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ABSTRACT 
We describe a software framework for deploying, scheduling and 
executing parallel DBMS user-defined programs on an attached 
high-performance computer (HPC) platform. This framework is 
advantageous for many DBMS workloads in the following two 
aspects. First, the long-running user-defined programs can be 
speeded up by taking advantage of the greater hardware parallel-
ism available on the attached HPC platform. Second, the interac-
tive response time of the remaining applications on the database 
server platform is improved by the off-loading of long-running 
user-defined programs to the attached HPC platform. Our frame-
work provides a new approach for integrating high-performance 
computing into the workflow of query-oriented, computationally-
intensive applications.   

Categories and Subject Descriptors 
C.1.4 [Distributed Architectures]: Parallel Architectures – dis-
tributed architectures.  

General Terms 
Performance, Design. 

Keywords 
High-performance computing, database accelerators, parallel user-
defined database programs. 

1. INTRODUCTION 
Commercial database management systems (DBMS) have been 
widely used for applications in transactional processing, online 
analytics and data warehousing.  However, many emerging DBMS 
applications require the ability to store, query and analyze a wide 
variety of complex data types, including images, documents, mul-
timedia, raw event streams from scientific instruments, and un-
processed results of computational modeling and simulations [1].   
The relevant database processing for these complex data types is 
typically more than just simple database archival or retrieval, and it 
includes the compute-intensive processing of the raw data before 
its use by external client applications. Specific examples of such 

compute-intensive processing include operations such as high-level 
semantic query and search, content-based indexing, sophisticated 
data modeling, data mining analytics and computer-aided design.   
Since many of these data and analytical transformations are broad-
ly useful, they are often implemented as embedded DBMS user-
defined programs, thereby encapsulating this generic functionality 
for use in a variety of external client applications.  For example, 
“Database extenders,” which are a collection of related user-
defined complex data types, along with concomitant user-defined 
stored procedures or user-defined functions defined over these data 
types, often provide the intrinsic database functionality, perform-
ance and modularity in support of specific classes of external ap-
plications.  From a functionality perspective, external application 
developers can invoke these embedded user-defined programs 
using the familiar set-oriented SQL-based syntax and query inter-
face.   From a performance perspective, the use of embedded user-
defined programs often reduces the overhead of moving the raw 
data across the network from the database server to the client ap-
plication, either by virtue of transforming the raw data to a more 
compressed representation, or by substantially pre-filtering the raw 
data on the database server itself before transmission to the exter-
nal client application.   Finally from a software perspective, the use 
of embedded user-defined programs makes it easier to ensure the 
privacy, integrity and coherence of the raw data within the data-
base, by providing an “object-like” interface to the raw data 
(whose contents and representation can be kept private, and need 
not be explicitly copied or shared with the external applications).   
Notwithstanding these benefits, the processing requirements for 
executing embedded user-defined programs on the database server 
can be extremely large, and to our knowledge, this performance 
aspect has rarely been addressed in the conventional database per-
formance benchmarks, or in the design and sizing of hardware 
platforms for general-purpose DBMS servers.  
Large-scale DBMS are typically hosted on shared-memory multi-
processors or on high-availability network-clustered computer 
platforms. On these platforms, the database controller software, 
which is responsible for coordinating the execution of the parallel 
query plan generated by the database query optimizer, is able to 
take advantage of this underlying hardware parallelism for speed-
ing up query execution. However, commercial DBMS platforms 
rarely provide a programming interface for external applications or 
embedded user-defined programs to directly take advantage of this 
underlying hardware parallelism. 
In some cases, the database controller software can implicitly par-
allelize the execution of certain embedded user-defined functions 
within a parallel query plan during query execution.  Nevertheless, 
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most commercial database systems impose severe restrictions on 
the user-defined programs that can be implicitly parallelized in this 
fashion. For example, these restrictions often apply to user-defined 
functions that use scratchpad memory for storing information be-
tween repeated function invocations, that perform external actions 
such as file input-output operations, or that involve non-
deterministic execution (i.e., where different  function outputs may 
be returned for the same inputs, as with parallel asynchronous calls 
to a  random number generator), or for user-defined table functions 
that return multiple rows of values for each function invocation  
(Chapter 6 in [2] provides a detailed discussion of these default 
restrictions for one specific commercial database). 
In certain cases (depending on whether the “safe” serial semantics 
need to be preserved in the implicit parallel execution of the user-
defined program) the default restrictions on the implicit parallel 
execution of user-defined programs can be explicitly overridden by 
the applications programmer.  Even then, the overall degree of 
parallelism that can be used for executing these programs is often 
fixed or restricted by pre-configured parameters in the database 
platform (for example, these parameters include the maximum 
number of parallel threads on a shared memory platform or the 
maximum number of data partitions or processors in a distributed 
cluster platform), while the user-defined program may be capable 
of exploiting a much higher degree of parallelism. Furthermore, 
while these database configuration parameters can be nominally set 
to their maximum values supported by the underlying hardware 
platform, it is often the case that within this range of parameter 
values, each individual database application has its own optimal 
parallel granularity that is  determined by a complex interplay of 
factors involving the level of inherent parallel coordination, syn-
chronization and data movement in the application. It is therefore 
unlikely that there is a single global optimal setting for all the ap-
plications running on the database server. Finally, in this scenario, 
improving the parallel performance of even a single embedded 
user-defined program beyond the limitations of the existing hard-
ware parallelism, requires an overall and expensive upgrade of the 
entire database platform.     
In summary, therefore, the underlying hardware control and data 
parallelism in most commercial database systems is typically only 
exposed to the query processing engine and database controller. 
These database systems do not provide application programming 
interfaces (API’s) for writing general-purpose, parallel, user-
defined stored procedures and user-defined functions, nor do they 
provide the flexibility to be able to tune the performance of implic-
itly parallelized embedded applications on an individualized basis 
beyond the range of the (pre-configured) limitations of the data-
base platform. 
In this paper we propose a configuration consisting of a DBMS 
and an attached HPC platform and the required software frame-
work for deployment, scheduling and execution of compute-
intensive parallel user-defined programs on this attached HPC 
platform.  
The remainder of this paper is organized as follows. Section 2 
considers previous work on speeding up query execution using 
parallel hardware-based accelerators for commercial databases, 
and motivates the need for the proposed configuration. Section 3 
gives a full description of the software framework used for deploy-
ing, scheduling and executing compute-intensive queries on the 
attached HPC platform. Section 4 describes our experience with 
this configuration for applications in bio-informatics and life sci-
ences. Section 5 contains our concluding remarks.  

2. RELATED WORK AND COMPARISON 
There have been several proposals for improving the performance 
of database query processing for specific compute-intensive appli-
cations using special-purpose hardware accelerators within the 
database server platform itself. For example, the use of database 
query workload profiling to identify the most time-consuming 
operations, and the use of custom VLSI hardware filters in the data 
path between the disk storage interface and the CPU for these spe-
cific operations is proposed in [3]  (see also the similar ideas in [4] 
and [5]). A similar approach using custom hardware accelerators 
for string and pattern matching operations in text-oriented database 
applications is described in [6].    
A more recent approach is “active-disk” technology [7], where a 
portion of the query processing that would normally be performed 
entirely on the main CPU of the database server itself, is instead 
scheduled to run on the general-purpose microprocessor units that 
are increasingly being used at the disk controller interfaces of indi-
vidual storage disk drives. This approach takes advantage of the 
much higher degree of parallelism found at the storage interfaces 
of multi-disk database systems.  For many database queries, the 
execution at the disk controller interface achieves a substantial pre-
filtering and reduction in the data volume to be transmitted to the 
main database server CPU via the storage system network. How-
ever, there are limitations on the nature of the workload that can be 
off-loaded in this way. Since the individual disk controllers do not 
directly communicate with each other, these off-loaded tasks are 
limited to simple filtering and transformation operations on the 
respective independent data streams. In summary, while this tech-
nology is very effective for simple stream-oriented operations on 
the raw data from disk, the overall approach does not yet have the 
flexibility and programmability for more complex operations that 
require parallel synchronization and communication between these 
independent data streams.   
The framework described in this paper, in contrast to these previ-
ous approaches, schedules the execution of compute-intensive, 
DBMS parallel user-defined programs on a separate general-
purpose HPC platform. The major performance limitation in our 
framework is the overhead of data movement between the database 
server and attached HPC platform. But for long-running computa-
tions with comparably small data transfer requirements, or for 
multiple queries on the same target data, the achievable computa-
tional performance gains on the HPC platform significantly offsets 
this data transfer overhead. Furthermore, the overall approach ob-
viates the need for database application developers and users to be 
familiar with any specialized parallel programming and parallel 
execution expertise in order to schedule data movement and com-
putational processing on the external HPC platform.  In fact, rather 
than being ad hoc and non-automated, our approach makes it pos-
sible to compose complex database queries,  with the desired re-
mote computation of parallel user-defined functions taking  place 
entirely within the SQL query framework itself. Therefore, the 
software framework described below provides a flexible, reliable 
and automated approach for scheduling and accelerating parallel 
DBMS user-defined functions on an attached HPC platform. 

3. DESCRIPTION OF THE FRAMEWORK 
Figure 1 gives a schematic overview of the proposed framework 
consisting of a database server and an attached high-performance 
parallel computer (HPC) platform.  A client application issues one 
or more SQL queries to the database server, and parts of the query 
workload are dispatched and executed on the parallel computer. 
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Specifically, the compute-intensive parts of the query workload, 
such as embedded parallel user-defined programs, are scheduled 
and executed on the HPC platform. The results of the remote exe-
cution are then transmitted back to the database server for any 
further query processing before final incorporation into the even-
tual result set returned to the client application.   
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Figure 1. Schematic of HPC accelerator for Database analytics 
The two important aspects of this proposed framework are as fol-
lows. First, the off-loading of the compute-intensive workload to 
the attached parallel computer can improve the query performance 
and query response time on the database server for either a single 
query invocation, or for multiple and related query invocations on 
the same target database table. Second, the entire process by which 
this performance improvement is obtained does not require any 
significant reworking of the client application, since the execution 
of the user-defined program on the back-end HPC platform takes 
place with the same semantics, results and reliability as if executed 
on the database server itself. The framework also provides the 
client application with the ability to customize and optimize certain 
aspects of this off-loaded, remote execution using the familiar SQL 
interface on the database server.  
Figure 2 illustrates the various software components of the frame-
work in greater detail, with specific components for initializing the 
services for executing future off-loaded computations, for schedul-
ing these computations when requested, and for collecting and 
transmitting the results back to the database server. Typically these 
individual components are deployed either on the HPC platform, or 
on one or more of its front-end host computers. A different set of 
components are deployed within the database server itself, and 
consist of specific user-defined program stubs that invoke the cor-
responding services on the back-end HPC platform  using standard 
protocols such as web services or JDBC (Java Database Connec-
tivity). In addition, the database server allocates a set of temporary 
tables for storing any intermediate or final result sets as required 
by the given query workflow. 

Database server Host computer

Service node 
dispatcher

Query partition 
dispatcher

Database relay

Service deployment

Data tables

Result tables

User-defined 
service functions

Service data and
results cache

Service wrapper

Service node set
Query partition

Results collector

Web
services

JDBC

Sockets

MPI

Service host

HPC platform

Parallel computerDatabase server Host computer

Service node 
dispatcher

Query partition 
dispatcher

Database relay

Service deployment

Data tables

Result tables

User-defined 
service functions

Service data and
results cache

Service wrapper

Service node set
Query partition

Results collector

Web
services

JDBC

Sockets

MPI

Service host

HPC platform

Parallel computer

 
Figure 2. Schematic of Components used in the Database Ac-
celerator Framework 
On the parallel computer, the main component is a service wrapper 
which runs on each parallel compute node and encapsulates the 
actual application service on that node for executing the parallel 
tasks. This service wrapper is responsible for communication with 
the other components on the front-end host for the overall schedul-
ing and synchronization. It is also responsible for storing a distinct 
sub-partition of the appropriate target database table or material-
ized view in a form that can be efficiently accessed by the node 
application service using a simple programming interface to re-
trieve these table rows.   
As described here, the front-end host for the HPC platform con-
tains many of the important components of the framework includ-
ing:   
1) A service deployment module that is responsible for loading the 
application service on the required subset of the nodes of the HPC 
platform.   
2) A service node dispatcher component that maintains the state of 
the individual nodes of the HPC platform.  
3) A query partition dispatcher component that works in conjunc-
tion with the service node dispatcher to requisition and set up a 
subset of nodes on the HPC platform for a specific service invoca-
tion, and to execute a distributed query on this query partition. 
Future queries are also dispatched to the same query partition if the 
underlying target database table or materialized view is unchanged 
between the invocations (so as to avoid the overhead of recopying 
the target table data from the database). 
4) A results collector component that aggregates the results from 
the individual compute nodes on the parallel machine, with these 
results being returned to the invoking service function on the data-
base server, or alternatively, being directly inserted into pre-
specified temporary tables on the database server.   
5) A database relay component may also be required in specific 
implementations of this framework, including the prototype con-
figuration described in Section IV, since many parallel HPC plat-
forms do not currently support any of the standard protocols or 
programming API’s for interactive database access. The database 
relay component manages the data transport between the database 
server and the parallel computer nodes, mediating between the data 
transfer protocols used for the database server and the I/O proto-
cols for the individual nodes of the parallel computer.  For exam-
ple, MPI- or UNIX socket-based communication may be used with 
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the HPC platform, while the standard database access protocols 
like JDBC may be used with the database server. 
Figures 3 through 5 show the sequence of phases in the off-loaded 
parallel query execution on the HPC platform.  Here Phase I refers 
to the deployment of the application, Phase II to the data initializa-
tion, and Phase III to the execution of the off-loaded parallel tasks 
and the return of the results to the database server.  
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Figure 3. Description of Phase I for the remote service initiali-
zation 
Figure 3 illustrates the steps involved in the Phase I of the query 
execution where the application service that is responsible for exe-
cuting the required off-loaded database queries is installed on a set 
of compute nodes in the parallel computer. These nodes are termed 
the application service nodes. We assume that the software imple-
mentation of the desired database user-defined function is provided 
as an application service, and is embedded within the service 
wrapper. This application service (along with the encapsulating 
service wrapper) is compiled and linked into binaries for the indi-
vidual compute nodes on the HPC platform using the appropriate 
platform-specific compiler and parallel libraries.   
When a specific request is received from the database server as 
part of its application workflow execution, the deployment service 
on the front-end host invokes the program loader to start up the 
application service on a given collection of compute nodes (this 
program loader is also usually platform-specific, such as MPIRUN 
loader used for MPI-based application binaries [8]). As the appli-
cation service is loaded on these compute nodes, control is trans-
ferred to the service wrapper which initiates a message to register 
the node with the service node dispatcher component (running on 
the front-end host). The service node dispatcher maintains a regis-
try of all the compute nodes that are available with each specific 
application service deployed in this fashion. 
Figure 4 illustrates the steps involved in the Phase II of the query 
execution where the target database table for the subsequent query 
execution is transferred from the database server to a specified 
subset of the compute nodes that have been initialized in Phase I 
(this subset of nodes is termed an active query partition). The data 
initialization phase is triggered by a request from the database 
server to the query partition dispatcher to prepare an active query 
partition for a target table against which future queries in the ensu-
ing Phase III will be run. After this request from the database 
server, the query partition dispatcher first checks if an active query 
partition for the target table already exists and is ready to process 
new queries. If no such partition exists, the query partition dis-
patcher creates a new partition as outlined in Figure 4. To obtain 
compute resources for the new partition, the query partition dis-
patcher negotiates with the service node dispatcher to allocate a 

subset of the available compute nodes on which the relevant appli-
cation service has been initialized. The service wrappers on these 
individual application service nodes then initiate separate data 
transfers to copy mutually-exclusive but collectively-exhaustive 
row partitions of the required data from the database server. This 
data transfer may be routed through the database relay component, 
i.e., the application service wrapper forwards the data transfer re-
quest to the database relay component, which executes the query to 
retrieve data from the database. The relay then forwards the result 
set to the compute nodes in the appropriate representation for stor-
age in the local data cache. 
The individual data partitions, which are typically stored in in-
memory data caches allocated in the application service wrapper 
for best performance, can be accessed during subsequent query 
execution by the application service using a simple and standard  
programming interface at each node.  
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Figure 4. Description of Phase II involving the creation of Ac-
tive Query Partitions 
If a query partition for a particular target table already exists and 
has been initialized but is either reserved or otherwise unsuitable 
for processing a new query, then the query partition dispatcher 
may opt to clone this partition. This is done by allocating a set of 
application service nodes and having the relevant data copied over 
to it from the existing query partition. In this way the data transfer 
takes place within the HPC platform itself, using its high-speed 
internal network, rather than reverting to the original database 
which entails much higher communication costs. 
Figure 5 illustrates the steps involved in the Phase III of the query 
execution, in which the relevant query parameters are transmitted 
to the appropriate active query partition previously set up in Phase 
II. The query request is initiated by a user-defined function stub 
executed on the database server and encapsulates all the input pa-
rameters required for the application service on the nodes of the 
HPC platform, including the name of the particular target table 
against which the query is executed. The endpoint for this query 
request is the application service host component running on the 
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HPC front-end host, which in turn inserts this query request into a 
set of queues maintained in the query partition dispatcher. Separate 
queues are maintained for each query partition that has been allo-
cated and assigned to a specific target table in Phase II above.   
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Figure 5. Description of Query Execution on a remote Active 
Query Partition 
The query partition dispatcher eventually submits this query request 
to the application service wrappers running on the nodes of a suitable 
query partition and then waits for job completion.  
When an application service wrapper receives a query request, it 
extracts the parameter values from the request message and invokes 
the application service. The results of the query, which are temporar-
ily stored in the results cache in the application service wrapper for 
each node in this query partition, are eventually aggregated within 
the results collector component on the front-end host.  Finally, this 
aggregated result data set is either returned directly to the originating 
database function or is inserted in a results table in the database serv-
er using the database relay. Since the originating user-defined func-
tion is either a user-defined table function or is embedded in a user-
defined table function, these results can be further processed as part 
of a complex SQL query workflow (for example, by SQL operations 
like ORDER BY or GROUP BY based on the result column values). 
Similarly, the results table can be joined to other database tables as 
required by the overall query workflow. 

4. APPLICATION PERFORMANCE 
A specific prototype implementation of this framework, along with 
the empirical performance results and deployment details for a bio-
informatics application is described in this section. 

4.1 DBMS and HPC platform setup 
The commercial database server platform used in our application 
enablement experiments is IBM DB2 Version 9.1 [9] running on a 
dual-processor, Xeon 2.4 GHz CPU with 2GB of RAM storage and  
a 100 MBit/s Ethernet interface. 
The attached HPC platform that was used for remote execution of 
the parallel user-defined programs is a single rack of an IBM Blue 
Gene/L e-server platform [10] with 1024 compute nodes. Each com-
pute node comprises two PowerPC 440 processors operating at 700 
MHz with 512 MB of RAM storage per node. Although our specific 
use of the Blue Gene/L platform here does not require the MPI mes-
sage-passing communication libraries, the use of these libraries for 

the application service programming is not precluded in the frame-
work.    
A separate IBM P-series server connected over the local area net-
work to the Blue Gene/L system is used for hosting various compo-
nents of the framework, including 
1)  The scheduler component which contains a registry of the Blue 
Gene/L compute node partitions available for the query processing 
application; 
2) The web service component that supports SOAP-based web ser-
vices calls initiated from the database server to execute various com-
ponents of the query workflow; 
3) The job-submission interface component to reserve and start up 
applications on the compute nodes of the Blue Gene/L computer; 
4) The database relay component that maintains one or more socket 
connections to the individual Blue Gene/L compute nodes, and is 
responsible for executing database commands relayed from the com-
pute nodes on these socket connections, as well as for communicat-
ing the result sets or query status codes of these database commands 
back to the compute nodes initiating database query requests.   

4.2 Bio-informatics application 
An essential task in DNA or protein bio-informatics is the compari-
son of a new genome or protein sequence or sequence fragment 
against a subset of sequences from an existing sequence repository, 
in order to detect sequence similarities or homologies [11]. The re-
sulting matches are then collated with other scientific data and meta-
data on the closely matching sequences (such as conformation and 
structural details, experimental data, functional annotations etc.) in 
order to provide information for further biological or genomic inves-
tigation on this new sequence. In recent years, the amount of gene 
and protein sequence data has been growing rapidly, and this data is 
now being stored in a variety of repositories including commercial 
relational databases as well as numerous proprietary, non-relational 
database formats.  Furthermore, many of the steps in the information 
collation for sequence matching require data integration and aggre-
gation, so that the overall workflow for this task is greatly facilitated 
if the sequence data and sequence metadata, as well as any results of 
the sequence matching algorithms, are all accessible from a standard-
ized SQL query interface.   
One approach to achieving this capability, often termed as the ex-
tract/transform/load (ETL) approach, requires the relevant sequence 
libraries to be imported into a relational database from their original 
data formats, using custom loader scripts for each proprietary data 
format in which the original sequence libraries and metadata are 
stored. An alternative approach described in [12], retains the se-
quence data in its original data repositories, but layers an abstract or 
federated view of this heterogeneous set of data sources on the data-
base server. A set of embedded wrapper functions on this database 
server provides the necessary mapping of the input queries and query 
results that need to be exchanged between the database server and 
the back-end heterogeneous data sources.    
The use of an SQL-based query interface to invoke various biologi-
cal sequence matching algorithms has previously been considered in 
two different ways in the literature. In the first approach, these algo-
rithms have been implemented as embedded user-defined programs, 
as described specifically for the BLAST algorithm in [13].  In the 
second approach, again specifically for the BLAST algorithm [14], 
the database wrapper approach has been extended by transferring the 
required calculations to a separate BLAST server, and then mapping 
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the results back into tables on the database server. These two ap-
proaches differ quite substantially in the implementation details, but 
they both provide some important capabilities, viz., the ability to use 
the database SQL query interface for accessing and querying one or 
more data sources containing biological sequence data and metadata, 
and the ability to invoke sequence matching algorithms such as 
BLAST directly from these database queries. These capabilities 
allow application developers to generate complex queries, which for 
example incorporate filtering of the initial search space of sequences 
using predicates based on the sequence metadata, and post-
processing of the results by indexing and joining the top-ranked 
sequences returned from the matching algorithms with other related 
data repositories that contain further information on them. In this 
way, these database-enabled implementations of sequence matching 
algorithms provide the capability to automate, enhance and acceler-
ate the process of new scientific discovery from the sequence data. 
However, the two approaches discussed above have not been im-
plemented in terms of a general-purpose, parallel computation 
framework for application deployment, as is the case for the applica-
tion described in the present paper.    
There is considerable previous work in the development of parallel 
algorithms for biological sequence matching and alignment on a 
variety of HPC platforms ranging from special-purpose accelerators, 
multi-threaded symmetric multiprocessing systems, and distributed-
memory computers (see for example [15]). From the point of view of 
scalability, the distributed memory platforms are the most interest-
ing, and two main approaches have been pursued here for imple-
menting parallel biological sequence matching algorithms.  
In the first approach, termed database segmentation, the target li-
brary of sequences is partitioned across a set of compute nodes (pre-
ferably using sufficient nodes so that each individual partition fits 
within the available node memory). The parallel scalability of this 
approach is eventually limited by the data movement overhead for 
distributing the library sequence data and collecting the results from 
a large set of compute nodes. A study of the performance optimiza-
tions required for implementing this distributed memory parallel 
approach can be found in [16], with extensions for optimizing the 
parallel disk I/O performance in [17].    
The second approach, termed query segmentation, considers a batch 
of similar but independent queries, and each individual query in this 
batch is simultaneously executed in parallel against the target se-
quence library. The target sequence library is therefore replicated 
across multiple nodes on the distributed memory platform, as de-
scribed in [18]. This approach is limited by the memory on the indi-
vidual nodes, which may not be sufficient for storing the entire target 
sequence library. This particular difficulty can be overcome by using 
a combination of database and query segmentation, which is the 
most effective and scalable approach for distributed-memory parallel 
computers having thousands of processors [19].    
To our knowledge, none of the parallel implementations of BLAST, 
or the other sequence matching algorithms, has considered the issue 
of accessing these algorithms from a standardized SQL interface, in 
order to facilitate the easy integration of these algorithms into the 
processing requirements of a larger query workflow. Furthermore, it 
is difficult to directly incorporate any of these specific parallel im-
plementations as embedded user-defined programs in a database 
extender, since these parallel implementations make extensive use of 
message-passing libraries and other parallel programming constructs 
that are generally not supported in the database programming and 
runtime environments.   

The BLAST algorithm has a computational complexity that is rough-
ly linear in the size of the two input sequence strings to be matched. 
Other search and matching algorithms in bioinformatics, such as the 
Needleman-Wunsch algorithm, Smith-Waterman algorithm, Maxi-
mum-Likelihood matching, and Phylogenetic matching, have a high-
er computational complexity of the order of the product of the sizes 
of the two input sequence strings [11]. Since these algorithms have 
greater computing requirements than the BLAST algorithm, their 
corresponding data transfer overheads to the attached HPC platform 
are a smaller fraction of the overall execution time, and therefore, 
they exhibit a greater performance benefit from the proposed frame-
work. In addition, specific optimizations such as in-memory data 
structures and fine-grained parallelism are more easily implemented 
on the HPC platform than on the database server, and these optimi-
zations have the potential to even further reduce the overall execu-
tion time.   

select * from table(ssearch_call('drosoph', 'query sequence',
'MPMILGYWNVRGLTHPIRMLLEYTDSSYDEKRYTMGDAPDFDRSQWLNEKFKLGL…',
6)) as RESULT_TABLE

Description of Arguments to ssearch_call in Query:
‘drosoph’ is the library/partition name against which the matching query is executed 
‘query sequence’ is the name/description tag for the query sequence.
‘MPMIL…..’ is the query sequence for which the match is desired. 
’6’ is a request to show the top 6 hits in the result set of the query. 

This query returns the result table below, where ID is a database internal integer id for sequences. 

ID           SW                 E                               Z                                            BIT
----- ------- ------------------------ ------------------------ ------------------------

1280        0   +8.22683627922823E-001   +1.06285301282655E+002   +2.72131589312291E+001
1071        0   +1.08072106272098E+000   +1.04158194576657E+002   +2.68195743620312E+001
1191        0   +1.41969279048097E+000   +1.02031087870658E+002   +2.64259897928334E+001
296        0   +3.21837510633985E+000   +9.56497677526638E+001   +2.52452360852397E+001
927        0   +5.55390162202516E+000   +9.13955543406675E+001   +2.44580669468439E+001
127        0   +5.55390162202516E+000   +9.13955543406675E+001   +2.44580669468439E+001

 
Figure 6. Description of an example SQL query for invoking the 
SSEARCH sequence matching algorithm and the result set after 
execution 
Figure 6 illustrates an example of an SQL query request for execut-
ing the SSEARCH algorithm [20], which performs a Smith-
Waterman similarity match of a given input sequence against a spe-
cific target library of sequences stored in the database server.  This 
query initiates the DB2 user-defined table function ssearch_call, 
whose parameter list includes the target sequence library, a descrip-
tor string for the input sequence to be matched, the input sequence 
itself, and the number of top-ranked matches that are desired in the 
result. The parallel user-defined program implementing the Smith-
Waterman algorithm is executed on an active query partition on the 
remote parallel computer to which the target sequence is copied, and 
the results returned for this specific query after the remote execution 
are also shown in the figure.  
Table 1 shows the results of the query performance for deploying 
this application on our prototype framework implementation. Three 
different protein and genome databases of varying sizes, swissprot 
[21] (230k sequences), sts [22] (930k sequences) and est_human 
[23] (7895k sequences) were used as the target tables for the queries. 
The table shows runtimes in seconds for query execution on the 
different databases using different numbers of compute nodes of the 
parallel computer. The cases studied include where the top 10, 100 
or 500 matching sequences are returned as the result set to the query, 
and ranked according to the z-score criterion of the SSEARCH im-
plementation of the Smith-Waterman algorithm. The timings include 
(A) the target library data transfer times in Phase II for creating the 
active query partitions, (B) the overall query processing times in 
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Phase III for queries similar to that shown in Figure 6, and (C) the 
computation processing times on the compute nodes in Phase III 
alone, with the query and result transport times excluded. 
The data transfer times reported for copying the target library are 
consistent with the I/O capabilities of the database server and the 
LAN hardware specifications used in the prototype setup. 
The query processing runtimes in column B of Table 1 show the 
expected near-linear speed-up in this phase with increasing number 
of compute nodes. We note that subsequent queries for the matching 
of new input sequences on the same target library will not incur the 
data transfer overheads from Phase II (column A). The near-linear 
speedups for node counts from 4 through 128 nodes reported here 
are also depicted graphically for the sts database in Figure 7. Similar 
speedup results are obtained with the swissprot and human_est data-
bases. 
For comparison, a similar query against the largest database 
est_human takes more than 5500 seconds when executed entirely on 
the database server itself (this measurement used a standalone data-
base server comprising of a single-core AMD Athlon 64 3200+, 
2GHz processor, 2GB RAM). The off-loading of this computation to 
an attached Blue Gene/L platform therefore reduces the  query exe-
cution time  considerably (by a factor of over 20 using 128 Blue 
Gene/L nodes in our framework, see Table 1), even when taking the 
communication overheads into consideration. 
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Figure 7.  Speedup (relative to 4 nodes) for the entire query exe-
cution for the sts database  from Table 1. 
The timing results in column C in Table 1 denote the sequence com-
parison and processing alone excluding the overheads of the data 
transfer. Taken in conjunction with the timings in column B, those 
results indicate that the overhead of returning the ranking results is 
generally small, but increases as the number of desired top matches 
is increased.  
Our results show two main sources of performance degradation dur-
ing the query execution phase. The first is the increase in the data 
volume of results that needs to be aggregated or returned as the 
number of matches and the number of processors is increased. The 
second is due to the processing that is required in the results aggrega-
tor module to combine the ranking of the individual results from 
each of the compute node partitions. In specific platform implemen-
tations, these overheads can be further reduced, for example by tak-
ing advantage of the fast internal data network of the Blue Gene/L 
platform for results collection, and by using MPI collective commu-
nication calls to perform an on-the-fly ranking aggregation of the top 
matches. The customization and performance tuning of our frame-
work for such specific database and HPC platform combinations is 
an important future practical consideration. The current prototype 
implementation is however fairly generic and relies on standard 
components and protocols that are supported on most other database 
servers and HPC platforms. 

5. SUMMARY 
We have described a framework for deploying, scheduling and exe-
cuting computationally-intensive parallel DBMS user-defined pro-
grams on an attached HPC platform. This framework allows specific 
parallelized user-defined programs on the database server to be 
ported and scaled without having to upgrade the entire database 
hardware platform. The performance overhead of moving the rele-
vant query data and results between the database platform and the 
high-performance computing platform is amortized in our frame-
work in several ways; for example, (i) by exploiting the fine-grained 
parallelism and superior hardware performance on the parallel com-
puting platform for speeding up compute-intensive calculations; (ii) 
by using in-memory data structures on the parallel computing plat-
form to cache data sets between a sequence of time-lagged queries 
on the same data, so that these queries can be processed without 
further data transfer overheads;  (iii) by replicating data within the 
parallel computing platform so that  multiple independent queries on 
the same target data set can be simultaneously processed using inde-

B. Total query processing time Num. 
nodes 

A. Data  
transfer Top 10 Top 100 Top 500 

C. Sequence 
scan time 

swissprot, 230k sequences 

4 44.0 134.0 134.0 134.2 133.5 

8 37.8 68.3 68.3 68.9 67.8 

16 37.6 36.5 36.7 37.8 36.1 

32 37.9 19.1 19.5 22.1 18.7 

64 38.5 10.7 11.8 16.8 10.3 

128 44.0 5.7 8.9 10.6 5.2 

sts, 930k sequences 

4 63.1 680.6 680.6 680.9 680.0 

8 71.6 383.8 384.0 384.3 382.5 

16 84.5 193.8 193.9 195.2 193.3 

32 71.5 98.7 99.3 101.5 98.1 

64 74.9 50.9 52.0 56.8 50.5 

128 81.7 27.7 29.9 39.6 26.4 

est_human, 7895k sequences 

32 803.7 812.0 812.2 814.7 811.1 

64 899.0 466.7 468.1 472.4 466.1 

128 1090.5 246.6 249.0 258.8 246.0 

Table 1. The elapsed time in seconds for the execution of a 
query of the form shown in Figure 6 on the prototype sys-
tem for the analytics accelerator framework on IBM 
DB2/IBM Blue Gene/L configuration.  
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pendent parallel partitions of the high-performance computing plat-
form.   
A prototype of this framework, comprising of an IBM DB2 database 
server attached to an IBM Blue Gene/L HPC platform on a 100 
MBit Ethernet LAN, has been used for deploying applications and 
performance benchmarking.    
In closing, this framework provides a new approach towards inte-
grating parallel HPC programs into database applications and data-
oriented workflows, with potential applications in diverse areas such 
as multimedia databases, life-sciences, financial computing, scien-
tific computing, and general-purpose applications in search, ranking 
and aggregation. The structure of the specific parallel user-defined 
programs in our framework is similar to the scan-aggregation opera-
tions used in distributed data analytics frameworks such as MapRe-
duce [24] and the PML toolkit [25]. The framework, therefore, addi-
tionally supports the relational processing of the input data and out-
put results, so that these parallel and distributed analytic constructs 
can be incorporated into complex query workflows. 
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