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Abstract— Rising design complexity and shrinking structures pose new challenges for debug and diagnosis. Finding
bugs and defects quickly during the whole life cycle of a product is crucial for time to market, time to volume and
improved product quality. Debug of design errors and diagnosis of defects have many common aspects. In this paper
we give an overview of state of the art algorithms, which tackle both tasks, and present an adaptive approach to
design debug and logic diagnosis.

Special design for diagnosis is needed to maintain visibility of internal states and diagnosability of deeply embedded
cores. This article discusses current approaches to design for diagnosis to support all debug tasks from first silicon
to the system level.

Keywords— Diagnosis, Debug, Embedded Test

1 INTRODUCTION

For the economic success of a product three factors are
crucial: fast time to market, low cost per unit and high
product quality. The relevance of debug and diagnosis
to optimize these factors is obvious, in each phase
of a product’s lifecycle, defects and bugs have to be
found quickly and special equipment and automatisms
are necessary to achieve this goal. In the development
phase of a product, debug is the essential mean to find
and locate bugs, in the production and support phase
the appropriate mean is diagnosis.

Debug is the process of locating logical and functional
flaws in specifications, hardware and software. As
logical and functional flaws remain the main cause
of today’s design respins, verification is turning into a
critical bottleneck with increasing complexity of Sys-
tems on Chip (SoC) [1], [2]. Despite the efforts spent
on advanced verification and validation techniques,
the percentage of designs with functional errors has
increased between the years 2002 and 2004 [3].

Diagnosis is the process of locating faults in a physical
chip at the various levels down to real defects. Numer-
ous parasitic and timing effects may show up in the
first silicon [4] and have to be located and eliminated
to enable a fast yield ramp up. But even after successful
production diagnostic techniques have to be applied to
returns to further improve the product quality and learn
for future products.

Design verification and diagnosis of microelectronic

circuits have long been viewed as separate tasks with
individual challenges and techniques. However, in re-
cent years more and more attention is paid to the
interaction of individual design steps in verification,
diagnosis in production, and field return analysis. Since
diagnosis and debug have the common objective of
achieving high diagnostic resolution, improving ac-
cessability of internal signals and cores helps with all
aspects of verification, debug and diagnosis.

Techniques which were formerly employed for test
and afterwards discovered for diagnosis - like the scan
design method and test point insertion - are now reused
for design validation [5], [6]. Additionally it becomes
more and more obvious that yield ramping starts with
design for manufacturability [7], [8], [9], thus many
precautions have to be taken on the designer’s side to
enable debugging and diagnosis.

Taking a look at the progress of nanometer technology,
designs have to be more robust due to increased vari-
ations of nano-scaled silicon. Automated maintenance
and built in self-repair become strong requirements to
achieve high reliability, but employing this, designs get
both hard to test and hard to diagnose. Future work will
have to overcome these challenges.

In this paper we give an outline of recent research
challenges and developments in the area of debug
and diagnosis. In the following chapter, debug and
diagnosis tasks throughout the life cycle of a SoC
are discussed. In chapter 3, algorithms are presented
to locate faulty structures in circuits and defects on
chips. In chapter 4, methods are discussed to improve
accessability to internal states of devices.



2 LIFE CYCLE DEBUG AND DIAGNOSIS

Designing and manufacturing is an error prone pro-
cess. Some of the errors are due to misconceptions
and human mistakes, others are unavoidable due to
unknown conditions. Even under the assumption of no
human mistakes there is a strong necessity for quality
control and improvement during the complete life cycle
of the system. This section discusses tasks, challenges
and requirements for tackling faults occurring during
design, manufacturing and operation.

2.1 Specification

Functional errors caused by the designer are mostly due
to an inconsistent or incomplete specification. After
specification, we have functional simulation models for
all major system components. But with growing system
complexity, simulation time for the complete system
grows to an extend where simulation covers only a
small portion of the design space. Despite all efforts
to find functional errors as early as possible, functional
errors may then show up later in prototypes and during
system-level debug.

Increased accessibility introduced by design for di-
agnosis helps tracking down functional errors during
system-level debug. Though system-level debug itself
is beyond the scope of this article, we spent a paragraph
on trace buffers in chapter 4.

2.2 Implementation

Implementation is the design of hardware according
to the available models or specification. The imple-
mentation has to be verified to avoid respectively find
design-errors, which are defined as deviations of the
implementation from the specification. Estimates today
are that more than 70% of the total design time is spent
on verification [1], [2]. Standardized debug methods
and algorithms have to be developed to decrease veri-
fication and thereby design time.

Today, assertion based verification is used and sup-
ported by commercial tools. Most often, this task relies
on simulation and becomes very expensive. Again,
some design errors may only show up during emu-
lation, in prototypes or even during mass production,
where then an increased accessability introduced by
design for diagnosis during the implemenation phase
has to help tracking down design errors.

The variety of design-errors is infinite, nevertheless
the most common design flaws can be made out as
violated timing constraints or altered logic functions
due to manual optimizations. Design debug is the task

of finding those flaws in a design. Though design errors
are defined relative to the specification, design debug
does not depend on a fault-free specification to track
down deviations.

To gain a deeper understanding of today’s debug-
techniques, a different view on the problem is helpful:
A design fault is the logic function of the smallest
circuit part which needs to be rectified. This view
bridges debug and diagnosis, where fault-modeling is
applied to describe possible misbehaviours of a circuit,
caused by design-errors or defects.

One way to describe design errors are conditional
stuck-at faults as proposed in [10]. Conditional stuck-at
faults are stuck-at faults with an additional activation
condition. If multiple conditional stuck-at faults are
assigned to a single line or a multiple line, then an ar-
bitrary combinational faulty behavior can be described.
Figure 1 amplifies how to model a design error, where
an AND gate is exchanged by an OR gate with the
help of a conditional stuck-at fault.

Figure 1: Example of a conditional stuck-at fault

Among all the approaches to describe malfunctioning
designs by fault models, there is no fault model match-
ing every possible design fault.

The last step in implementation is the final layout of a
design. Layouts are verified by extracting a netlist and
debugging the extracted netlist with the same design
debug methods used before.

2.3 Prototyping

With the masks from the implementation phase, first
chips are produced. Due to various unknown effects,
not all of the prototypes produced will work properly.
This problem is getting more severe with shrinking
structures, as now systematic and random variations
are increasing. In consequence, the actual behavior
of physical chips gets more and more difficult to
predict and simulate [11], and additionally it is harder



to decide whether a device works within a given
specification or not [12].

A physical disorder which leads to a behavior different
from the implementation is called a defect. Systematic
defects must be identified and avoided by altering the
design or the process parameters. The new behavior of
the internal signals due to a present defect is called a
fault. In recent technologies, the complexity and variety
of possible faulty behaviors is increasing, and fault
models cannot reflect reality any more.

The increasing variations in nano-scale silicon lead to
complex defect mechanisms, hence the actual behavior
of faulty chips and designs becomes not only difficult
to predict but also difficult to model [13], [14], [15].
Rising variations for instance lead to lower signal-
to-noise ratios, to complex defect mechanisms and
indeterministic behavior.

Stuck-at, delay, bridging and statistical fault models
are used today in commercial tools. However there
are strong efforts towards a fault model independent
diagnosis.

Defects can also be expressed in conditional stuck-
at faults as long as they result in a combinational
malfunction. Figure 2 shows an example of a bridge
or short. However like in design debug, a fault model
which can describe all possible defect mechanisms is
unknown. Fault models must be determined by the
diagnosis algorithm itself to describe the defect mech-
anisms. As an additional precondition for diagnostic
algorithms, a high diagnostic resolution has to be
provided to find exact defect mechanisms to guide the
physical inspection accurately.

Figure 2: Example of a conditional stuck-at fault modeling a
resistive bridge

On a chip, there can be faults in combinational logic,
in scan chains or in the clock tree. Finding possible
defect locations in random logic based on the observed
behavior of the chip is called logic diagnosis. Logic
diagnosis together with scan chain diagnosis and inter-
connect (bus, network) diagnosis forms the precision
diagnosis.

2.4 Manufacturing

”Time-to-volume” and ”time-to-market” are essential
for the economic success of a product. ”Yield ramping”
is a traditional application area of diagnosis as it is used
to find yield limiters.

Modern manufacturing processes strongly interact with
the design characteristics. This necessitates yield learn-
ing for each new design. Adapting process and product
requires analysis of root causes for failures and outliers
[16], [17]. The extracted knowledge is used to support
yield ramping and yield learning in advanced process
technologies by improving design for manufacturabil-
ity [16].

Prior to expensive diagnosis and physical failure analy-
sis, spot defects must be ruled out by volume diagnosis.
In volume diagnosis, test data of a large number of
failing chips are recorded and analyzed to find yield-
limiting systematic defects and design issues. Diag-
nostic data from a single chip is not sufficient since
systematic problems need to be differentiated from
sporadic random defects. First attempts to establish
standards in volume diagnosis have been made [18].

Research in this area is quite mature, nevertheless with
growing design complexity again new problems arise.
Complex designs need more patterns to test and testing
time is a crucial cost factor. Additionally in modern
designs many cores are deeply embedded and test
access is a severe problem. The test-solution developed
aiming at this issue is built-in self test (BIST). BIST
reduces traffic and helps cutting testing time, and
many chips can be tested in parallel on one tester.
However, classic BIST infrastructures may limit the
visibility from outside and gathering diagnostic data
may become more difficult. Often, only very limited
diagnostic information is available like the number of
the first failing pattern.

2.5 Support

Even after successful manufacturing, diagnostic tech-
niques are needed to detect and locate defective mod-
ules [19] before repair. As customer satisfaction and
warranties are a strong economic factor, the diagnosis-
infrastructure of a silicon product facilitating diagnosis
in field is also of great importance.

3 LOGIC DEBUG AND DIAGNOSIS

Logic debug and diagnosis is concerned with finding
the most reasonable root causes within a random logic
network that explain the failing flip-flops of this circuit
as good as possible. This circuit can either be a design
containing errors or a core on a chip with defects. The



only difference is that the root causes are induced by
different defect or error mechanisms. The traditional
way to tackle these root causes first to create simple
fault and error models to cut on the complexity of
the problem, and then to develop special debug and
diagnosis algorithms for each of these models.

Due to rising complexity of possible defect mecha-
nisms, new approaches are currently explored which
are not restricted to a specific fault or error model.
Such algorithms are based on the observation, that
simple, local defect mechanisms are more reasonable
root causes than complex, distributed ones. An easy
metric for resonability is provided by the number of
conditional stuck-at faults needed to explain all fail-
ures. This observation holds for both, design errors and
physical defects. Therefore fault model independent
approaches are suitable for both, design debug and
logic diagnosis.

Design debug and logic diagnosis have the common
goal of not only deriving possible root causes but also
to keep the number of suspects as low as possible:
The lower the number of returned suspects, the higher
the achieved diagnostic resolution. The applied test
set itself determines the achievable resolution by the
number of faults which cannot be distinguished any
further [20], [21], [22]. The effectiveness of pattern
response analysis algorithms is evaluated by comparing
the achieved diagnostic resolution to the resolution of
the test set.

Pattern response analysis algorithms are divided into
cause-effect and effect-cause approaches. These two
fundamental paradigms will be discussed in the next
two subsections. Most debug and diagnosis methods
employ at least one of these approaches and some
even combine pattern analysis with diagnostic ATPG to
provide maximum diagnostic resolution. This concept
is called adaptive diagnosis and is covered in the third
subsection.

3.1 Cause-Effect Analysis

In cause-effect analysis, a fault model is chosen to
enumerate all possible root causes in a circuit. Fault
simulation is performed on each fault in the model,
and the behavior is matched with the failing responses
observed [23], [24].

To cut on simulation time, the erroneous output for
each fault and each pattern is stored in a dictionary
[25] but depending on the complexity of the chosen
fault model and the size of the circuit, such a dictionary
may explode. Significant research effort has been spent
for reducing the size of fault dictionaries [26], [27].
The size can be reduced by omitting the erroneous
output and storing only pass-fail information for each

pair or by limiting the diagnostic resolution of the
dictionary and performing fault simulation for each
case to distinguish the remaining candidates [28].

Dictionary based cause-effect approaches today can
handle industrial-sized designs [29] but the main
drawback—the dependency on simplistic fault models
like stuck-at or bridges—remain. However, some ad-
vanced methods still use cause-effect analysis as a final
stage in the diagnosis process to improve diagnostic
resolution.

3.2 Effect-Cause Analysis

In effect-cause analysis, possible defect locations are
derived directly from the observed failing outputs by
taking the logic structure of the circuits into account
[30], [31]. This approach does not depend on the
enumeration of all possible faults, thus it can be used
to implement fault model independent diagnosis. As
mentioned above, such algorithms assume a certain
locality of the root cause.

The most simple effect-cause algorithms rely on the
strongest locality possible: the so-called single fault
assumption or single fix condition. This assumption
states, that there is a single signal within the circuit
which value needs to be altered to explain all failing
patterns. Based on this, algorithms were proposed
which are based on the intersection of input cones of
failing outputs [32] or backtrace critical paths from
failing outputs to focus on delay faults [33]. After
finding such a signal in an erroneous design, its logic
behavior can be extracted and rectified [34].

The ’Single Location At a Time’ (SLAT) approach
introduced by [35], [36] relaxes the single fault as-
sumption. This approach determines for each pattern
single stuck-at faults that can explain the failing re-
sponse by fault simulation. Those explaining faults can
be different for each failing pattern and are used to
derive more complex faults. Hence SLAT is a fault
model independent approach which merely uses the
stuck-at fault model in fault simulation to localize the
suspicious region of the circuit.

The main drawback of the SLAT paradigm is the fact
that information for fault location is only extracted
from patterns which fulfill the single fix condition. All
the other patterns are not taken into account, neither
failing nor passing ones.

To overcome this limitation, many algorithms work in
two passes: First, a fast effect-cause analysis like SLAT
is performed to constrain the circuits region where
possible culprits may be located. Second, for each of
the possible fault sites, a cause-effect simulation is
performed for identifying those faults, which match the
real observed behavior [23], [24].



3.3 Adaptive Diagnosis

There is no concise test set which provides the best
resolution for every possible faulty behavior. Since
the maximum achievable diagnostic resolution is deter-
mined by the test set, many approaches already employ
diagnostic or focused ATPG to distinguish remaining
suspects or extracting defective behavior completely
[23], [34].

By integrating pattern generation more tightly into the
whole diagnosis process, fault location can be even
more powerful. This general idea of alternating pattern
analysis and pattern generation steps is called adaptive
diagnosis [37].

Here, faulty and fault free responses are used in order
to guide the automatic generation of new patterns
for increasing the resolution. A pattern analysis step
extracts information from responses of the DUD and
accumulates them in a knowledge base. This knowl-
edge in turn guides an automatic test pattern generator
(ATPG) to generate relevant patterns for achieving
high diagnostic resolution. The loop ends, when an
acceptable diagnostic resolution is reached (Fig. 3).
The definition of the exact abort criterion depends on
the number and confidence levels of fault candidates.

Figure 3: Adaptive diagnosis flow

One way to implement such an adaptive diagnosis
flow is by the generalization of the SLAT paradigm.
Where SLAT only considers perfect matches for each
pattern, a measure can be defined to quantify how
well a stuck-at signal explains a response of the circuit
under diagnosis [38]. Let FM(f) be a fault machine,
i.e. the circuit with stuck-at fault f injected. For each
test pattern t 2 T , the evidence

e(f, t) = (��t,�◆t,�⌧t,��t)

is defined as as tuple of numbers where ��t is the
number of failing outputs f can explain, �◆t is the

number of additional failures f induces, �⌧t is the
number of failing outputs not explained by f (see fig.
4), and ��t is the minimum of ��t and �◆t.

A failing pattern t which is completely explained by
a stuck-at signal f will lead to evidence e(f, t) =
(��t > 0, 0, 0, 0). So the SLAT approach is only a
special case in this notation. Note, that ��t will be
maximum for all evidences of t.

Figure 4: Definition of evidence e(f, t) = (��t, �◆t, �⌧t, ��t)

The evidence of a fault f and a test set T is simply
the sum of all evidences for f :

e(f, T ) = (�T , ◆T , ⌧T , �T ), with

�T =
X

t2T

��t, ◆T =
X

t2T

�◆t,

⌧T =
X

t2T

�⌧t and �T =
X

t2T

��t.

If ��t was maximum for a stuck-at signal f and each
t 2 T , �t is also maximum. In addition, a candidate is
more suspicious if it causes less additional failures in
places where the observed response shows the correct
values. So the ranking is derived by sorting evidences
first by �T and then by ◆T . Table 1 provides an example
of such a ranking.

This ranking shows, that f1 is the only stuck-at signal,
which can explain every observed failure and induces
no additional ones. Hence, all pattern responses an-
alyzed so far can be explained by this single stuck-
at fault in the circuit under diagnosis. The failures of
stuck-at signal f2 is a proper superset of the observed
failures because �T is maximum and ◆T is positive.
Moreover since �T is 0 for this stuck-at signal, f2

explains all failing pattern t 2 Tf ⇢ T completely
(��t maximum, �◆t = 0) but not every passing
pattern (��t = �⌧t = 0 and �◆t > 0 for some
t 2 Tp ⇢ T ). This leads to the only conclusion, that f2

can explain all the responses as a conditional stuck-at
fault.

Table 2 shows suspect evidences for some classic
models. If ◆T , ⌧T and �T are all zero, a single stuck-
at fault explains the DUD behavior completely. With



stuck-at sig. �T ◆T ⌧T �T

f1 42 0 0 0
f2 42 35 0 0
f3 42 35 0 0
f4 42 35 0 0
f5 42 38 0 0
f6 23 22 19 0
f7 23 23 19 0

Table 1: A ranking with f1 as the best candidate.

◆T = �T = 0, such a stuck-at fault explains a subset
of all fails, but some other faulty behavior is present
in the DUD. If ⌧T and �T are zero, a faulty value on a
single signal line under some patterns T 0 ⇢ T provides
complete explanation. With only �T = 0, a faulty
value on the corresponding single signal line explains
only a part of DUD behavior. If only ⌧T is zero, the
suspect fails are a superset of DUD fails. If all suspects
show positive values in all components ◆T , ⌧T , �T , all
simplistic fault models would fail to explain the DUD
behavior.

classic model ◆T ⌧T �T

single stuck-at 0 0 0
stuck-at, multiple fault sites 0 > 0 0
single conditional stuck-at > 0 0 0

cond. stuck-at, multiple fault sites > 0 > 0 0
delay fault, i.e. long paths fail > 0 0 > 0

Table 2: Fault models and evidence forms for e(f, T ) with �T > 0

By simple iteration over the ranking, pairs of suspects
fa, f b are identified with equal evidences e(fa, T ) =
e(f b, T ). In table 1, the stuck-at signals f2, f3 and f4

are not distinguished yet. To improve the ranking, fault
distinguishing patterns are generated [20], [21] and ap-
plied to the circuit. During analysis of these responses,
different values will be added to the evidences under
consideration and the ranking will improve. However,
this may also introduce other sets of equal evidences,
the approach iterates until all remaining pairs of equal
evidences can not be distinguised by diagnostic ATPG.
To reduce the number of suspects and the region un-
der consideration further, diagnostic pattern generation
algorithms have to be employed which exploit layout
data [23].

This generalization of SLAT provides a consistent,
single-pass adaptive diagnosis algorithm which extracts
evidence from every pattern and the diagnostic results
are very encouraging [38]. The consideration of every
pattern is important especially if there is only limited
failure information available.

4 DESIGN FOR DEBUG AND DIAGNOSIS

Diagnostic capabilities are needed during the whole
life cycle of a system [9]. Besides the techniques
and algorithms to find the actual locations of faults
or defects there is the need to provide access to the
internal states of a device and to record and evaluate
diagnostic data. The fulfillment of this tasks is done
by Design for Debug and Diagnosis (DDD).

Two major problems have to be overcome by DDD:

1) Diagnostic data may reach an enormous band-
width, due to the requirement of high diagnostic
resolution.

2) The diagnosis or debug of so-called hard-to
detect faults requires long observation periods.

Generally the problem complexity can be broken down
by the same means as applied for design-for-testability:
scan-design to provide access to internal states, com-
pression and compaction to reduce the data-volume. To
guarantee the correctness of a scanned out diagnosis
response, the diagnostic equipement has to be fault-
free. The diagnosis of shift-registers respectively scan-
chains is nowadays quite mature [39], [40], [41], [42].

Figure 5 shows the embedded test equipement reused
for diagnosis and a schematic of volume diagnosis
reusing the multi-site test structure.

Compaction of diagnosis responses on the other hand
is and will be a major research topic.

4.1 Compaction Techniques

Special precautions are necessary to gain more valu-
able information while keeping the traffic as low as
possible. As detailed knowledge on the diagnosis re-
sponses is not available, compaction techniques have
to be applied to reduce the amount of necessary tester
channels on the outputs of the circuit.

Compactors can be classified due to different prop-
erties. The simplest classification separates time-
and space compactors. Space compactors reduce the
amount of output channels of a circuit by employing
parity trees. Thus space compactors preserve the length
of a test response. Time compactors reduce the length
of a response vector by compaction of several shift-out
cycles and employing memory cells. Combinations of
time- and space compactors consisting of a space com-
paction stage and attached to this a time compaction
stage can also be employed to reduce both, response
length and width.

Compaction may discard valuable information for di-
agnosis and may reduce diagnostic resolution. Un-
known values in the response vectors, caused by buses
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Figure 5: Multi-Site Test

or uninitialized logic, may additionally cause fault-
cancellation and -aliasing after compaction.

Special compactors were proposed to preserve diag-
nostic resolution and capability of X-tolerance. Parity
check matrices of error correcting codes were em-
ployed to construct space compactors able to tolerate
a certain amount of X-states and able to detect and
locate a certain amount of errors. The first approach
implementing this was proposed in [43]. Nowadays a
large variety of extensions to this approach and similar
approaches is available. A popular representative is the
X-Compact compactor proposed in [44].

Besides the pure employment of coding theory, the
interaction of compactor design with the ATPG was
proposed. I-Compact for instance [45] first employs
coding techniques to gain X-tolerance and further en-
hances X-tolerance by storing all possible X-positions
in addition to the fault-free response vectors calculated
during ATPG. By reusing the parity check matrix this
can be done very space-efficiently.

A different approach uses the ATPG to determine scan-
chains, which have to be switched off by a selection
logic on scan-out. This can be used on the one hand
to enable error propagation for any error [46] and in
more recent work to allow for X-tolerant compaction
[47], [48].

The different compactor designs are already integrated
in commercial tools. Despite all the enhancements in
compaction the problem of error-masking is not solved
completely and will increase with growing circuits.
Application of coding theory and the interaction with

ATPG will reach its limits with growing cicuits and
the demand of fault-model independent or adaptive
diagnosis.

4.2 Trace Buffers

Contrary to the scan-design method in prototypes, for
system-level debug and silicon debug (fault location
before destructive probing) a different approach is
often applied. Trace buffers are an on-chip instrumen-
tation supporting at-speed sampling and a low band-
width connection to external debug software which for
instance uses a JTAG interface [49].

This approach was influenced by software debugging
used in embedded systems [50]. Trace buffers can
be classified in special purpose trace buffers designed
for a special architecture—e.g. [51]—or generic trace
buffers applicable to any SoC [52].

In contrast to scan-chains trace buffers monitor only
a subset of internal signals. They are implemented on
chip using the available memory to store failing pattern
responses. This is area efficient on the one hand, but
affects diagnostic respectively debug capabilities on the
other hand as the buffer’s size limits the observation
window. In consequence the window might be too
small to locate faults manifesting themselves only after
a long execution time.

One of the most recent approaches to overcome this
problem was proposed in [53]. In cases where the
debug experiment can be repeated a cyclic debugging
used to zoom into the interesting intervals is employed.



5 CONCLUSION

Today’s challenges in diagnosis and debug can be
seen in two different areas. First shrinking structures
may cause unpredictable circuit behavior. This fact re-
quires diagnosis algorithms and test pattern generation
independent of an underlying fault model to enable
reliable test and diagnosis. In this paper an overview of
the existing methods meeting these requirements was
presented.

Second the growing complexity of circuits makes ac-
cess to and transfer of internal states for debug and
diagnosis more complicated. Basically, test equipment
like scan chains and compactors can be reused to
overcome this problem, but special care has to be
taken to keep a high diagnostic resolution. Here we
gave an overview of compaction approaches and debug
facilities aiming at this issue.
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