art commercial fault simulators.

All runtime results have been obtained by simulation of
32768 random patterns on the circuit with a collapsed fault

!The implementation of [14] is openly available as source
code.

[Circuit | Gates [Inputs | Outputs [Faults |
s5378 1106 364 308 3182
59234.1 5944 247 250 7274
s13207 1290 688 710 3732
515850 596 287 320 1692
$35932 7152 3781 3747 24032
38417 10125 3158 2985 27176
38584 8571 2351 2024 23906

b17 37446 1452 1512 81330
b17_1 44544 1452 1512 92794
b18 130949 3357 3364 277976
b19 263547 6666 6713 560696
b20 22557 522 512 47376
b21 23100 522 512 48182
b22 33569 767 757 70464
p100k 84356 5902 5829 166960
pldlk 152808 11290 10502 287552
p239k 224597 18692 18495 455992
p259k 298796 18713 18495 607536
p267k 238697 17332 16621 372140
p269k 239771 17333 16621 374296
p279k 257736 18074 17827 493744
p286k 332726 18351 17835 648044
pP295k 249747 18508 18521 478996
p330k 312666 18010 17468 547808
p388k 433331 25005 24065 856678
p418k 382633 30430 29809 688808
p469k 96408 635 403 169364
p483k 444664 33264 32610 922950
pb00k 431439 30768 30840 843286
p533k 586819 33373 32610 1221432
p874k 629723 61977 70863 1050534
p951k 816072 91994 104714 1590490
pl1522k | 1104085 71392 68035 1747416
p2927k | 2408328 | 101844 95159 3593886

Table 3: Circuit characteristics

list. The proposed algorithm is implemented as an accelerator
to [14]. The accelerator executes the algorithm on all parti-
tions that can be mapped to the associated data structures.
Fan-out stems in partitions that cannot be mapped to the
data structures are evaluated with the event-based algorithm
on the conventional processor.

To identify the impact of the algorithmic optimizations in
[14], we first compare that approach to the existing GPGPU-
based fault simulation [25] in table 4. The third column lists
the runtime results of the event-based simulator in [14] run
on an AMD Athlon 64 X2 processor with a frequency of 2.4
GHz. The results reported by [25] are given in column four.
Column five gives the achieved speed-up of [25] w.r.t. the
event-based simulator. Except for two circuits, the fault sim-
ulation on the conventional processor is faster by an order
of magnitude compared to the brute-force GPGPU method.
[25] did not report results for larger circuits, mentioning data
transfer times as a scalability issue.

Due to space limitations, we evaluate the implementation of
the proposed algorithm only with respect to the event-based
fault simulator. We only take into account the circuits where
the algorithmic optimizations in [14] alone did not outperform
[25]. In addition we evaluate much larger industrial circuits
with up to 2.4 million gates.

For the NVIDIA GT200 GPGPU, the algorithm is imple-
mented in the CUDA (Compute Unified Device Architec-
ture) language extension [26]. The experiments are run on
a GTX285 graphics card, on which the GPGPU comprises
30 cores with 8-way SIMD units, hardware-support for multi-
threading and 16kByte local memory per core.

Circuit | No. gates | [14] [s] | [25] [s] | Speedup |

s5378 1106 0.06 1.96 0.03
s9234.1 5944 1.69 2.04 0.83
513207 1290 0.08 0.66 0.12
515850 596 0.04 0.42 0.10
535932 7152 0.03 5.43 0.01
538417 10125 2.41 8.23 0.29
538584 8571 0.54 7.88 0.07

b17 37446 49.35 19.03 2.59
b17_1 44544 51.63 17.87 2.89
b21 23100 11.94 46.58 0.26
b22 33569 19.81 60.49 0.33

Table 4: Runtimes of [14] vs. [25]

The severe memory restrictions with this architecture as
well as scalability considerations for large circuits require that
the partitions are stored in main memory. However, due to
the extensive parallelism the multi-threading is able to hide
the additional memory access latencies. In this case, the size
of a partition is limited by the address range of the partition
data structure. Since future graphics processors are expected
to contain larger local memory such as Intel Larrabee with
256kByte per core [31], additional speed-ups can be expected
as high main memory access latencies can be avoided com-
pletely.

[Circuit [[14] | GPGPU | Speedup |
b17 49.35 4.95 9.97
bl7_1 51.63 3.89 13.27
b18 235.97 18.35 12.86
b19 498.44 30.72 16.23
b20 11.29 2.65 4.26
b21 11.94 2.65 4.51
b22 19.81 3.4 5.83
pl00k 44.07 6.22 7.09
pl4dlk 93.39 15.84 5.90
p239k 94.43 13.79 6.85
p259k 118.71 18.97 6.26
p267k 133.13 12.46 10.68
p269k 139.19 12.57 11.07
p279k 173.99 19.34 9.00
p286k 274.53 28.7 9.57
p295k 225.96 14.38 15.71
p330k 214.19 18.71 11.45
p388k 223.73 29.57 7.57
p418k 258.93 29.84 8.68
p469k 2212.71 2212.71 1.00
p483k 249.33 25.65 9.72
p500k 389.03 36.39 10.69
p533k 333.74 37.67 8.86
p874k 476.98 46.22 10.32
p951k 327.31 59.49 5.50
pl522k 912.07 76.46 11.93
p2927k | 2340.14 369.79 6.33

Table 5: Runtimes of [14] vs. proposed algorithm on
GPGPU

Table 5 lists the speed-up obtained with the proposed al-
gorithm on the GPGPU. Compared to the approach in [25],
the method presented here achieves speedups of 3.8x(b17),
4.6x(b17_1), 16.4x(b21) and 17.6x(b22).

An average speed-up of 8.93x is achieved in comparison
to the event-based fault simulator. The circuit topology has
a strong impact on the achievable speed-up. For example,
p469k has very unusual topology with just 635 inputs but
about 96 thousand gates. Almost none of the fan-out stems
can be mapped to the data structures with the given parti-

tion size and thus are evaluated on the conventional processor
without any speed-up.

The Cell processor cores have 16x larger local memories
than those on the GTX285 and are thus able to store the
entire data structure for substantial circuit partitions locally.
First experiments on the Cell architecture showed that the
resulting throughput per core is much higher than on the
GTX285.

5. CONCLUSIONS

This work proposes an efficient mapping of algorithmic op-
timizations found in PPSFP fault simulators to many-core
processors. The adaptation of data structures and algorithms
allows to maximize the number of cores used in parallel. The
implementation for a GPGPU achieves a speed-up of up to
17x compared to a recently proposed GPGPU-based fault
simulator and up to 16x compared to the serial event-based
PPSFP algorithm on a conventional processor.

Future many-core processors will feature more execution
units and an increased amount of local memory due to con-
tinued technology scaling and three-dimensional integration
of memory. The presented approach can favorably exploit
this trend and will offer further speed-up.

Acknowledgment

This work has been supported by the German Research Foun-
dation (DFG) in the Cluster of Excellence in Simulation Tech-
nology (EXC 310/1).

References

[1] J. Owens, D. Luebke et al., “A survey of general-purpose com-
putation on graphics hardware,” Computer Graphics Forum,
vol. 26, no. 1, pp. 80-113, 2007.

[2] J.-S. Park, M. Penner, and V. K. Prasanna, “Optimizing
graph algorithms for improved cache performance,” IEEE
Trans. Parallel Distrib. Syst., vol. 15, no. 9, pp. 769-782,
2004.

[3] P. Harish and P. J. Narayanan, “Accelerating large graph
algorithms on the GPU using CUDA,” in Proc. International
Conference on High Performance Computing (HiPC), 2007,
pp. 197-208.

[4] Y. Frishman and A. Tal, “Multi-level graph layout on the
GPU,” IEEE Trans. Vis. Comput. Graph., vol. 13, no. 6, pp.
1310-1319, 2007.

[5] C. N. Vasconcelos and B. Rosenhahn, “Bipartite graph
matching computation on GPU,” in Proc. Intl. Conference
Energy Minimization Methods in Computer Vision and
Pattern Recognition, 2009, pp. 42-55.

6] G. Flach, M. de Oliveira Johann et al., “Cell placement
on graphics processing units,” in Proc. 20th Symposium on
Integrated Circuits and Systems Design (SBCCI), 2007, pp.
87-92.

[7] Y. Liu and J. Hu, “GPU-based parallelization for fast circuit
optimization,” in Proc. ACM/IEEE Design Automation
Conference (DAC), 2009, pp. 943-946.

[8] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven
gate-level simulation with GP-GPUs,” in Proc. ACM/IEEE
Design Automation Conference (DAC), 2009, pp. 557-562.

[9] J. Waicukauski, E. Eichelberger et al., “Fault simulation for
structured VLSI,” VLSI Systems Design, vol. 6, no. 12, pp.
20-32, 1985.

[10] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path
tracing - an alternative to fault simulation,” in Proc. Design
Automation Conference (DAC), 1983, pp. 214-220.

[11] K. Antreich and M. H. Schulz, “Accelerated fault simulation
and fault grading in combinational circuits,” IEEE Trans. on

CAD of Integrated Circuits and Systems, vol. 6, no. 5, pp.
704-712, 1987.

[12] D. Harel, R. Sheng, and J. Udell, “Efficient single fault prop-
agation in combinational circuits,” Communications of the
ACM, vol. 29, no. 4, pp. 300-311, 1986.

[13] F. Maamari and J. Rajski, “The dynamic reduction of fault
simulation,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 12, no. 1, pp. 137-148, 1993.

[14] H. K. Lee and D. S. Ha, “An efficient, forward fault simulation
algorithm based on the parallel pattern single fault propaga-
tion,” in Proc. IEEFE International Test Conference, 1991, pp.
946-955.

[15] B. Becker, R. Hahn, and R. Krieger, “Fast fault simulation in
combinational circuits: an efficient data structure, dynamic
dominators and refined check-up,” in Proc. Conf. on European
design automation (EURO-DAC), 1992, pp. 436-441.

[16] N. Ishiura, M. Ito, and S. Yajima, “Dynamic two-dimensional
parallel simulation technique for high-speed fault simulation
on a vector processor,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 9, no. 8, pp. 868-875, 1990.

[17] V. Narayanan and V. Pitchumani, “Fault simulation on mas-
sively parallel SIMD machines algorithms, implementations
and results,” J. Electronic Testing, vol. 3, no. 1, pp. 79-92,
1992.

[18] T. Nagumo, M. Nagai et al., “VFSIM: Vectorized fault
simulator using a reduction technique excluding temporarily
unobservable faults,” in Proc. Conference on Design
Automation (DAC), 1994, pp. 510-515.

[19] R. Daoud and F. Ozgiiner, “Highly vectorizable fault
simulation on the Cray X-MP supercomputer,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 8, no. 12,
pp. 1362-1365, 1989.

[20] P. Agrawal, V. D. Agrawal et al., “Fault simulation in a
pipelined multiprocessor system,” in Proc. International Test
Conference (ITC), 1989, pp. 727-734.

[21] R. B. Mueller-Thuns, D. G. Saab et al., “VLSI logic and fault
simulation on general-purpose parallel computers,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 12,
no. 3, pp. 446-460, 1993.

[22] S. Parkes, P. Banerjee, and J. H. Patel, “A parallel
algorithm for fault simulation based on PROOFS,” in Proc.
International Conference on Computer Design (ICCD), 1995,
pp. 616-621.

[23] D. Krishnaswamy, E. M. Rudnick et al., “SPITFIRE: scalable
parallel algorithms for test set partitioned fault simulation,”
in Proc. IEEE VLSI Test Symposium (VTS), 1997, pp.
274-281.

[24] M. B. Amin and B. Vinnakota, “Data parallel fault
simulation,” IEEE Trans. VLSI Syst., vol. 7, no. 2, pp.
183-190, 1999.

[25] K. Gulati and S. P. Khatri, “Towards acceleration of fault
simulation using graphics processing units,” in Proc. Design
Automation Conference (DAC), 2008, pp. 822-827.

[26] E. Lindholm, J. Nickolls et al., “NVIDIA Tesla: A unified
graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39-55, 2008.

[27] H. Wunderlich and S. Holst, “Generalized fault modeling for
logic diagnosis,” in Models in Hardware Testing. Springer,
2009, pp. 133-155.

[28] E. Ulrich and T. Baker, “The concurrent simulation of nearly
identical digital networks,” in Proc. 10th Workshop on Design
Automation, 1973, pp. 145-150.

[29] W. Ke, S. Seth, and B. Bhattacharya, “A fast fault simulation
algorithm for combinational circuits,” in IEEE Int’l Conf. on
Computer-Aided Design (ICCAD), 1988, pp. 166-169.

[30] “IWLS 2005 Benchmarks,”
http://www.iwls.org/iwls2005/benchmarks.html.

[31] L. Seiler, D. Carmean et al., “Larrabee: a many-core x86
architecture for visual computing,” in ACM SIGGRAPH,
2008, pp. 1-15.

