
Proceedings 12th IEEE European Test Symposium, Freiburg, Germany, May 2007

 1

An Integrated Built-in Test and Repair Approach for

Memories with 2D Redundancy

Philipp Öhler and Sybille Hellebrand
University of Paderborn Germany

{oehler,hellebrand}@uni-paderborn.de

Hans-Joachim Wunderlich

University of Stuttgart Germany

wu@informatik.uni-stuttgart.de

Abstract

An efficient on-chip infrastructure for memory test

and repair is crucial to enhance yield and availability

of SoCs. Therefore embedded memories are commonly

equipped with spare rows and columns (2D redun-

dancy). To avoid the storage of large failure bitmaps

needed by classical algorithms for offline repair analy-

sis, existing heuristics for built-in repair analysis

(BIRA) either follow very simple search strategies or

restrict the search to smaller local bitmaps. Exact

BIRA algorithms work with sub analyzers for each

possible repair combination. While a parallel imple-

mentation suffers from a high hardware overhead, a

serial implementation leads to high test times. The

integrated built-in test and repair approach proposed

in this paper interleaves test and repair analysis and

supports an exact solution without failure bitmap. The

basic search procedure is combined with an efficient

technique to continuously reduce the problem com-

plexity and keep the test and analysis time low.

1. Introduction

State of the art systems-on-a-chip (SoCs) typically
devote a large percentage of the chip area to various
kinds of memory cores. According to the International
Roadmap for Semiconductors (ITRS) the percentage of
memory in SoCs will continue to increase rapidly [7].
At the same time the shrinking feature sizes will lead
to increasing parameter variations and a high suscepti-
bility to defects. As memories are traditionally de-
signed with more aggressive design rules than logic
cores, they play a crucial role for the yield and reliabil-
ity of a SoC. Embedding the necessary infrastructure
for a built-in test and repair is essential to achieve ac-
ceptable yields and to guarantee a satisfactory avai-
lability in the field [19, 20].

This work was supported by the DFG-grants HE 1686/2-1 and WU

245/4-1

Memory repair relies on spare elements at different
levels of the design hierarchy. The most common form
is 2D redundancy where both spare rows and spare
columns are added to the memory [1, 2, 6, 8-11, 13-
18]. With increasing defect rates the number of spare
parts must be increased to keep the desired yield. Fur-
thermore the possibility for on-line repair in the field
becomes more and more important to compensate new
defects during the lifetime of a system. Thus an opti-
mal repair solution with a minimum number of spares
is preferred to provide a good basis for future repairs.

Usually the repair process for 2D redundancy con-
sists of several steps. First the memory is tested, and
the information about faulty elements is collected in a
failure bitmap. Then repair analysis attempts to find
an allocation of spare elements, such that all faults are
covered at minimum cost. As a result either the mem-
ory is identified as not repairable or a repair signature
is obtained which is the basis for soft or hard repair.

Strategies for 2D repair analysis have been investi-
gated for more than two decades. However, the classi-
cal approaches have been developed for offline test and
repair analysis and cannot be directly applied on chip
[3, 9, 15, 18]. Nevertheless, they provide the foun-
dation for built-in repair analysis (BIRA). In particu-
lar, Kuo and Fuchs have shown that the problem of
optimal 2D redundancy allocation is NP-complete, and
they have also proposed a systematic branch and bound
approach based on a binary search tree [9].

Adapting these techniques to a fully built-in repair
analysis poses two problems. Firstly, most of the
search strategies rely on a complete failure bitmap.
Secondly, the inherent data structures to organize the
search can grow very large. To overcome these prob-
lems, most approaches for built-in repair analysis ei-
ther follow only very simple search strategies, partition
the memory into smaller parts, or they rely on local
failure bitmaps [1, 6, 13, 16]. With CRESTA Kawagoe
et al. have proposed a pioneering BIRA approach,
which guarantees to find the optimal solution [8].
Similarly as the early work in [9] it is based on a

Proceedings 12
th

 IEEE European Test Symposium, Freiburg, Germany, May 2007

 2

binary search tree, but a separate sub analyzer is imple-

mented for each path in the tree. This way all possible

solutions can be analyzed in parallel. However, the

hardware cost grows rapidly with the number of

redundancies. For a memory with r redundant rows and

c redundant columns b(r + c, r) sub analyzers are

needed, where b(n, k) denotes the binomial coefficient

n over k. A serial processing of the b(r + c, r) sub

analysis tasks as mentioned in [14] can reduce the

hardware cost, but leads to very high test and analysis

times.

The integrated built-in test and repair approach pro-

posed below performs repair analysis concurrently

with test application. This way an optimal solution can

be found without any failure bitmap. The basic algo-

rithm uses a binary search tree and is implemented

with a stack of size r + c. It can be combined with a

strategy to continuously reduce the problem complex-

ity. Two small content addressable memories (CAMs)

with only 2r·c entries, each, support the detection of

necessary repairs and the fast identification of non-

repairable memories.

2. Basic concepts

As the test and repair scheme proposed in this paper

uses a binary search tree, the basic concepts and prin-

ciples introduced in [9] are briefly summarized with

the help of the small example memory of Figure 1.

Figure 1. Example memory with 2x2 spares.

Each node in the search tree of Figure 2 corresponds

to repair decision “row repair” or “column repair” for a

fault in the memory. As long as the tree is under con-

struction, a node is called “closed”, if all decisions

starting from this node have already been explored,

else it is called “open”. A leaf is reached when a suc-

cessful repair scheme is found or no more repair re-

sources are available. In case of a successful repair, the

path from the root to the leaf provides the repair sig-

nature. To facilitate a continuation of the search from

an arbitrary open node, for each node the partial repair

configuration corresponding to this node is attached,

i.e. the addresses of rows and columns to be replaced

by spare parts are listed. The highlighted path in Figure

2 leads to a successful repair configuration, and there

are still several open nodes, which can be explored to

improve the solution.

Figure 2. Partial search tree.

For a memory with r redundant rows and c redun-

dant columns the maximum height of the tree, i.e. the

maximum length of a path from the root to a leaf node,

is r + c. The leaf nodes in a complete search tree corre-

spond to all solutions exploiting all resources. As there

are r rows distributed among r + c spares, there are

b(r + c, r) leaf nodes in a tree enumerating all possible

repair configurations. To reduce the size of the search

tree Kuo and Fuchs propose to perform a “must repair”

phase before starting the binary search [9].

Observation 1 (“must repair”): For a memory with

r redundant rows and c redundant columns the follow-

ing repair decisions are mandatory: If there are more

than c faults in a row, then there are not enough col-

umns to cover all the faults, and a row must be selected

for repair. Similarly, more than r faults in a column

require a column repair.

3. Integrated built-in test and repair

3.1. The basic algorithm

The integrated test and repair approach introduced

in this section builds the search tree concurrently with

the test of the memory and avoids the need for large

failure bitmaps. Whenever a new fault is detected dur-

ing test, a (preliminary) repair decision is made and a

new node is added to the search tree. If backtracking

from node w to v in the search tree is necessary, the

preliminary repair decisions between the two nodes

must be cancelled and the test must be restarted with

the (partial) repair signature corresponding to node v.

Proceedings 12
th

 IEEE European Test Symposium, Freiburg, Germany, May 2007

 3

For a low cost hardware implementation the search is

organized as a “depth-first” traversal, as it can be im-

plemented using a stack, which is limited by the height

of the search tree [5]. Figure 3 shows the resulting on-

chip infrastructure in more detail.

Figure 3. On-chip infrastructure.

The BIST engine contains address generators and

other resources to implement the memory test relying

on wellknown techniques [4]. Its control part must be

adapted, such that communication with the FSM con-

trolling the repair analysis is possible. The repair stack

stores all the necessary information about the repair

configuration currently being explored. It contains at

most r + c records describing the repair type and the

status of a node. The repair type is encoded by two

bits: ‘00’ represents “no repair”, ‘10’ stands for “row

repair”, and ‘01’ for “column repair”. The status is also

described by a 2-bit code. If it is ‘11’, then the node is

closed, else the node is open. The status code ‘00’ indi-

cates that no successor has been generated yet, ‘10’

(‘01’) shows that a row (column) repair has already

been explored. It is not necessary to store the complete

repair configuration with each node on the stack. The

row and column counters as well as the repair address

registers in Figure 3 are sufficient to keep track of the

assignments made during search and to store the best

repair configuration found so far. The counters indicate

how many spares have already been allocated and the

repair address registers attach the address of the faulty

row or column to the allocated spare element.

The search starts with resetting the repair registers

and the repair counters. Furthermore, the root node is

pushed on the stack with repair code ‘00’ and status

code ‘00’. Then during each step of the search the node

on top of the stack is analyzed. If the node is already

closed, then it is popped off the stack, i.e. backtracking

is started. If the node is open, then the next repair deci-

sion depends on the status code, the availability of

resources, and the repair strategy followed (e.g. “row

first”, “column first”, “random” or “balance remaining

resources” [12]).

Whenever a new node is pushed on the stack, then

the address of the faulty row or column is stored in the

address register of the first available redundant row

(column), and the row (column) counter is updated.

Since the spare rows and columns are used in a fixed

order during the search, canceling repair decisions dur-

ing backtracking simply corresponds to decrementing

the row or column counter. To continue the search

after backtracking, the test must be restarted with the

partial repair signature derived from the valid ad-

dresses in the repair registers.

If the test finishes during search, then the contents

of the stack corresponds to a successful repair configu-

ration. Once the first solution has been found, the num-

ber of spare elements in the best solution so far pro-

vides a criterion to prune the search tree. Sub trees

corresponding to solutions with the same or more ele-

ments can be cut off. The search stops when the stack

is empty and all alternatives have been explored. If the

test still detects additional faults at this point, then the

memory is not repairable.

The complete test and repair process is illustrated

for the small example memory of Figure 1. Here it is

assumed that a “row first” strategy is followed. If the

faults are detected in the order (1, 2), (3, 4), (4, 4),

(5, 1), (5, 6), (6, 0), and (7, 0), then the search tree of

Figure 4 is obtained, the nodes of which are labeled in

the order of traversal.

Figure 4. Depth-first traversal.

Figure 5 shows the stack after the traversal of the

first path with nodes ‘1’ to ‘5’. The repair codes indi-

cate that two row repairs and two column repairs have

been performed starting from the root node ‘1’. The

addresses of the replaced elements are listed in the

repair registers. The status codes show that from nodes

‘1’ and ‘2’ further alternatives can be explored while

nodes ‘3’, ‘4’ and ‘5’ are already closed. This is due to

the fact that there are no more appropriate resources to

continue the search from these nodes. With node num-

Proceedings 12
th

 IEEE European Test Symposium, Freiburg, Germany, May 2007

 4

ber ‘5’ on top of the stack a dead-end is reached, since

all spare elements have been used and the test still

detects another fault at address (5, 6).

Repair Stack

Node

Number
Repair

Code

Status

Code
 Repair Registers

1 00 10 Spare Address

2 10 10 R1 1

3 10 11 R2 3

4 01 11 C1 4

5 01 11 C2 1

Figure 5. Repair stack for the first path.

Backtracking starts and continues until the open

node ‘2’ is reached. The last three repair steps have

been cancelled by decrementing the repair counters

accordingly. The test is restarted with the partial repair

signature corresponding to node ‘2’ and finds the first

fault at address (3, 4). The status of node ‘2’ indicates

that only a column repair is left as an unexplored alter-

native. When node number ‘8’ is reached, a first solu-

tion of the repair problem is found. The search con-

tinues until the stack is empty and the completed

search tree is traversed. But in this example no other

solutions for the repair problem can be found.

The proposed scheme guarantees to find the best re-

pair solution with a very simple algorithm. It is there-

fore referred to as basicSolve. However, as already

pointed out, backtracking in the search tree implies a

restart of the test, which may lead to high test and re-

pair times. To overcome these problems an efficient

strategy to reduce the search space is presented in the

next section.

3.2. Continuous reduction of the search space

The must repair criterion stated in Observation 1

provides the basis for the continuous reduction of the

search space presented in this section. However, it is

not restricted to a single preprocessing step as in many

other BIRA approaches. As each repair changes the

number of available spares, new situations fulfilling

the must repair criterion may occur after a repair step.

In particular, after a must repair step other must repair

decisions may become necessary. Therefore, a dyna-

mic must repair analysis is performed as a preprocess-

ing step and after each repair node pushed on the stack.

For an efficient hardware implementation an intelli-

gent fault list is used to manage fault addresses. This

fault list consists of a table for row addresses and a

table for column addresses, each of which is realized

by a small CAM of size 2r·c. During memory test,

each detected fault address is compared against the

contents of the two CAMs. As a result the row CAM

provides the number of faults with the same row ad-

dress, and the column CAM provides the number of

faults with the same column address already stored.

If the number of faults with the same row address

has already reached c, then, with the new fault, the

must repair criterion for a row repair is fulfilled. Simi-

larly, if the number of faults with the same column

address is r, this implies a mandatory column repair.

After performing the corresponding repair, a dynamic

must repair analysis is carried out for all faults stored

in the CAM with the updated values for r and c.

If neither a row nor a column must repair can be

triggered, the row address of the new fault is stored in

the row CAM, and the column address is entered in the

column CAM. The maximum number of fault ad-

dresses which can be collected without invoking a

must repair is 2r·c [6]. Therefore it is sufficient to se-

lect 2r·c as the CAM size for both the row and the

column CAM. This observation is also useful for

pruning the search tree and for the early identification

of non-repairable memories. If both CAMs are full,

and a new fault is detected without leading to a must

repair, then the memory is proven to be non-repairable

and the search can be stopped.

The basic algorithm of Section 3.1 combined with

the proposed strategy is called intelligentSolve. Its flow

is illustrated again for the small example of Figure 1

with faults detected in the same order as before. After

pushing the root node on the stack the test is started

and the fault list shown in Figure 6 is collected.

Fault Address Fault

Number Row Column

1 1 2

2 3 4

3 4 4

4 5 1

6 5 6

7 7 0

Figure 6. Fault list captured during test.

As a reduction based on the must repair criterion is

not possible, and the maximum size of the CAMs has

not been exceeded, the first repair node is generated

exploring a row repair. This eliminates the first entry in

both tables, and the number of available spare rows is

decremented. The following must repair analysis with

the updated values for r and c immediately identifies

two must repairs for column addresses 4 and 0. After

the corresponding repairs, c is updated to zero, and a

must repair situation is found for row address 5. At this

point a first solution of the repair problem is found

with only two nodes on the stack and dynamic must

repair.

To improve the solution the search is continued by

backtracking to the root node. This time a column re-

pair is explored to cover the fault at address (1, 2). This

Proceedings 12
th

 IEEE European Test Symposium, Freiburg, Germany, May 2007

 5

decision invokes a must repair for row 5, which in turn

leads to a must repair of column 0. At this point the

must repair criterion is fulfilled for column number 4,

but there is only one spare row left. Hence the search

for the optimal solution can be stopped after back-

tracking only once.

4. Experimental results

To evaluate the proposed strategies, the algorithms

basicSolve, intelligentSolve and a version of intelli-

gentSolve stopping at the first solution (intelligent-

SolveFirst) have been simulated for a 1024 1024-bit

memory using the “row first” strategy. The experi-

ments have been performed for different redundancy

configurations and for different numbers of random de-

fects. The redundancy configurations varied from two

spare rows and two spare columns (2 2) to five spare

rows and five spare columns (5 5). The number of

random defects has been linearly increased ranging

from one to fifteen. A random defect can result in a

single faulty cell, a faulty row or column, a “line fault”

consisting of several adjacent faulty cells in a row or

column, or a cluster fault affecting up to 3 3 cells. The

considered distributions of defect types are listed in

Table 1.

Table 1: Distribution of Defect Types.
Distributions Defects

d1 d2 d3

Row 0.10 0.10 0.10

Column 0.10 0.10 0.10

Line Fault 0.10 0.20 0.40

Cluster 0.05 0.10 0.20

Single Cell 0.65 0.50 0.20

Each experiment has been repeated 1000 times with

randomly generated addresses of the faulty locations.

Since all redundancy configurations and all the three

defect distributions show similar trends, only the re-

sults for d2 for a 5 5 configuration are discussed in the

following. The average results for the number of test

restarts are illustrated in Figure 7. In the grey area all

experiments ended up with non-repairable memories.

The curves in Figure 7 show that the dynamic must re-

pair proposed in Section 3.2 greatly reduces the search

complexity. In particular, the procedure intelligent-

SolveFirst does not require any backtracks or only very

few backtracks in the region where a high repair rate is

possible.

However, each entry in Figure 7 only shows the

mean value for the results of 1000 random experi-

ments. To get deeper insight into the behavior of the

repair algorithm, Figure 8 provides a histogram ana-

lyzing the detailed results for the case where intelli-

gentSolve reaches the maximum average value of

77.685 backtracks.

Figure 7. Restarts for 5 5 redundancy.

Figure 8: Histogram for 10 random defects.

It can be observed that the peaks are found at much

lower values than the average value suggests. This

shows that the repair problem can be solved with a mo-

derate number of backtracks in many cases. In 30% of

the experiments a repair solution was found with less

than 20 restarts, and in only 20% of the cases more

than 50 restarts were needed. Furthermore, in this

example, where the high number of defects makes

repair very difficult, the early abort criterion is already

very powerful. In more than 70 cases the memory can

be identified as non-repairable in the preprocessing

phase.

As pointed out above, the test and repair time can

even be reduced further using the intelligentSolveFirst

algorithm, which finds a solution without any

backtracks in many cases. In this case an optimum

solution can no longer be guaranteed, but it is inter-

esting to note that the quality of the results differs only

slightly for intelligentSolve and intelligentSolveFirst.

The average number of additional spares required by

Proceedings 12
th

 IEEE European Test Symposium, Freiburg, Germany, May 2007

 6

intelligentSolveFirst never exceeded 20% of the

optimal solution determined by intelligentSolve. For

hard to repair memories with a high number of defects

the additional average cost was even below 10 %.

which corresponds to at most 1 additional spare part.

Thus intelligentSolveFirst provides an excellent so-

lution, if the redundancy configuration is well adapted

to the expected defect distribution and a successful

repair can be expected with a high probability. As the

proposed approach guarantees to find a solution, if the

memory is repairable, a comparison to the repair rates

of other approaches is omitted. Comparing hardware

cost as well as test and repair time shows the following

facts. For a 5 5 configuration CRESTA already needs

b(10, 5) = 252 sub analyzers to be implemented in

hardware compared to a stack of maximum size 10,

two CAMs with 50 entries, each, and a small FSM.

Processing the sub analysis tasks serially as mentioned

in [14] would require b(10, 5) = 252 restarts of the test,

while the proposed approach needs less than 50 restarts

in the majority of cases. The local bitmap proposed in

[6] contains the same information as the proposed in-

telligent fault list, but it has a size of (r(c + 1) + r) ·

(c(r + 1) + c) = 35 · 35 = 1225 bits for the 5 5 configu-

ration.

5. Conclusions

The integrated built-in test and repair approach pro-

posed in this paper supports a low cost hardware im-

plementation by interleaving test and repair analysis. A

stack of size r + c and small FSM are sufficient to re-

alize the basic depth-first algorithm. Adding two small

CAMs of size 2r c, each, allows a continuous reduction

of the search space, and thus a reduced number of

backtracks and restarts of the test. In particular the

procedure intelligentSolveFirst provides a very effi-

cient solution for repairable memories, because it

achieves high quality results with less hardware and

shorter test and analysis times than other state of the art

BIRA schemes.

6. References

[1] D. K. Bhavsar, ”An algorithm for row-column self-repair

of RAMs and its implementation in the Alpha 21264.” Proc.

IEEE Int. Test Conf. (ITC), Atlantic City, NJ, USA, pp. 311-

318, Sept. 1999.

[2] K. Chakraborty et al., “A physical design tool for built-in

self-repairable RAMs.” IEEE Trans. on VLSI Systems, Vol.

9, No. 2, pp. 352-364, April 2001.

[3] J. R. Day, “A fault-driven comprehensive redundancy

allocation algorithm.” IEEE Design & Test of Computers,

Vol. 2, No. 3, pp. 35-44, June 1985.

[4] S. Hamdioui, G. Gaydadjiev, and A. J. van de Goor, “The

state-of-art and future trends in testing embedded memories.”

Records Int. Workshop on Memory Technology, Design and

Testing (MTDT’04). 2004.

[5] E. Horowitz, S. Sahni, S. Rajasekaran, “Computer

Algorithms in C++.” New York: Computer Science Press,

1998 (2
nd

 printing).

[6] C.-T. Huang et al., “Built-in redundancy analysis for

memory yield improvement.” IEEE Trans. on Reliability,

Vol. 52, No. 4, pp. 386–399. Dec. 2003.

[7] International Technology Roadmap for Semiconductors,

2005 Edition, http://www.itrs.net/.

[8] T. Kawagoe et al., “A built-in self-repair analyzer

(CRESTA) for embedded DRAMs.” Proc. IEEE Int. Test

Conf. (ITC), Atlantic City, NJ, USA, pp. 567-574, Oct. 2000.

[9] S.-Y. Kuo and W. K. Fuchs, “Efficient spare allocation in

reconfigurable arrays.” Proc. 23rd ACM/IEEE Design Auto-

mation Conf. (DAC), Las Vegas, NV, USA, pp. 385–390,

June 1986.

[10] J.-F. Li et al., “A built-in self-repair design for RAMs

with 2-D redundancy.” IEEE Trans. on VLSI Systems, Vol.

13, No. 6, pp. 742–745, June 2005.

[11] S. Nakahara et al., “Built-in self-test for GHz embedded

SRAMs using flexible pattern generator and new repair

algorithm.” Proc. IEEE Int. Test Conf. (ITC), Atlantic City,

NJ, USA, pp. 301-307, Sept. 1999.

[12] P. Oehler, S. Hellebrand, and H.-J. Wunderlich,

“Analyzing Test and Repair Times for 2D Integrated

Memory Built-in Test and Repair.” Proc. IEEE Workshop on

Design and Diagnostics of Electronic Circuits and Systems

(DDECS), Krakow, Poland, April 2007.

[13] A. Seghal et al., “Yield Analysis for Repairable

Embedded Memories.” Proc. IEEE European Test Work-

shop, Maastricht, NL, pp. 35-40, May 2003.

[14] S. Shoukourian, V. Vardanian, and Y. Zorian, “An

Approach for Evaluation of Redundancy Analysis

Algorithms.” Proc. IEEE Memory Technology, Design and

Testing Workshop (MTDT’01), San Jose, CA, USA, pp. 51-

55, Aug. 2001.

[15] M. Tarr, D. Boudreau, and R. Murphy, “Defect analysis

system speeds test and repair of redundant memories.”

Electronics, pp. 175-179, Jan. 12, 1984.

[16] T.-W. Tseng, J.-F. Li, and D.-M. Chang, “A built-in

redundancy-analysis scheme for RAMs with 2D redundancy

using 1D local bitmap,” Proc. Design, Automation and Test

in Europe (DATE), Munich, Germany, pp. 53-58, March

2006.

[17] O. Wada et al., “Post-packaging auto repair techniques

for fast row cycle embedded DRAM.” Proc. IEEE Int. Test

Conf. (ITC), Charlotte. NC, USA, pp. 1016-1023, Oct. 2004.

[18] C.-L. Wey and F. Lombardi, “On the repair of redundant

RAMs.” IEEE Trans. on CAD, Vol. 6, No. 2, pp. 222–231,

March 1987.

[19] Y. Zorian, „Embedded memory test & repair:

infrastructure IP for SoC yield.“ Proc. IEEE Int. Test Conf.

(ITC), Baltimore, MD, USA, pp. 340-349, Oct. 2002.

[20] Y. Zorian, S. Shoukourian, “Embedded-Memory Test

and Repair: Infrastructure IP for SoC Yield.” IEEE Design &

Test, Vol. 20, No. 3, pp. 58-66, May/June 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

