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Abstract— Error correcting coding is the dominant technique to
achieve acceptable soft-error rates in memory arrays. In many
modern circuits, the number of memory elements in the random
logic is in the order of the number of SRAM cells on chips only
a few years ago. Often latches are clock gated and have to retain
their states during longer periods. Moreover, miniaturization has
led to elevated susceptibility of the memory elements and further
increases the need for protection.

This paper presents a fault-tolerant register latch organization
that is able to detect single-bit errors while it is clock gated.
With active clock, single and multiple errors are detected. The
registers can be efficiently integrated similar to the scan design
flow, and error detecting or locating information can be collected
at module level. The resulting structure can be efficiently reused
for offline and general online testing.

Keywords— Robust design, fault tolerance, low power, latch, reg-
ister, single event effects

I. INTRODUCTION

Today’s technology scaling comes with effects concerning both
power consumption and reliability. The paper presented here
deals with the combination of both aspects. One of the reli-
ability issues are single event effects (SEE) due to radiation.
Already in the 70’s, memory cells were subject of investiga-
tions of radiation induced error rates [1], and nowadays, SEEs
are of concern for static memories [2], latches and flip-flops
[3] and even for random combinational logic [4, 5].

Up to now, a large variety of hardening techniques has been
proposed for the different types of structures. As the soft error
rate (SER) of memory elements in random logic is continu-
ously increasing [6] and as the amount of flip-flops and latches
is rapidly growing, this paper is contributing to the protection
of these storage elements.

Besides the high vulnerability to SEEs, scaling leads to an
increased power density on chip which prohibits a frequency
increase as seen in the past. The classic low power design
techniques have still increasing relevance [7, 8], but must be
complemented by massive parallelism [9] and power manage-
ment in networks and systems on a chip. While power gating
is employed, if modules will be unused for a rather long period
of time, and their state is not needed any more in the course
of further computations, clock gating is favored for shorter
breaks where the computation will be resumed and the state
must be retained.

There is a variety of protection schemes against single-event
upsets (SEU) for flip-flops available [10, 11, 12, 13, 3, 14,
15, 16, 17, 18, 19], all of them introduce redundancy, addi-
tional activity and additional power consumption. Significant
progress has also been made to limit this power increase by
special designs like BISER [20], RAZOR [12], DF-DICE [21]
and others. However, these schemes do not target the clock
gated phase, which is actually in most cases a larger time
period a state must be retained than the clocked phase.

This paper presents a technique to protect especially this phase,
but it can also be used for fault detection in the clocked phase.
For an efficient and automated implementation, basic cells are
developed, which can be used in the same way as scan ele-
ments for an automated integration. A lightweight observation
tree can be synthesized for fault location, indicating which
register may be corrupted and if a restart after clock gating
is required. Small extensions allow to reuse the scheme for
clocked online fault detection and off-line test.

The next section introduces the basic register design with
power and fault-tolerance aspects taken into account. Section
3 describes the error detection and correction trees with some
quantitative analysis. Section 4 extends the basic registers for
the clocked phase. Section 5 investigates the LEON design as
part of a multi-core processor system, analyzes the effort to
introduce the proposed error detection scheme, and compares
it to error detecting registers from the literature.

II. LOW POWER SEU-DETECTION AT GATE LEVEL

Modern low power system design has to address both leak-
age and switching current. Techniques for leakage control are
beyond the scope of this paper, techniques for switching cur-
rent control can be summarized by avoiding anything which
introduces unnecessary circuit activity. To some extent, this
paradigm contradicts the commonly used design for test and
design for fault tolerance and robustness techniques.

a) Scan elements: The level sensitive scan design technique
(LSSD) [22] is considered as especially robust against timing
variations. Figure 1 shows the level sensitive L1/L2 shift reg-
ister latch which is controlled by one system clock and two
test clocks A and B.

In the most straightforward way, the L1 latch is used for data
storing at input D controlled by clock CLK, and the input
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Fig. 1. Shift register latch

”scan data in” is controlled by the two non-overlapping clock
signals A,B. Hence, the latch L2 is only used for implement-
ing the shift mode and introduces drawbacks with respect to
power consumption. It increases the active area and this way
the leakage current, and it adds to the load of the L1 latch,
thereby increasing weighted switching activity. For this rea-
son, power conscious design prefers partial scan. In pipelined
circuits without feedback lines, partial scan does not reduce
testability [23], and in the Cell processor for instance, only
around 1/4 of the latches are scannable [24].

Also in system mode, latches have to be controlled by a non-
overlapping clock scheme. The simplest case is seen in figure
2. The times τ l

1 and τh
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Fig. 2. Non-overlapping clock scheme

As these latches are available anyway they can be combined to
so called L1/L2∗ latches to implement a single SRL (Figure
3). Now, the L2 latch is not any more redundant and does not
increase the active area and the leakage current.
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Fig. 3. L1/L2∗ shift register latch

b) Robust and fault tolerant registers: Hardening flip-flops
and registers can be employed at all design levels, however,
in most cases they have significant impact on both leakage
and switching current. Layout techniques related to cell and
transistor sizing, diode insertion or adding capacitances are
effectively employed at physical level [25, 26]. All of them
increase both switching and leakage current. At transistor and
gate level, redundant memory elements are introduced, and a
C-element or a voter guarantee a stable output. Most prominent
representative of this class of designs is the BISER (Built-In
Soft Error Correction) [3], and many predecessors and varia-
tions have been published [17, 14, 10, 13, 15, 18, 19, 12].

Basic principle of all of them is to add two memory elements.
One of these memory elements may be a C-element or an
additional voter is required (Figure 4).
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Fig. 4. Principle of robust latch design

If the L2 latch is used for scan design anyway, the overhead
of these structures in area, power and even delay is limited.
However, if for power reasons an L1/L2∗ technique has to be
used, a direct implementation is not possible. Finally, if for
power reasons partial scan design is employed, the overhead
in area and power of the technique in figure 4 may reach up
to 700%. This aspect is not solved by protecting registers by
Hamming code [27].

c) SEU detection: Now we show that implementations with
much less impact on power, delay and area can be found if
fault correction and fault tolerance at register level is not re-
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quired and only fault detection is needed. Instead of using
three memory elements we compute just a simple parity sig-
nal for a 8 or 16 bits register. The parity tree is gated by the
inverted clock gating signal to reduce switching activity during
operation. The parity logic itself is integrated into the latch de-
sign, and allows synthesis just by abutment. The final routing
of the parity lines does not differ from any scan chain routing.
First we describe how to handle the leaves of this structure.
Figure 5 shows the schematic of the parity computation of 2
latches.

With these parity pair latches (PPL) a register is formed like in
figure 6. Since the parity signals have to be amplified anyway
the additional impact of gating the tree is just the difference
between an inverter and a NAND gate. For the complete tree
only the PPL and an XOR cell are required as seen in figure
6.
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Fig. 6. Parity tree, consisting of two cell types

With this design, each cell consists of just two half XOR gates,
and at most two wires cross each cell. The critical path is just
4 inverters, 1 NAND and 3 pass transistors which is less than
three times the delay through a latch, and in the same range as
any of the double latch solutions mentioned above. Basically, 2
different types of cells are required, and the register synthesis
is not more complex than any scan synthesis. By placing two
of the registers face to face we design error detecting 16 bit
registers by just one additional XOR-gate (Figure 7).
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Fig. 7. Error detecting 16 bit register

III. SEU IDENTIFICATION AT MODULE LEVEL

The error information of the basic registers has to be passed
to module’s top level, stored in a register and will be used for
error handling. If only fault detection is required in order to
restart computations, a simple XOR tree may connect all the
registers.

More effort is needed, if we want to detect also multiple errors,
or if fault location is required.

In embedded memories, transparent online test can be used
for error location [28, 29]. The transparent test technique for
static and dynamic memory arrays from [28] will be adapted
to random logic in this paper. The modulo-2 address charac-
teristic of a bit-oriented memory is computed by a bit-wise
XOR of the addresses of those memory cells which contain a
1 (Figure 8).
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Fig. 8. Modulo-2 address characteristic

The characteristic has some substantial benefits compared with
signature analysis and error correcting codes [30, 31]. Single
error location is especially easy, assume cref is the charac-
teristic of the correct memory content, and cf is the incor-
rect one of a single-bit error. The bit-wise computation of
addf = cref ⊕ cf provides the address of the erroneous bits
Double errors are always detected, and the overall aliasing
probability is 2−N , where N is the number of address bits.
If all the registers of the module are numbered starting from
r1 to rN−1, each parity bit pi gets a unique address i, and an
overall characteristic could be computed sequentially bit by
bit like in figure 8. The bit p0 = 0 is not used, as address 0
does not contribute to error detection.

However, the sequential computation is only appropriate for
memory arrays, but in random logic with gated clock a com-
binational logic is required. In a straight-forward way this is
implemented by a tree whose leaves are the N bit binary words
pi∧ i, and each node represents bit-wise XOR. Figure 9 illus-
trates this for 7 registers and parity bits p1, . . . , p7.

The number of vertices in the tree of Figure 9 is 2N+1 −N ,
due to address 0 not being used. As the root node has not to
be connected two times there are

N · (2N+1 −N − 1) (1)

point-to-point connections. A significant amount of hardware
can be saved if only significant bits are passed between the
levels (Figure 10).

In level k ∈ {0, . . . , N − 1} there are 2k vertices and each
vertex vk,l, l ∈ {0, . . . , 2k − 1} corresponds to 2N−k ad-
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Fig. 9. Non-optimal computation of modulo-2 characteristic

dresses. ck,l = (ck,l,N−1, . . . , ck,l,0) is the output of vertex
vk,l. Since the k most significant bits (aN−1, . . . , aN−k+1)
of the addresses of vertex vk,l are identical, the result bits
(ck,i,N−1, . . . , ck,i,N−k+1) only depend on the parity of the
2N−k leaf vertex register-parities:

• (ck,l,N−1, . . . , ck,l,N−k+1) = (0, 0, . . . , 0)
if the parity is 0

• (ck,l,N−1, . . . , ck,l,N−k+1) = (aN−1, . . . , aN−k+1)
if the parity is 1

We do not need to compute this vector of k bits. Instead, the
generation of the information can be deferred to the successor
in level k − 1 and we just compute and forward the parity:

pk,l = pk+1,2·l ⊕ pk+1,2·l+1

The N−k−1 bits (ck,l,N−k−2, . . . , ck,l,0) are computed from
the characteristics of the predecessors of vk,l:

ck,l,j = ck+1,2·l,j ⊕ ck+1,2·l+1,j

j ∈ {N − k − 2, . . . , 0}

Finally, ck,l,N−k−1 corresponds to the highest address bit that
distinguishes the two predecessors of vk,l. From our previous
observations, we know that we can derive any most significant
bit of the characteristic from the parity bits pk,2·l and pk,2·l+1.
Here, we know that address bit N−k−1 of predecessor vk,2·l
is 0, and 1 for vk,2·l+1 respectively. It follows:

ck,l,N−k−1 = (0 ∧ pk+1,2·l)⊕ (1 ∧ pk+1,2·l+1)
= pk,2·l+1

Therefore, each vertex on level k has 2 connections to read
each parity of the 2 predecessors and 2 · (N − k− 1) connec-
tions to read the characteristic of the predecessors. Hence, the
number of input connections on level k is 2k · 2 · (N − k).

Since the least significant parity bit in any level does not con-
tribute to the overall characteristic, we do not need to compute
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this bit (see Fig. 10). The overall number of point to point con-
nections is:

N−1∑
k=0

2k+1 · (N − k)−N

which is easily transformed into

2N+2 − 3 ·N − 4 (2)

and is significantly less than formula (1).

IV. ONLINE DETECTION AND OFFLINE TEST

The structure presented so far may also be used with the clock
signals enabled, if we extend the register presented in section
2 to allow for local error detection. For an LSSD structure,
as treated here, the so called GRAAL [32] structure was pro-
posed, which extends every system latch with a shadow latch
and compares the states of both latches (Figure 11).
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The basic idea of the approach presented here is not to com-
pare the register content but the parities (Figure 12).

One additional latch per register stores the parity bit already
computed for the characteristic computation. If the parity latch
is operated with the same clock as the register, the critical
path is elongated and the frequency is minimally reduced.
This disadvantage can be eliminated if CLK ′ is, as in con-
ventional ”time borrowing”, derived from CLK with a delay,
that matches the critical path through the parity tree. After the
parity has been computed, the stored value is compared to the
one continuously computed by the XOR-tree. Therefore one
additional XOR-gate generates the error information at regis-
ter level. This error signal can be used for the treatment of
errors in the same way as for the RAZOR approach.

The error detecting design scheme presented so far is espe-
cially appropriate for partial scan design, and can be reused to
support offline testing. The characteristic at module level in-
creases the observability of all of the latches and compresses
the test response.

In [33] it has been shown, that this extreme response com-
paction to a modulo-2 characteristic or even a parity bit does
not affect fault coverage, if appropriate test patterns are ap-
plied.

P

&

L L

&

L L

&

L L

&

L L

L
CLK’

ERROR

CLK

Fig. 12. Local error detection with low delay overhead



V. EXPERIMENTAL RESULTS

In this section, we study the impact of the presented error
location technique on embedded processor cores for Multi-
processor System on Chip (MPSoC) such as LEON3. We
compare the technique presented here with the error mask-
ing BISER flip-flop presented in [3] and the error detecting
RAZOR shadow latch presented in [12]. For each technique,
the number of transistors to implement all the required logic
is estimated and compared.

LEON3 is a very modular core that allows to selectively in-
clude components such as FPU, MMU, Cache, memory con-
troller, etc.. The configuration of LEON3 evaluated here has
about 16k memory elements in the random logic. The memory
elements are clustered into 2047 registers of up to 8 bits. The
latches used here are of the transmission gate type and require
8 transistors to implement. We do not take into account the
overhead for clock generation and distribution.

Table I shows the overhead calculation for the proposed scheme.
Column # Trans gives the number of transistors per gate of
type Gate Type. Column # Gates lists the number of gates
of each type and column Total the associated total number
of transistors. Each register of 8 bits consists of 4 PPL and
3 separate XOR gates as shown in Figure 6. The number of
XORs required to implement the characteristic computation is
computed using the considerations in section 3 and matches
the synthesis results exactly. A simple comparator for the ref-
erence characteristic and a faulty characteristic is implemented
in a straight forward way. The last section of Table I concerns
the overhead incurred for the online detection as presented in
section 4. In order to get a core-level signal that a failure has
occurred, all the ERROR lines are aggregated at core level
by an OR-tree. As online error detection is optional, we give
the total transistor count for both variants of the presented
scheme.

Tables II and III give the same information for RAZOR and
BISER. For RAZOR we have counted the number of tran-
sistors in the implementation presented in [12]. Each latch in

Gate Type # Trans. # Gates Total

Per register PPL 24 4 96

XOR 6 3 18

Total 114

All registers 114 2047 233358

Characteristic XOR 6 4072 24432

Comparator 11bit Latch 8 11 88

XOR 6 11 66

OR 4 10 40

Total 194

Online detection Latch 8 2047 16376

XOR 6 2047 12282

OR tree 4 2046 8184

Total 36842

Overall (w/o online) 257984

Overall (w online) 294826

TABLE I
TRANSISTOR COUNT FOR COMPLETE ONLINE DETECTION

the design is implemented in this way. Again, we need a sim-
ple OR-tree to provide a core-level signal but this time over
all latches instead of just the registers. The BISER scheme
has been designed for error masking instead of error detec-
tion. This way, the overhead for the OR-tree is avoided. The
implementation of BISER used here is taken from [3]. More
recent variations [19] provide additional features such as aging
sensors, but also increase the overhead.

Gate Type # Trans. # Gates Total

Per latch INV 2 11 22

XOR 6 1 6

OR 4 1 4

MUX 4 1 4

Transm. Gate 2 3 6

AND 4 1 4

Total 46

Per register 46 8 368

All registers 368 2047 753296

OR tree OR 4 16376 65504

Overall 818800

TABLE II
TRANSISTOR COUNT FOR A RAZOR IMPLEMENTATION

Gate Type # Trans. # Gates Total

Per latch Non-scan latch 8 2 16

Scan latch 20 2 40

C-Element 6 1 6

INV 2 5 10

AND 4 1 4

OR 4 1 4

Total 80

Per register 80 8 640

Overall 640 2047 1310080

TABLE III
TRANSISTOR COUNT FOR A BISER IMPLEMENTATION

From the analysis it is obvious that the overhead of the pre-
sented technique is lower by an order of magnitude compared
to the established methods, which are based on duplication
and triplication. Compared to the presented technique with on-
line error detection, a design that uses RAZOR incurs 177%
more transistors and the same design with BISER even re-
quires 344% additional transistors. If online error detection is
not required, RAZOR has 217% and BISER has 407% more
transistors.

The lower number of transistors has direct impact on both
the silicon area and most important on the associated leakage
current. Furthermore, there is only insignificant impact on the
switching activity since the NAND-gate built into the PPL
avoids any superfluous switching activity in the characteristic
computation tree.

VI. CONCLUSION

In this paper, we have presented an error detection and location
method that adapts the benefits of error correcting coding used
in memory arrays to memory elements in random logic. The



method is specifically targeted towards clock gated low-power
designs, where the latches have to retain their states during
long periods of time.

The method is able to easily locate the register affected by a
soft error. It consist of simple cells which may easily be inte-
grated similar to the scan design flow. The resulting structure
can be efficiently reused for offline and general online testing.
Compared to other soft error resilient memory elements, the
presented structure requires up to 77% less overhead.
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