
Synthesis of Irregular Combinational Functions with Large
Don’t Care Sets

V. Gherman
CEA, LIST, Boîte Courrier 65

Gif-sur-Yvette, F-91191 France
valentin.gherman@cea.fr

 H.-J. Wunderlich, R. Mascarenhas
Universitaet Stuttgart, Pfaffenwaldring 47

Stuttgart, D-70569 Germany
{wu, masca}@ra.informatik.uni-stuttgart.de

J. Schloeffel, M. Garbers
NXP Semiconductors, Georg-Heyken-Str. 1

Hamburg, D-21147 Germany
{juergen.schloeffel, michael.garbers}@nxp.com

ABSTRACT
A special logic synthesis problem is considered for Boolean
functions which have large don’t care sets and are irregular. Here,
a function is considered as irregular if the input assignments
mapped to specified values (‘1’ or ‘0’) are randomly spread over
the definition space. Such functions can be encountered in the field
of design for test. The proposed method uses ordered BDDs for
logic manipulations and generates free BDD-like covers. For the
considered benchmark functions, implementations were found with
a significant reduction of the node/gate count as compared to SIS
or to methods offered by a state-of-the-art BDD package.

Categories and Subject Descriptors
B.6.3 [Logic Design] Design Aids.

General Terms: Algorithms, Design.

Keywords: logic synthesis, incompletely specified functions.

1. INTRODUCTION
Incompletely specified Boolean functions are characterized by a

non-empty don’t care (DC)-set, which may become very helpful in
optimizing the logic implementation of these functions. Two-level
and multi-level logic implementations have been extensively
investigated and the outcome is a couple of programs like
ESPRESSO [4], MIS [3], SIS [22], the multi-level logic synthe-
sizer implemented by Minato [16] and tools from private compa-
nies like Synopsys, Cadence, etc. These tools work quite well for
regular problems or for small and medium sized irregular prob-
lems. Unfortunately, they are not so efficient for large problem
instances in which the input assignments mapped to ‘1’ or ‘0’ are
randomly distributed over the definition space. Such irregular
functions may appear in areas like design for test (DFT)
[10][25][26] and artificial intelligence [15].

In MIS, the DC-based optimization relies on ESPRESSO or
simpler variants of it [3], which can act only on the two-level
representation of the functions implemented by each node of a
Boolean network. This does not necessarily guarantee a reduction
of the size of the Boolean network [3]. In [16], first a BDD-based
representation is generated for the target circuit and for its DC-set.
Minato-Morreale’s algorithm [16] is used to obtain a prime-
irredundant cube cover out of the BDD-based representation.
Finally, the cube cover is transformed into a multi-level circuit by
using a heuristic for fast algebraic-division. However, the DC-set
is only used for optimizations of two-level representations in both
multi-level synthesis approaches.

A minimal BDD can offer a good starting point for a multi-level
implementation. If each node of a BDD [1][5] is substituted by a
multiplexer, a multi-level circuit can be easily generated [2]. The
minimization of an ordered BDD (OBDD)-based implementation
using the DC-set is NP-hard [20]. In [17], an exact OBDD
minimization algorithm based on the DC-set is presented. Due to
the NP-hardness of the problem, this approach has a limited
applicability.

Some of the first OBDD minimization heuristics that take advan-
tage of the DC-set are the operators constrain and restrict [8][9].
Other OBDD minimization methods exploit the DC-set for sibling
matching or, more generally, for matching BDD nodes below cut
lines through the BDD, which enables a more aggressive BDD
reduction [7][23]. None of these two methods is safe, which would
require that the resulting BDD is always smaller than the original
one. The compaction algorithm of [13] avoids this problem by
using a preprocessing step to identify the nodes that can make the
minimization unsafe. Compared to restrict or constrain this
compaction algorithm gives better results on the average, but it is
considerably slower. Moreover, none of the heuristics analyzed in
[23] succeeds to outperform restrict by more than a few percents.
In [21], the concept of variable reordering based on symmetries
has been extended to incompletely specified functions such that an
OBDD can be minimized by means of don’t care assignments
combined with variable reordering. This method cannot handle
large problem instances.

Free BDDs (FBDDs) [11][24] are more compact than OBDDs,
due to the fact that in the former case the order of variables on the
paths from the root-node to a leaf-node is not fixed. There are
functions, e.g. the hidden weighted bit function, which require
OBDD-based representations of exponential size [6], while FBDD-
based representations of polynomial size are known [24]. In the
case of completely specified functions, exact and heuristic algo-
rithms for the minimization of FBDD-based representations are
described in [11]. Unfortunately, despite sophisticated pruning
techniques, the exact approach is inherently bound to very small
problems (with a maximum of 8 input variables).

This paper proposes the first FBDD-based logic synthesis
method for incompletely specified functions. In the case of
irregular functions with large DC-sets, the method improves
considerably all the synthesis parameters as compared to SIS or
OBDD-based approaches.

The next section presents two examples of incompletely
specified Boolean functions that are irregular and have large DC-
sets. Section 3 presents our heuristic method to find efficient
implementations for such functions. In Section 4, experimental re-
sults are used to compare the new approach with SIS [22] and
methods available in the CUDD-package [27] (restrict [9]).
Furthermore, the outcome of the new method is evaluated as input
to Synopsys Design Compiler. The paper is summarized in Section
5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003...$5.00.

2. EXAMPLES OF IRREGULAR BOOLEAN
FUNCTIONS WITH LARGE DC-SETS

Deterministic logic built-in self-test (DLBIST) is a DFT
technique utilized to test logic cores. This technique uses a pseudo-
random sequence (produced by an LFSR, for example) to test the
majority of faults of the core under test (CUT). Test responses are
usually compressed by a multi-input shift register (MISR)
[10][14][19][26].

In order to detect more faults, deterministic cubes are embedded
into the pseudo-random test sequence. In the bit-flipping DLBIST
approach [10], the modification of the pseudo-random patterns is
realized by inverting (flipping) some of the LFSR outputs, such
that deterministic patterns are obtained (Figure 1). The bit-flipping
is performed by combinational logic implementing a so-called bit-
flipping function (BFF).

Figure 1: Bit-flipping DLBIST architecture.
The test responses may contain unknown bits (Xs), which can

appear due to the existence of multiple clock domains, floating
buses or non-initialized memory elements. In order to obtain an
uncorrupted signature at the end of the test, these Xs have to be
masked to either logic ‘0’ or logic ‘1’ before they propagate into
the MISR (Figure 2). This may be performed by combinational
logic implementing a so-called X-masking function (XMF) [25].

Figure 2: Embedded test architecture with MISR.
The inputs of the BFF and the XMF are the state bits of the

pattern counter, the shift counter and the test pattern generator
(TPG) which can be an LFSR. Both functions are incompletely
specified. In the BFF case, the ON-set includes the states that
correspond to the clock cycles in which the LFSR output must be
flipped. Similarly, the OFF-set contains the states that correspond
to the clock cycles in which the LFSR output must not be flipped.
The DC-set includes the states that correspond to the clock cycles
in which this output may be arbitrarily flipped.

In the XMF case, the ON-set contains the states that correspond
to the clock cycles in which an unknown test response bit must be

masked before it is scanned into the MISR. Similarly, the OFF-set
includes the states that correspond to the clock cycles in which a
test response bit carrying the information about the CUT correct-
ness must not be masked. The DC-set contains the states that
correspond to the clock cycles in which the test response bits may
be arbitrarily masked before they are propagated into the MISR.

The DC-sets cover more than 99.99% of the definition space of
both functions while the ON-sets and the OFF-sets are randomly
distributed over the rest of the definition space. One can identify
the following sources of the high cardinality of the DC-sets.
• Not all the possible states and state combinations of the Shift

Counter, Pattern Counter and LFSR (Figure 1) are necessarily
appearing during the testing process.

• In the case of the BFF, the deterministic test cubes that have to
be mapped to the pseudo-random test sequence contain many
don’t care bits and the number of embedded deterministic test
cubes is a small fraction of the total number of pseudo-random
test patterns.

• In the case of the XMF, usually a very small fraction of the bits
in test responses are Xs or relevant to the fault coverage.

The large DC-sets offer a good base for the optimization of the
logic implementation of these functions despite their irregularity,
which is not the case with random functions with no or small DC-
sets.

3. PROPOSED FBDD-BASED LOGIC
SYNTHESIS

Below, an incompletely specified function F:{0,1}N→ {0,1,-}
(the symbol ‘-’ indicates a don’t care) will be represented by the
characteristic functions fon, and foff:{0,1}N→{0,1} of its ON-set and
OFF-set, respectively. This representation of F will be denoted by
F(fon, foff).

A function Cov(F):{0,1}N→{0,1} will be called a cover of F(fon,
foff) iff: fon⋅ Cov(F) = fon and foff⋅ Cov(F) = 0. The cofactor of a
function f by a literal l∈{x, ¬x} will be denoted by f|l, where x is
an input variable of f. The number of fully specified input assign-
ments {x∈{0,1}N|f(x)=1} will be denoted by ||f|| (cardinality of f).

The goal of the synthesis procedure described here is to generate
FBDD-like covers with a reduced gate count in the resulting circuit
descriptions. This is achieved by first reducing the number of paths
from the root node to a leaf node and second by looking for node
sharing among different paths and even different FBDDs.

Each path in a BDD corresponds to a sub-space which is mapped
either to 1 or to 0. Similarly, the cover of the function F(fon, foff)
can be chosen equal to 0 on the subspaces mapped by fon to 0 and
equal to 1 on the subspaces mapped by foff to 0. Consequently, the
path reduction of the FBDD-based implementation can be achieved
by finding a minimal partition of the definition space of the
considered function into appropriate sub-spaces on which either fon
or foff is equal to 0. Given the function F(fon, foff) and the set of its
input variables V, the synthesis method introduced here looks for a
good partition of the definition space into such special sub-spaces
using the recursive depth-first process sketched below.

First, it is decided whether F(fon, foff) or ¬F(foff, fon) is imple-
mented, depending on the compactness of the OBDD-based
representation of fon and foff. The OBDD sizes are determined by
their node count. Subsequently, a variable x is determined (in
CreateLiteralCover or SplitOperator) with respect to which the
current definition subspace is decomposed into 2 new subspaces
where x is either 1 or 0. For each of the 2 subspaces a further

BFF

xor Scan Chain 1
xor Scan Chain 2

xor Scan Chain m

L
F
S
R

Core Under Test

Test Control Unit

Shift Counter
Pattern Counter

M
IS
R

XMF

Scan Chain 1 or
Scan Chain 2 or

Scan Chain m or
Core Under Test

Test Control Unit

Shift Counter

Pattern Counter

M
I
S
R

T
P
G

recursive call of CreateCover may be required. The size of the
resulting cover may be reduced by determining a minimal number
of such successive recursive calls. CreateLiteralCover and Split
Operator implement heuristics to obtain near-optimal solutions.
CreateCover (fon, foff, V){

if size(fon) > size(foff) then return ¬CreateCover (foff, fon, V);
l = ∅;
Cov = CreateLiteralCover (fon, foff, V, l);
if (Cov ≠ ∅) then return Cov;
Cov = FindCover (fon, foff); // optional DC-based node reduction
if (Cov ≠ ∅) then return Cov;
for all i ∈ V and for li ∈{xi, ¬xi}

if (fon|li = 0 and foff|li = 0) or
(fon|li = fon|¬li and foff|li = foff|¬li) then V = V – {i};

if l ≠ ∅ then
Cov = CreateCover (fon|¬l, foff|¬l, V);
if foff ⋅ Cov = 0 then return Cov;
else return (¬l) ⋅ Cov; // new FBDD-node required

return SplitOperator (fon|¬l, foff|¬l, V);}
CreateLiteralCover provides the recursive process with the first

stop condition. The recursion is stopped if a literal l is found for
which foff|¬l and fon|l are equal to 0. In this case ¬l is chosen as a
cover for F. If this condition cannot be fulfilled and there are
literals li, for which fon|li is equal to 0, then that literal li which
minimizes the cardinality of foff|¬li will be assigned to the generic
argument l. FindCover which provides the algorithm with the
second stop condition is optional and will be discussed later.
CreateLiteralCover (fon, foff, V, l){

Min = ∞;
for all i ∈ V and for li ∈{xi, ¬xi}

if fon|li = 0 and || foff|¬li || < Min then Min = || foff|¬li ||; l = li;
if Min ≠ ∞ and foff|¬l = 0 then return ¬l;
return ∅;}
Subsequently, the set of input variables V is pruned from those

variables on which fon and foff depend in a trivial way (for loop of
CreateCover). Depending on whether the literal l returned by
CreateLiteralCover is different from the empty set ∅, either
CreateCover or SplitOperator is called.

Procedure SplitOperator uses two heuristics. The first one looks
for a literal l such that the cardinalities ||fon|l|| and ||foff|¬l|| are higher
than the cardinalities ||foff|l|| and ||fon|¬l||, respectively. If such an
unbalancing occurs, then the following relation must hold:

| ||fon|l|| - ||foff|l|| | + | ||foff|¬l|| - ||fon|¬l|| | > | ||foff|| - ||fon|| | (1)
The intuition behind the unbalancing is that we heuristically try

to find the literal l that simultaneously minimizes both cardinalities
||fon|l|| and ||foff|¬l||. For example, consider the definition space
presented in Figure 3, where the symbols ‘x’ and ‘o’ are used to
represent the input assignments belonging to the ON-set and the
OFF-set of the considered function, respectively. The dashed
squares give a minimal partition of the definition space into sub-
spaces containing only input assignments belonging either to the
ON-set or to the OFF-set. Assume that one has to choose between
the input variables x1 and x2 for the decomposition of the
considered definition space. The other input variables are not
explicitly shown for simplicity reasons. The enclosed table shows
the number of input assignments belonging to the ON-set and the
OFF-set in the sub-spaces defined by x1 = 1, x1 = 0, x2 = 1 and x2 =
0. In this case, the first heuristics of the procedure SplitOperator

chooses the variable x1 with respect to which the definition space is
unbalanced and the inequality (1) is fulfilled. The left-hand side
member of the inequality (1) is evaluated to 15/3 with respect to
the variable x1/x2. In total, there are 13/10 input assignments
belonging to the ON-set/OFF-set, so that the right-hand side
member of the inequality (1) is evaluated to 3. It can also be
observed that the cut line corresponding to the decomposition of
the definition space with respect the input variables x1 does not
intersect any sub-space of the minimal partition. This does not
happen in the case of the variable x2.
SplitOperator (fon, foff, V){

Max = 0;
for all i ∈ V // first heuristic

Check = | ||fon|xi|| - ||foff|xi|| | + | ||foff|¬xi|| - ||fon|¬xi|| |;
if Check > Max then Max = Check; m = i;

if Max = | ||foff|| - ||fon|| | then // second heuristic
MinOn = ∞; MinOff = ∞;
for all i ∈ V and for li ∈{xi, ¬xi}

if ||fon|li|| < MinOn or
if ||fon|li|| = MinOn and ||foff|¬li|| < MinOff then

MinOn = ||fon|li||; MinOff = ||foff|¬li||; m = i;
V = V – {m}; // choose the literal for the first recursion
choose l∈{xm, ¬xm} such that ||foff|l|| ≥ ||foff|¬l||;
Cov1

 = CreateCover (fon|l, foff|l, V);
if Cov1

 ⋅foff ≠ 0 then Cov2 = CreateCover (fon|¬l, foff|¬l, V);
else if foff|¬l ≠ 0 then Cov2 = CreateCover(¬Cov1⋅fon|¬l, foff|¬l,V);
else Cov2 = ¬1;
if Cov1

 ⋅ foff ≠ 0 then Cov1 = l⋅ Cov1;
if Cov2

 ⋅ foff ≠ 0 then Cov2 = ¬l⋅ Cov2;
return Cov1 + Cov2;}
If no unbalancing variable has been found, then the second

heuristic is used. This heuristic chooses the variable x, which has
an associated literal l∈{x, ¬x} that minimizes the cardinality ||fon|l||
as a primary optimization goal and minimizes the cardinality
||foff|¬l|| as a secondary optimization objective. The first optimiza-
tion goal is similar to the approach used in [12]. The intuition
behind this is similar to the one mentioned for the first heuristic of
Split Operator. For each literal l∈{x, ¬x} a recursive call with the
argument (fon|l, foff|l) is performed iff foff|l ≠ 0.

Both heuristics in SplitOperator are used to increase the chance
of fulfilling the stop condition from CreateLiteralCover in the next
recursive calls and thus to decrease in a greedy manner the number
of subsequent recursive calls of CreateCover.

In order to limit the memory consumption of the whole process,
the cofactor f|x is computed using the operator BDD.Compose
instead of the operator BDD.And. In this way, the dependence of
the cofactor f|x on the variable x is eliminated.

The heuristics used here to choose the new variable x depend
only on the distribution of the ON-set and of the OFF-set over the
definition space of the target function F. This makes the algorithm
largely independent of the variable order used for the underlying
OBDD-based representation, which is not the case with the
heuristic used in [11] for completely specified functions.

A FBDD-based representation is preferred to model the resulting
Cov(F), since an OBDD could require excessive memory usage.
The FBDD-based representation is constructed node by node
during the recursive process. Each non-terminal node of the FBDD
is created during a distinct recursion step. The logic
implementation of a node created outside SplitOperator requires at

Figure 3: Example of the proposed decomposition of the definition space.

most one 2-input logic operator, while a node created inside
SplitOperator may require between one and three 2-input logic
operators. NAND and NOR operators are preferred to AND and OR
operators. In this way the logic is optimized not only by reducing
the number of nodes in the FBDD, but also by reducing the
operator count per node. Both goals are achieved by exploiting the
DC-set.

So far, the node count has been minimized only by attempting to
decrease the path count (e.g. looking for minimal partitions of the
definition space, where either fon or foff is equal to 0). The node
count can be further reduced by allowing non-terminal nodes to
become children of more than one parent node and by allowing
parent nodes of the same child to belong to FBDDs corresponding
to different outputs of the target function. This is nothing else than
the well-known node reduction [5] that usually makes the OBDDs
very compact, but which in the case of FBDDs is expected to have
less impact on the node count.

Procedure FindCover is used to check whether the covers
Cov(SG) implemented by already synthesized sub-graphs SG are
useful also in the case of the target function F(fon, foff). If such a
sub-graph is found, one has only to point to its root node with a
normal or a complemented edge (when ¬Cov(SG) is needed). As
long as it is not required that the FBDD-based representations of
the resulting covers are canonical, both else and then edges are
allowed to be complemented.
FindCover (fon, foff){

for each element SG of a sub-set of all completed sub-graphs
if fon⋅ Cov(SG) = fon and foff⋅ Cov(SG) = 0 then

return Cov(SG);
if fon⋅ Cov(SG) = 0 and foff⋅ Cov(SG) = foff then

return ¬ Cov(SG);
return ∅;}
In order to reduce the node (gate) depth of the cover returned by

CreateCover, it is important that CreateLiteralCover is called
before FindCover. In order to increase the chances that a cover
will be found by FindCover, this should be called before the for-
loop in CreateCover. The DC-based node reduction implemented
by FindCover has the effect that the same node index (variable)
may appear more than once on a path going from the root to a
terminal node of the resulting cover. Nevertheless, such an effect
has never been observed during our experiments, except for some
increase of the circuit depth.

Each FBDD node contains a pointer to the OBDD-based

representation of the function implemented by its sub-graph. In
this way, the Boolean functions involved in the DC-based node
reduction can be efficiently manipulated. The run-time and the
memory consumption of the search associated with the DC-based
node reduction can be reduced by limiting the number of
investigated nodes.

The worst case run-time complexity of the FBDD-based logic
implementation of an incompletely specified function F is propor-
tional to the product of the number of input variables, the maxi-
mum size of the OBDD-based representation of each output and
the size of the resulting cover. When the DC-based node reduction
is enabled, the square of the resulting cover size has to be taken.
The node counts of the resulting covers are usually orders of
magnitude smaller than the node counts of the original OBDDs.

4. EXPERIMENTAL RESULTS
The FBDD-based approaches published so far do not target the

synthesis of incompletely specified functions. Consequently, the
proposed FBDD-based method has been evaluated with respect to
SIS and the OBDD-based methods available in the CUDD-package
[27] able to handle don’t cares. The experiments have been
performed on GNU Linux machines equipped with 2 GB of
memory and an Intel Pentium 4 processor at 2.4 GHz.

Table 1 presents the considered benchmark functions which stem
from the field of design for test [10] and can be downloaded from
[28]. The 2nd and the 3rd column report the number of inputs and
outputs of the target functions. The 4th column (||ON-set|| + ||OFF-
set||) gives the sum of the cardinalities of the ON-set and the OFF-
set corresponding to each function. The last 2 columns show the
(non-terminal) node count of the OBDD-based representation of
each function.

Table 2 provides a comparison between the proposed method
and OBDD-based approaches with respect to the synthesis of the
functions in Table 1. For each approach, we report the number of
2-input logic operators (#gates), the node depth (Node depth) and
the 2-input gate depth (Gate depth) of the resulting covers as well
as the run-time required to generate these covers (Optimization
time). The number of logic operators in the circuit description of a
non-terminal FBDD node is obtained by counting the 2-input logic
operators in the expression of the corresponding cover Cov(F). In
the case of the OBDD-based implementation, the circuit
description of each non-terminal node may require 3, 1 or 0 2-
input logic operators, depending upon whether the node has 0, 1 or
respectively 2 children, that are terminal nodes [2].

Table 1: Multi-output (incompletely specified) target functions.

 ON-set OFF-set
x1 = 1 10 2
x1 = 0 3 8
x2 = 1 6 5
x2 = 0 7 5

Multi-output function #inputs #outputs ||ON-set|| + ||OFF-set|| ON-BDD size [#nodes] OFF-BDD size [#nodes]
p19K 82 24 85,215 615,407 654,443
p59K 77 19 9,918 158,181 315,335
p127K 67 10 663,750 6,876,383 8,067,136

x1 = 1 x1 = 0

x2 = 0

x2 = 1

Table 2: Optimization potential of the FBDD-based and the OBDD-based approaches.

Each function has been synthesized three times with each

approach. In the case of the FBDD-based approach, the
reported experiments show tradeoffs between the run-time and
the number of (2-input) logic operators in the circuit description
of the resulting covers. These tradeoffs have been obtained by
changing the thresholds that control the size of the searching
space associated with the DC-based node reduction. The first
run corresponding to each function has been done with the DC-
based node reduction disabled.

The FBDD-based method has been evaluated with respect to
several OBDD-based approaches that use combinations of the
restrict operator [9] and variable reordering. The variable
reordering has been applied before restrict and to all ON- and
OFF-OBDDs corresponding to each output of the target
function. As a result, all the covers obtained with the OBDD-
based approach have the same variable ordering and,
consequently, a maximized probability of node sharing among
them. The variable reordering performed on the covers found
with restrict for all the outputs of a given function does not
bring any node reduction. Consequently, the reported run-time
consumption of the OBDD-based approach with variable
reordering takes into account only the application of restrict
and of the variable reordering done before.

In the first OBDD-based run reported here, no variable
reordering has been performed. In the next 2 runs, the variables
have been reordered based on the heuristics: CUDD_
REORDER_SYMM_SIFT and CUDD_REORDER_SYMM_
SIFT_CONV [27], respectively. The first heuristic is an
implementation of symmetric sifting [18], while the second
heuristic is a converging variant of the first one. Variable
reordering improves the operator count at the cost of a
significant increase in the run-time. The converging heuristic
for reordering the variables of the function p127K was still
incomplete after days of execution.

The proposed method outperforms all the investigated
OBDD-based approaches. Running the FBDD-based flow with
the DC-based node reduction switched off results in operator
counts (#gates) that are between 2 and 4 times better than those
obtained with the best investigated OBDD-based approach. The
operator count of the FBDD-based covers can be further

improved by enabling the DC-based node reduction and
increasing the associated searching space. The FBDD-based
approach with DC-based node reduction disabled also provides
the implementations with the smallest depths. As mentioned in
the previous section, the node depth increases when the DC-
based node reduction is enabled, but its maximum is always
less than the number of input variables.

The circuit descriptions presented in Table 2 have been
synthesized with Synopsys Design Compiler and using a
proprietary library. Table 3 reports the resulting area (Cell area)
measured in an arbitrary unit, the synthesis run-time (Synthesis
time) and the total run-time required to generate the cover
(Optimization time, in Table 2) and to synthesize them
(Synthesis time, in Table 3).

Compared to the best investigated OBDD-based approach,
the FBDD-based flow with the DC-based node reduction
disabled reduces area figures by a factor between 2 and 3. This
improvement has been achieved by using shorter run-times than
for all OBDD-based approaches (if one considers the sum of
Optimization time and Synthesis time). Moreover, the run-time
of this simple configuration of the FBDD-based approach is by
at least one order of magnitude shorter than the run-time of the
BDD-based approach with the best logic area results. In the
case if the FBDD-based approach, the area results can be
further improved by enabling the DC-based node reduction.

Table 4 presents a comparison between SIS [22] and the
FBDD-based approach with respect to the implementation of
incompletely specified functions with large DC-sets. Due to the
scaling problems of SIS, only the smallest functions that corre-
spond to single outputs of the functions presented in Table 1
could be implemented. The 2nd column reports the number of
inputs of each single-output function. The 3rd column
(||ON-set|| + ||OFF-set||) gives the sum of the cardinalities of the
ON-set and the OFF-set corresponding to each function. The
4th and the 5th columns show the non-terminal node count of
the OBDD-based representation of each function. The next 3
columns (SIS) report the resulting gate count, area and the
required run-time when the target functions have been
implemented directly with SIS. In the last 3 columns
(FBDD+SIS), the same parameters are reported for the case

Table 3: Synthesis results obtained using the FBDD-based and the OBDD-based approaches.

Restrict + Variable Reordering FBDD Multi-output
function #gates Node depth Gate depth Optimization time #gates Node depth Gate depth Optimization time

54,672 17 30 0m:20s 8,269 15 24 1m:31s
39,231 17 30 4m:52s 7,200 23 37 17m:28s p19K
33,443 17 29 40m:22s 7,161 27 42 22m:07s
7,084 20 33 2s 1,543 16 25 11s
4,669 19 31 2m:16s 1,428 23 34 27s p59K
4,601 19 30 18m:27s 1,423 23 34 1m:10s

390,057 23 42 24m:21s 120,122 21 36 35m:18s
256,883 24 42 11h:16m 94,113 68 97 15h:00m p127K

- - - - 93,837 61 96 16h:34m

Restrict + Variable Reordering FBDD Multi-output
function Cell area Synthesis time Optimization + Synthesis time Cell area Synthesis time Optimization + Synthesis time

147,074 46m:32s 46m:52s 34,464 1m:56s 3m:27s
101,332 25m:30s 30m:22s 33,286 1m:29s 18m:57s p19K
89,681 17m:12s 57m:34s 32,917 1m:30s 23m:37s
23,075 1m:54s 1m:56s 7,014 30s 41s
15,198 1m:02s 3m:18s 7,046 37s 1m:04s p59K
15,292 1m:07s 19m:34s 6,869 29s 1m:39s

1,349,051 15h:02m 15h:26m 521,814 4h:40m 5h:15m
1,036,493 7h:06m 18h:22m 507,949 2h:51m 17h:51m p127K

- - - 508,840 3h:07m 19h:41m

Table 4: Comparison between SIS and the FBDD-based approach plus SIS.

where FBDD-like covers have been generated and later synthe-
sized with SIS. In all the cases, SIS has been run with the rugged
script. The statement full_simplify -m nocomp has been inserted at
the beginning of the script. The library nand-nor.genlib has been
used.

It is obvious that the second approach scales better and improves
dramatically the number of gates and area (between 2 and 19
times). This suggests that the proposed approach enables a much
better use of the don’t cares which in the descriptions of SIS and
MIS are referred to as external don’t cares [3][22].

As a final remark, we do not recommend the use of the proposed
FBDD-based approach for the synthesis of Boolean functions with
no or small DC-sets.

5. CONCLUSION
A new BDD-based logic synthesis procedure for irregular and

incompletely specified functions with large DC-sets has been
presented, which can help to find efficient multi-level im-
plementations. The problem is reduced to the construction of a
minimal FBDD by performing DC-based node reduction and
mainly by partitioning the definition space of the target function
into a reduced number of subspaces, which may be mapped either
to 0 or to 1. Heuristics are used to find near-optimal partitions of
the definition space into such subspaces and, consequently, to
minimize the path and node count of the resulting FBDD-like
covers. Furthermore, this approach is also able to use the DC-set to
reduce the number of gates appearing in the circuit description of
the non-terminal nodes.

Applying this approach to the synthesis of some benchmark bit-
flipping functions [10] resulted in covers whose circuit descrip-
tions contained about 70% less logic operators than the
implementations obtained with the restrict operator and variable
reordering [27]. The synthesis of the resulting circuit descriptions
with Synopsys Design Compiler revealed that the FBDD-based
approach improves the area figures by a factor between 2 and 3,
while the run-time consumption is significantly reduced.
Moreover, the proposed method scales better and succeeds to get a
better advantage of the DC-set than SIS.

A tool that implements the synthesis approach presented here
can be downloaded from [28].

6. ACKNOWLEDGMENTS
We would like to thank Fabio Somenzi, Guenter Bartsch and

Christoph Scholl for their helpful comments.
This research work was supported by the German Federal

Ministry of Education.

7. REFERENCES
[1] S.B. Akers “Binary Decision Diagrams,” Trans. on Computers, Vol. C-

27, No. 6, 1978, 509-516.
[2] B. Becker “Synthesis for Testability: Binary Decision Diagrams,”

STACS. LNCS, Vol. 577, Springer Verlag, 1992, 501-512.
[3] R.K. Brayton et al. “MIS: A Multiple-Level Logic Optimization

System,” Trans. on CAD, 1987, 1062-1081.

[4] R.K. Brayton et al. “Logic Minimization Algorithms for VLSI
Synthesis,” Kluver Academic Publishers, 1997.

[5] R.E. Bryant “Graph-Based Algorithms for Boolean Function Mani-
pulation,” Trans. on Computers, Vol. C-35, No. 8, 1986, 677-691.

[6] R.E. Bryant “On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Application to Integer
Multiplication,” Trans. on Computers, Vol. 40, No. 2, 1991, 205-213.

[7] S.-C. Chang et al. “Minimizing ROBDD Size of Incompletely
Specified Multiple Output Functions,” European Design and Test
Conference, 1994, 620-624.

[8] O. Coudert et al. “Verification of Sequential Machines using Boolean
Functional Vectors,” IFIP International Workshop on Applied Formal
Methods for Correct VLSI Design, 1989, 111-128.

[9] O. Coudert, J. Madre “Verification of Synchronous Sequential Ma-
chines Based on Symbolic Execution,” Automatic Verification Methods
for Finite State Systems, Springer-Verlag, 1990, 365-373.

[10] V. Gherman et al. “Efficient Pattern Mapping for Deterministic Logic
BIST,” Int. Test Conference, 2004, pp. 48-56.

[11] W. Günther, R. Drechsler “Minimization of Free BDDs,” INTEGRA-
TION, The VLSI Journal, 32 (1-2), Nov. 2002, 41-59.

[12] J. Hlavicka, P. Fiser “BOOM - a Heuristic Boolean Minimizer,” Int.
Conference on Computer Aided Design, 2001, pp. 439-442.

[13] Y. Hong et al. “Sibling-Substitution-Based BDD Minimization using
Don’t Cares,” Trans. on CAD of Integrated Circuits and Systems,
2000, pp. 44-55.

[14] B. Koenemann et al. “A SmartBIST Variant with Guaranteed
Encoding,” Asian Test Symposium, 2001, 325-300.

[15] R. Michalski “On the Quasi-Minimal Solution of the General Covering
Problem,” Int. Symposium on Information Processing (FCIP 69)
(Switching Circuits), Vol. A3, 1969, 125-128.

[16] S. Minato “Binary Decision Diagrams and Applications for VLSI
Computer-Aided Design,” Kluver Academic Publishers, 1997.

[17] A.L. Oliveira et al. “Exact Minimization of Binary Decision Diagrams
using Implicit Techniques,” Trans. on Computers, Vol. 47, No. 11,
1998, 1282-1296.

[18] S. Panda et al. “Symmetry Detection and Dynamic Variable Ordering
of Decision Diagrams,” Int. Conference on Computer-Aided Design,
San Jose, CA, 1994, 628-631.

[19] J. Rajski et al. „Embedded Deterministic Test for Low Cost
Manufacturing Test”, Int. Test Conf., 2002, 301-310.

[20] M. Sauerhoff et al. “On the Complexity of Minimizing the OBDD Size
for Incompletely Specified Functions,” Trans. on CAD of Integrated
Circuits and Systems, Vol. 15, 1996, 1435-1437.

[21] C. Scholl et al. “BDD Minimization using Symmetries,” Trans. on
CAD of Integrated Circuits and Systems, Vol. 18, No 2, 1999, 81-100.

[22] E. Sentovich et al. “Sequential Circuit Design using Synthesis and
Optimization,” ICCD, 1992, 328-333.

[23] T. Shiple et al. “Heuristic Minimization of BDDs using Don’t Cares,”
Design Automation Conference, 1994, 225–231.

[24] D. Sieling, I. Wegener “Graph Driven BDDs - a New Data Structure
for Boolean Functions,” Theoretical Computer Science, Vol. 141,
No.1-2, 1995, 283-310.

[25] Y. Tang et al. “X-Masking during Logic BIST and its Impact on Defect
Coverage,” Int. Test Conference, 2004, 442-451.

[26] N.A. Touba, E.J. McCluskey „Altering a Pseudo-random Bit Sequence
for Scan-Based BIST,” Int. Test Conf., 1996, 167-175.

[27] http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
[28] http://www.ra.informatik.uni-

stuttgart.de/~ghermanv/benchmarks/index.phtml

SIS FBDD + SIS Single-output
function #inputs ||ON-set|| +

||OFF-set||
ON-BDD size

[#nodes]
OFF-BDD size

[#nodes] #gates Cell area Run time #gates Cell area Run time
p1 82 229 6,516 8,592 354 760 28.60s 21 39 0.11s
p2 82 843 21,934 30,621 180 395 3.83s 31 64 0.31s
p3 77 1,708 30,745 63,286 674 1,534 1,046.74s 366 754 26.85s
p4 77 3,652 64,744 128,072 1,145 2,586 3,997.47s 366 820 7.58s

