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ABSTRACT 
A special logic synthesis problem is considered for Boolean 
functions which have large don’t care sets and are irregular. Here, 
a function is considered as irregular if the input assignments 
mapped to specified values (‘1’ or ‘0’) are randomly spread over 
the definition space. Such functions can be encountered in the field 
of design for test. The proposed method uses ordered BDDs for 
logic manipulations and generates free BDD-like covers. For the 
considered benchmark functions, implementations were found with 
a significant reduction of the node/gate count as compared to SIS 
or to methods offered by a state-of-the-art BDD package. 

Categories and Subject Descriptors 
B.6.3 [Logic Design] Design Aids. 

General Terms: Algorithms, Design. 

Keywords: logic synthesis, incompletely specified functions. 

1. INTRODUCTION 
Incompletely specified Boolean functions are characterized by a 

non-empty don’t care (DC)-set, which may become very helpful in 
optimizing the logic implementation of these functions. Two-level 
and multi-level logic implementations have been extensively 
investigated and the outcome is a couple of programs like 
ESPRESSO [4], MIS [3], SIS [22], the multi-level logic synthe-
sizer implemented by Minato [16] and tools from private compa-
nies like Synopsys, Cadence, etc. These tools work quite well for 
regular problems or for small and medium sized irregular prob-
lems. Unfortunately, they are not so efficient for large problem 
instances in which the input assignments mapped to ‘1’ or ‘0’ are 
randomly distributed over the definition space. Such irregular 
functions may appear in areas like design for test (DFT) 
[10][25][26] and artificial intelligence [15]. 

In MIS, the DC-based optimization relies on ESPRESSO or 
simpler variants of it [3], which can act only on the two-level 
representation of the functions implemented by each node of a 
Boolean network. This does not necessarily guarantee a reduction 
of the size of the Boolean network [3]. In [16], first a BDD-based 
representation is generated for the target circuit and for its DC-set. 
Minato-Morreale’s algorithm [16] is used to obtain a prime-
irredundant cube cover out of the BDD-based representation. 
Finally, the cube cover is transformed into a multi-level circuit by 
using a heuristic for fast algebraic-division. However, the DC-set 
is only used for optimizations of two-level representations in both 
multi-level synthesis approaches. 

A minimal BDD can offer a good starting point for a multi-level 
implementation. If each node of a BDD [1][5] is substituted by a 
multiplexer, a multi-level circuit can be easily generated [2]. The 
minimization of an ordered BDD (OBDD)-based implementation 
using the DC-set is NP-hard [20]. In [17], an exact OBDD 
minimization algorithm based on the DC-set is presented. Due to 
the NP-hardness of the problem, this approach has a limited 
applicability. 

Some of the first OBDD minimization heuristics that take advan-
tage of the DC-set are the operators constrain and restrict [8][9]. 
Other OBDD minimization methods exploit the DC-set for sibling 
matching or, more generally, for matching BDD nodes below cut 
lines through the BDD, which enables a more aggressive BDD 
reduction [7][23]. None of these two methods is safe, which would 
require that the resulting BDD is always smaller than the original 
one. The compaction algorithm of [13] avoids this problem by 
using a preprocessing step to identify the nodes that can make the 
minimization unsafe. Compared to restrict or constrain this 
compaction algorithm gives better results on the average, but it is 
considerably slower. Moreover, none of the heuristics analyzed in 
[23] succeeds to outperform restrict by more than a few percents. 
In [21], the concept of variable reordering based on symmetries 
has been extended to incompletely specified functions such that an 
OBDD can be minimized by means of don’t care assignments 
combined with variable reordering. This method cannot handle 
large problem instances. 

Free BDDs (FBDDs) [11][24] are more compact than OBDDs, 
due to the fact that in the former case the order of variables on the 
paths from the root-node to a leaf-node is not fixed. There are 
functions, e.g. the hidden weighted bit function, which require 
OBDD-based representations of exponential size [6], while FBDD-
based representations of polynomial size are known [24]. In the 
case of completely specified functions, exact and heuristic algo-
rithms for the minimization of FBDD-based representations are 
described in [11]. Unfortunately, despite sophisticated pruning 
techniques, the exact approach is inherently bound to very small 
problems (with a maximum of 8 input variables). 

This paper proposes the first FBDD-based logic synthesis 
method for incompletely specified functions. In the case of 
irregular functions with large DC-sets, the method improves 
considerably all the synthesis parameters as compared to SIS or 
OBDD-based approaches. 

The next section presents two examples of incompletely 
specified Boolean functions that are irregular and have large DC-
sets. Section 3 presents our heuristic method to find efficient 
implementations for such functions. In Section 4, experimental re-
sults are used to compare the new approach with SIS [22] and 
methods available in the CUDD-package [27] (restrict [9]). 
Furthermore, the outcome of the new method is evaluated as input 
to Synopsys Design Compiler. The paper is summarized in Section 
5. 
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2. EXAMPLES OF IRREGULAR BOOLEAN 
FUNCTIONS WITH LARGE DC-SETS 

Deterministic logic built-in self-test (DLBIST) is a DFT 
technique utilized to test logic cores. This technique uses a pseudo-
random sequence (produced by an LFSR, for example) to test the 
majority of faults of the core under test (CUT). Test responses are 
usually compressed by a multi-input shift register (MISR) 
[10][14][19][26]. 

In order to detect more faults, deterministic cubes are embedded 
into the pseudo-random test sequence. In the bit-flipping DLBIST 
approach [10], the modification of the pseudo-random patterns is 
realized by inverting (flipping) some of the LFSR outputs, such 
that deterministic patterns are obtained (Figure 1). The bit-flipping 
is performed by combinational logic implementing a so-called bit-
flipping function (BFF). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Bit-flipping DLBIST architecture. 
The test responses may contain unknown bits (Xs), which can 

appear due to the existence of multiple clock domains, floating 
buses or non-initialized memory elements. In order to obtain an 
uncorrupted signature at the end of the test, these Xs have to be 
masked to either logic ‘0’ or logic ‘1’ before they propagate into 
the MISR (Figure 2). This may be performed by combinational 
logic implementing a so-called X-masking function (XMF) [25]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Embedded test architecture with MISR. 
The inputs of the BFF and the XMF are the state bits of the 

pattern counter, the shift counter and the test pattern generator 
(TPG) which can be an LFSR. Both functions are incompletely 
specified. In the BFF case, the ON-set includes the states that 
correspond to the clock cycles in which the LFSR output must be 
flipped. Similarly, the OFF-set contains the states that correspond 
to the clock cycles in which the LFSR output must not be flipped. 
The DC-set includes the states that correspond to the clock cycles 
in which this output may be arbitrarily flipped. 

In the XMF case, the ON-set contains the states that correspond 
to the clock cycles in which an unknown test response bit must be 

masked before it is scanned into the MISR. Similarly, the OFF-set 
includes the states that correspond to the clock cycles in which a 
test response bit carrying the information about the CUT correct-
ness must not be masked. The DC-set contains the states that 
correspond to the clock cycles in which the test response bits may 
be arbitrarily masked before they are propagated into the MISR. 

The DC-sets cover more than 99.99% of the definition space of 
both functions while the ON-sets and the OFF-sets are randomly 
distributed over the rest of the definition space. One can identify 
the following sources of the high cardinality of the DC-sets. 
• Not all the possible states and state combinations of the Shift 

Counter, Pattern Counter and LFSR (Figure 1) are necessarily 
appearing during the testing process. 

• In the case of the BFF, the deterministic test cubes that have to 
be mapped to the pseudo-random test sequence contain many 
don’t care bits and the number of embedded deterministic test 
cubes is a small fraction of the total number of pseudo-random 
test patterns. 

• In the case of the XMF, usually a very small fraction of the bits 
in test responses are Xs or relevant to the fault coverage.  

The large DC-sets offer a good base for the optimization of the 
logic implementation of these functions despite their irregularity, 
which is not the case with random functions with no or small DC-
sets. 

3. PROPOSED FBDD-BASED LOGIC 
SYNTHESIS 

Below, an incompletely specified function F:{0,1}N→ {0,1,-} 
(the symbol ‘-’ indicates a don’t care) will be represented by the 
characteristic functions fon, and foff:{0,1}N→{0,1} of its ON-set and 
OFF-set, respectively. This representation of F will be denoted by 
F(fon, foff). 

A function Cov(F):{0,1}N→{0,1} will be called a cover of F(fon, 
foff) iff: fon⋅ Cov(F) = fon and foff⋅ Cov(F) = 0. The cofactor of a 
function f by a literal l∈{x, ¬x} will be denoted by f|l, where x is 
an input variable of f. The number of fully specified input assign-
ments {x∈{0,1}N|f(x)=1} will be denoted by ||f|| (cardinality of f). 

The goal of the synthesis procedure described here is to generate 
FBDD-like covers with a reduced gate count in the resulting circuit 
descriptions. This is achieved by first reducing the number of paths 
from the root node to a leaf node and second by looking for node 
sharing among different paths and even different FBDDs.  

Each path in a BDD corresponds to a sub-space which is mapped 
either to 1 or to 0. Similarly, the cover of the function F(fon, foff) 
can be chosen equal to 0 on the subspaces mapped by fon to 0 and 
equal to 1 on the subspaces mapped by foff to 0. Consequently, the 
path reduction of the FBDD-based implementation can be achieved 
by finding a minimal partition of the definition space of the 
considered function into appropriate sub-spaces on which either fon 
or foff is equal to 0. Given the function F(fon, foff) and the set of its 
input variables V, the synthesis method introduced here looks for a 
good partition of the definition space into such special sub-spaces 
using the recursive depth-first process sketched below. 

First, it is decided whether F(fon, foff) or ¬F(foff, fon) is imple-
mented, depending on the compactness of the OBDD-based 
representation of fon and foff. The OBDD sizes are determined by 
their node count. Subsequently, a variable x is determined (in 
CreateLiteralCover or SplitOperator) with respect to which the 
current definition subspace is decomposed into 2 new subspaces 
where x is either 1 or 0. For each of the 2 subspaces a further 
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recursive call of CreateCover may be required. The size of the 
resulting cover may be reduced by determining a minimal number 
of such successive recursive calls. CreateLiteralCover and Split 
Operator implement heuristics to obtain near-optimal solutions. 
CreateCover (fon, foff, V){ 

if size(fon) > size(foff) then return ¬CreateCover (foff, fon, V); 
l = ∅; 
Cov = CreateLiteralCover (fon, foff, V, l); 
if (Cov ≠ ∅) then return Cov; 
Cov = FindCover (fon, foff); // optional DC-based node reduction 
if (Cov ≠ ∅) then return Cov; 
for all  i ∈ V and for li ∈{xi, ¬xi} 

if (fon|li = 0 and foff|li = 0) or 
(fon|li = fon|¬li and foff|li = foff|¬li) then V = V – {i}; 

if l ≠ ∅  then  
Cov = CreateCover (fon|¬l, foff|¬l, V); 
if foff ⋅ Cov = 0 then return Cov; 
else return (¬l) ⋅ Cov;           // new FBDD-node required 

return SplitOperator (fon|¬l, foff|¬l, V);} 
CreateLiteralCover provides the recursive process with the first 

stop condition. The recursion is stopped if a literal l is found for 
which foff|¬l and fon|l are equal to 0. In this case ¬l is chosen as a 
cover for F. If this condition cannot be fulfilled and there are 
literals li, for which fon|li is equal to 0, then that literal li which 
minimizes the cardinality of foff|¬li will be assigned to the generic 
argument l. FindCover which provides the algorithm with the 
second stop condition is optional and will be discussed later. 
CreateLiteralCover (fon, foff, V, l){ 

Min = ∞; 
for all i ∈ V and for li ∈{xi, ¬xi} 

if fon|li = 0 and || foff|¬li || < Min then Min = || foff|¬li ||; l = li; 
if Min ≠ ∞ and foff|¬l = 0 then return ¬l;  
return ∅;} 
Subsequently, the set of input variables V is pruned from those 

variables on which fon and foff depend in a trivial way (for loop of 
CreateCover). Depending on whether the literal l returned by 
CreateLiteralCover is different from the empty set ∅, either 
CreateCover or SplitOperator is called. 

Procedure SplitOperator uses two heuristics. The first one looks 
for a literal l such that the cardinalities ||fon|l|| and ||foff|¬l|| are higher 
than the cardinalities ||foff|l|| and ||fon|¬l||, respectively. If such an 
unbalancing occurs, then the following relation must hold: 

| ||fon|l|| - ||foff|l|| | + | ||foff|¬l|| - ||fon|¬l|| | > | ||foff|| - ||fon|| |       (1) 
The intuition behind the unbalancing is that we heuristically try 

to find the literal l that simultaneously minimizes both cardinalities 
||fon|l|| and ||foff|¬l||. For example, consider the definition space 
presented in Figure 3, where the symbols ‘x’ and ‘o’ are used to 
represent the input assignments belonging to the ON-set and the 
OFF-set of the considered function, respectively. The dashed 
squares give a minimal partition of the definition space into sub- 
spaces containing only input assignments belonging either to the 
ON-set or to the OFF-set. Assume that one has to choose between 
the input variables x1 and x2 for the decomposition of the 
considered definition space. The other input variables are not 
explicitly shown for simplicity reasons. The enclosed table shows 
the number of input assignments belonging to the ON-set and the 
OFF-set in the sub-spaces defined by x1 = 1, x1 = 0, x2 = 1 and x2 = 
0. In this case, the first heuristics of the procedure SplitOperator 

chooses the variable x1 with respect to which the definition space is 
unbalanced and the inequality (1) is fulfilled. The left-hand side 
member of the inequality (1) is evaluated to 15/3 with respect to 
the variable x1/x2. In total, there are 13/10 input assignments 
belonging to the ON-set/OFF-set, so that the right-hand side 
member of the inequality (1) is evaluated to 3. It can also be 
observed that the cut line corresponding to the decomposition of 
the definition space with respect the input variables x1 does not 
intersect any sub-space of the minimal partition. This does not 
happen in the case of the variable x2. 
SplitOperator (fon, foff, V){ 

Max  =  0;  
for all i ∈ V                                              // first heuristic 

Check = | ||fon|xi|| - ||foff|xi|| | + | ||foff|¬xi|| - ||fon|¬xi|| |; 
if Check > Max then Max = Check; m = i; 

if Max =  | ||foff|| - ||fon|| | then                      // second heuristic 
MinOn = ∞; MinOff = ∞; 
for all i ∈ V and for li ∈{xi, ¬xi} 

if ||fon|li|| < MinOn or  
if ||fon|li|| = MinOn and ||foff|¬li|| < MinOff  then  

MinOn = ||fon|li||; MinOff = ||foff|¬li||; m = i; 
V = V – {m};               // choose the literal for the first recursion 
choose l∈{xm, ¬xm} such that ||foff|l|| ≥ ||foff|¬l||; 
Cov1

 = CreateCover (fon|l, foff|l, V); 
if Cov1

 ⋅foff ≠ 0   then Cov2 = CreateCover (fon|¬l, foff|¬l, V); 
else if foff|¬l ≠ 0 then Cov2 = CreateCover(¬Cov1⋅fon|¬l, foff|¬l,V); 
else Cov2 = ¬1; 
if Cov1

 ⋅ foff  ≠ 0 then Cov1 = l⋅ Cov1; 
if Cov2

 ⋅ foff  ≠ 0 then Cov2 = ¬l⋅ Cov2; 
return Cov1 + Cov2;} 
If no unbalancing variable has been found, then the second 

heuristic is used. This heuristic chooses the variable x, which has 
an associated literal l∈{x, ¬x} that minimizes the cardinality ||fon|l|| 
as a primary optimization goal and minimizes the cardinality 
||foff|¬l|| as a secondary optimization objective. The first optimiza-
tion goal is similar to the approach used in [12]. The intuition 
behind this is similar to the one mentioned for the first heuristic of 
Split Operator. For each literal l∈{x, ¬x} a recursive call with the 
argument (fon|l, foff|l) is performed iff foff|l ≠ 0. 

Both heuristics in SplitOperator are used to increase the chance 
of fulfilling the stop condition from CreateLiteralCover in the next 
recursive calls and thus to decrease in a greedy manner the number 
of subsequent recursive calls of CreateCover. 

In order to limit the memory consumption of the whole process, 
the cofactor f|x is computed using the operator BDD.Compose 
instead of the operator BDD.And. In this way, the dependence of 
the cofactor f|x on the variable x is eliminated. 

The heuristics used here to choose the new variable x depend 
only on the distribution of the ON-set and of the OFF-set over the 
definition space of the target function F. This makes the algorithm 
largely independent of the variable order used for the underlying 
OBDD-based representation, which is not the case with the 
heuristic used in [11] for completely specified functions.  

A FBDD-based representation is preferred to model the resulting 
Cov(F), since an OBDD could require excessive memory usage. 
The FBDD-based representation is constructed node by node 
during the recursive process. Each non-terminal node of the FBDD 
is created during a distinct recursion step. The logic 
implementation of a node created outside SplitOperator requires at 



 
 
 
 
 
 

 
Figure 3: Example of the proposed decomposition of the definition space.

most one 2-input logic operator, while a node created inside 
SplitOperator may require between one and three 2-input logic 
operators. NAND and NOR operators are preferred to AND and OR 
operators. In this way the logic is optimized not only by reducing 
the number of nodes in the FBDD, but also by reducing the 
operator count per node. Both goals are achieved by exploiting the 
DC-set. 

So far, the node count has been minimized only by attempting to 
decrease the path count (e.g. looking for minimal partitions of the 
definition space, where either fon or foff is equal to 0). The node 
count can be further reduced by allowing non-terminal nodes to 
become children of more than one parent node and by allowing 
parent nodes of the same child to belong to FBDDs corresponding 
to different outputs of the target function. This is nothing else than 
the well-known node reduction [5] that usually makes the OBDDs 
very compact, but which in the case of FBDDs is expected to have 
less impact on the node count.  

Procedure FindCover is used to check whether the covers 
Cov(SG) implemented by already synthesized sub-graphs SG are 
useful also in the case of the target function F(fon, foff). If such a 
sub-graph is found, one has only to point to its root node with a 
normal or a complemented edge (when ¬Cov(SG) is needed). As 
long as it is not required that the FBDD-based representations of 
the resulting covers are canonical, both else and then edges are 
allowed to be complemented.  
FindCover (fon, foff){ 

for each element SG of a sub-set of all completed sub-graphs  
if fon⋅ Cov(SG) = fon and foff⋅ Cov(SG) = 0 then 

return Cov(SG); 
if fon⋅ Cov(SG) = 0 and foff⋅ Cov(SG) = foff then  

return ¬ Cov(SG); 
return ∅;} 
In order to reduce the node (gate) depth of the cover returned by 

CreateCover, it is important that CreateLiteralCover is called 
before FindCover. In order to increase the chances that a cover 
will be found by FindCover, this should be called before the for-
loop in CreateCover. The DC-based node reduction implemented 
by FindCover has the effect that the same node index (variable) 
may appear more than once on a path going from the root to a 
terminal node of the resulting cover. Nevertheless, such an effect 
has never been observed during our experiments, except for some 
increase of the circuit depth. 

Each FBDD node contains a pointer to the OBDD-based

representation of the function implemented by its sub-graph. In 
this way, the Boolean functions involved in the DC-based node 
reduction can be efficiently manipulated. The run-time and the 
memory consumption of the search associated with the DC-based 
node reduction can be reduced by limiting the number of 
investigated nodes. 

The worst case run-time complexity of the FBDD-based logic 
implementation of an incompletely specified function F is propor-
tional to the product of the number of input variables, the maxi-
mum size of the OBDD-based representation of each output and 
the size of the resulting cover. When the DC-based node reduction 
is enabled, the square of the resulting cover size has to be taken. 
The node counts of the resulting covers are usually orders of 
magnitude smaller than the node counts of the original OBDDs. 

4. EXPERIMENTAL RESULTS 
The FBDD-based approaches published so far do not target the 

synthesis of incompletely specified functions. Consequently, the 
proposed FBDD-based method has been evaluated with respect to 
SIS and the OBDD-based methods available in the CUDD-package 
[27] able to handle don’t cares. The experiments have been 
performed on GNU Linux machines equipped with 2 GB of 
memory and an Intel Pentium 4 processor at 2.4 GHz. 

Table 1 presents the considered benchmark functions which stem 
from the field of design for test [10] and can be downloaded from 
[28]. The 2nd and the 3rd column report the number of inputs and 
outputs of the target functions. The 4th column (||ON-set|| + ||OFF-
set||) gives the sum of the cardinalities of the ON-set and the OFF-
set corresponding to each function. The last 2 columns show the 
(non-terminal) node count of the OBDD-based representation of 
each function. 

Table 2 provides a comparison between the proposed method 
and OBDD-based approaches with respect to the synthesis of the 
functions in Table 1. For each approach, we report the number of 
2-input logic operators (#gates), the node depth (Node depth) and 
the 2-input gate depth (Gate depth) of the resulting covers as well 
as the run-time required to generate these covers (Optimization 
time). The number of logic operators in the circuit description of a 
non-terminal FBDD node is obtained by counting the 2-input logic 
operators in the expression of the corresponding cover Cov(F). In 
the case of the OBDD-based implementation, the circuit 
description of each non-terminal node may require 3, 1 or 0 2-
input logic operators, depending upon whether the node has 0, 1 or 
respectively 2 children, that are terminal nodes [2]. 

Table 1: Multi-output (incompletely specified) target functions. 

 ON-set OFF-set 
x1 = 1 10 2 
x1 = 0 3 8 
x2 = 1 6 5 
x2 = 0 7 5 

Multi-output function #inputs #outputs ||ON-set|| + ||OFF-set|| ON-BDD size [#nodes] OFF-BDD size [#nodes] 
p19K 82 24 85,215 615,407 654,443 
p59K 77 19 9,918 158,181 315,335 
p127K 67 10 663,750 6,876,383 8,067,136 

x1 = 1 x1 = 0

x2 = 0 

x2 = 1 



Table 2: Optimization potential of the FBDD-based and the OBDD-based approaches. 

 
Each function has been synthesized three times with each 

approach. In the case of the FBDD-based approach, the 
reported experiments show tradeoffs between the run-time and 
the number of (2-input) logic operators in the circuit description 
of the resulting covers. These tradeoffs have been obtained by 
changing the thresholds that control the size of the searching 
space associated with the DC-based node reduction. The first 
run corresponding to each function has been done with the DC-
based node reduction disabled. 

The FBDD-based method has been evaluated with respect to 
several OBDD-based approaches that use combinations of the 
restrict operator [9] and variable reordering. The variable 
reordering has been applied before restrict and to all ON- and 
OFF-OBDDs corresponding to each output of the target 
function. As a result, all the covers obtained with the OBDD-
based approach have the same variable ordering and, 
consequently, a maximized probability of node sharing among 
them. The variable reordering performed on the covers found 
with restrict for all the outputs of a given function does not 
bring any node reduction. Consequently, the reported run-time 
consumption of the OBDD-based approach with variable 
reordering takes into account only the application of restrict 
and of the variable reordering done before.  

In the first OBDD-based run reported here, no variable 
reordering has been performed. In the next 2 runs, the variables 
have been reordered based on the heuristics: CUDD_ 
REORDER_SYMM_SIFT and CUDD_REORDER_SYMM_ 
SIFT_CONV [27], respectively. The first heuristic is an 
implementation of symmetric sifting [18], while the second 
heuristic is a converging variant of the first one. Variable 
reordering improves the operator count at the cost of a 
significant increase in the run-time. The converging heuristic 
for reordering the variables of the function p127K was still 
incomplete after days of execution. 

The proposed method outperforms all the investigated 
OBDD-based approaches. Running the FBDD-based flow with 
the DC-based node reduction switched off results in operator 
counts (#gates) that are between 2 and 4 times better than those 
obtained with the best investigated OBDD-based approach. The 
operator count of the FBDD-based covers can be further 

improved by enabling the DC-based node reduction and 
increasing the associated searching space. The FBDD-based 
approach with DC-based node reduction disabled also provides 
the implementations with the smallest depths. As mentioned in 
the previous section, the node depth increases when the DC-
based node reduction is enabled, but its maximum is always 
less than the number of input variables. 

The circuit descriptions presented in Table 2 have been 
synthesized with Synopsys Design Compiler and using a 
proprietary library. Table 3 reports the resulting area (Cell area) 
measured in an arbitrary unit, the synthesis run-time (Synthesis 
time) and the total run-time required to generate the cover 
(Optimization time, in Table 2) and to synthesize them 
(Synthesis time, in Table 3). 

Compared to the best investigated OBDD-based approach, 
the FBDD-based flow with the DC-based node reduction 
disabled reduces area figures by a factor between 2 and 3. This 
improvement has been achieved by using shorter run-times than 
for all OBDD-based approaches (if one considers the sum of 
Optimization time and Synthesis time). Moreover, the run-time 
of this simple configuration of the FBDD-based approach is by 
at least one order of magnitude shorter than the run-time of the 
BDD-based approach with the best logic area results. In the 
case if the FBDD-based approach, the area results can be 
further improved by enabling the DC-based node reduction. 

Table 4 presents a comparison between SIS [22] and the 
FBDD-based approach with respect to the implementation of 
incompletely specified functions with large DC-sets. Due to the 
scaling problems of SIS, only the smallest functions that corre-
spond to single outputs of the functions presented in Table 1 
could be implemented. The 2nd column reports the number of 
inputs of each single-output function. The 3rd column  
(||ON-set|| + ||OFF-set||) gives the sum of the cardinalities of the 
ON-set and the OFF-set corresponding to each function. The 
4th and the 5th columns show the non-terminal node count of 
the OBDD-based representation of each function. The next 3 
columns (SIS) report the resulting gate count, area and the 
required run-time when the target functions have been 
implemented directly with SIS. In the last 3 columns 
(FBDD+SIS), the same parameters are reported for the case

Table 3: Synthesis results obtained using the FBDD-based and the OBDD-based approaches. 

Restrict + Variable Reordering FBDD Multi-output 
function #gates Node depth Gate depth Optimization time #gates Node depth Gate depth Optimization time 

54,672 17 30 0m:20s 8,269 15 24 1m:31s 
39,231 17 30 4m:52s 7,200 23 37 17m:28s p19K 
33,443 17 29 40m:22s 7,161 27 42 22m:07s 
7,084 20 33 2s 1,543 16 25 11s 
4,669 19 31 2m:16s 1,428 23 34 27s p59K 
4,601 19 30 18m:27s 1,423 23 34 1m:10s 

390,057 23 42 24m:21s 120,122 21 36 35m:18s 
256,883 24 42 11h:16m 94,113 68 97 15h:00m p127K 

- - - - 93,837 61 96 16h:34m 

Restrict + Variable Reordering FBDD Multi-output 
function Cell area   Synthesis time Optimization +  Synthesis time Cell area   Synthesis  time Optimization +  Synthesis time

147,074 46m:32s 46m:52s 34,464 1m:56s 3m:27s 
101,332 25m:30s 30m:22s 33,286 1m:29s 18m:57s p19K 
89,681 17m:12s 57m:34s 32,917 1m:30s 23m:37s 
23,075 1m:54s 1m:56s 7,014 30s 41s 
15,198 1m:02s 3m:18s 7,046 37s 1m:04s p59K 
15,292 1m:07s 19m:34s 6,869 29s 1m:39s 

1,349,051 15h:02m 15h:26m 521,814 4h:40m 5h:15m 
1,036,493 7h:06m 18h:22m 507,949 2h:51m 17h:51m p127K 

- - - 508,840 3h:07m 19h:41m 



Table 4: Comparison between SIS and the FBDD-based approach plus SIS. 

 
where FBDD-like covers have been generated and later synthe-
sized with SIS. In all the cases, SIS has been run with the rugged 
script. The statement full_simplify -m nocomp has been inserted at 
the beginning of the script. The library nand-nor.genlib has been 
used. 

It is obvious that the second approach scales better and improves 
dramatically the number of gates and area (between 2 and 19 
times). This suggests that the proposed approach enables a much 
better use of the don’t cares which in the descriptions of SIS and 
MIS are referred to as external don’t cares [3][22]. 

As a final remark, we do not recommend the use of the proposed 
FBDD-based approach for the synthesis of Boolean functions with 
no or small DC-sets. 

5. CONCLUSION 
A new BDD-based logic synthesis procedure for irregular and 

incompletely specified functions with large DC-sets has been 
presented, which can help to find efficient multi-level im-
plementations. The problem is reduced to the construction of a 
minimal FBDD by performing DC-based node reduction and 
mainly by partitioning the definition space of the target function 
into a reduced number of subspaces, which may be mapped either 
to 0 or to 1. Heuristics are used to find near-optimal partitions of 
the definition space into such subspaces and, consequently, to 
minimize the path and node count of the resulting FBDD-like 
covers. Furthermore, this approach is also able to use the DC-set to 
reduce the number of gates appearing in the circuit description of 
the non-terminal nodes. 

Applying this approach to the synthesis of some benchmark bit-
flipping functions [10] resulted in covers whose circuit descrip-
tions contained about 70% less logic operators than the 
implementations obtained with the restrict operator and variable 
reordering [27]. The synthesis of the resulting circuit descriptions 
with Synopsys Design Compiler revealed that the FBDD-based 
approach improves the area figures by a factor between 2 and 3, 
while the run-time consumption is significantly reduced. 
Moreover, the proposed method scales better and succeeds to get a 
better advantage of the DC-set than SIS.  

A tool that implements the synthesis approach presented here 
can be downloaded from [28]. 
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SIS FBDD + SIS Single-output 
function #inputs ||ON-set|| + 

||OFF-set|| 
ON-BDD size 

[#nodes] 
OFF-BDD size 

[#nodes] #gates Cell area   Run time #gates Cell area    Run time
p1 82 229 6,516 8,592 354 760 28.60s 21 39 0.11s 
p2 82 843 21,934 30,621 180 395 3.83s 31 64 0.31s 
p3 77 1,708 30,745 63,286 674 1,534 1,046.74s 366 754 26.85s 
p4 77 3,652 64,744 128,072 1,145 2,586 3,997.47s 366 820 7.58s 


