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Abstract—Design, Verification and Test of integrated circuits
with millions of gates put strong requirements on design time, test
volume, test application time, test speed and diagnostic resolution.
In this paper, an overview is given on the common aspects of these
tasks and how they interact. Diagnosis techniques may be used
after manufacturing, for chip characterization and field return
analysis, and even for rapid prototyping.

I. INTRODUCTION
Traditionally, design, verification and diagnosis of micro-

electronic circuits have been viewed as separate tasks with
individual challenges and techniques. However, in recent years
more and more attention has been paid to the interaction of
individual design steps in verification, diagnosis of prototypes,
and field return analysis. These are tasks for quality control
and improvement during the complete lifecycle of the system
and tackle faults, occurring during design, manufacturing and
operation.
As Systems on Chip (SoC) design complexity increases,

the verification process is turning into a critical bottleneck in
the design process. Estimates today are that more than 70%
of the total design time is on verification [1], [2]. Despite
the efforts spent from the academia and the industry on
developing functional verification tools, logical and functional
flaws remain the main cause of today’s design spins. Between
the years 2002 and 2004, the percentage of designs with
functional errors has actually increased [3].
Design validation tries to rule out design faults, basic

methodologies are simulation, emulation and formal verifica-
tion. Modeling and test bench construction are the main tasks
to be performed.
Debug is the time-consuming task of identifying faulty

modules and structures within the design. While some meth-
ods of formal verification are constructive and able to find
the cause of malfunctions, simulation and emulation usually
require additional design means for fault location, so called
assertions.
Test is not any more dealing with the design but with

the produced chip. Test is performed all over the system’s
lifecycle. Not only the first prototypes but all the chips
manufactured during mass production are subject of testing as
we cannot account on 100% yield. Even in the field, testing
is performed during start up or maintenance.

Online testing performs the test without stopping system
operation. If just erroneous behavior has to be found, self-
checking circuitry has to be employed. If von-volatile soft-
errors or even permanent faults have to be detected in advance,
concurrent structural testing is used as well.
While testing is just detecting the presence of a fault, fault

diagnosis is the process of both, detecting and locating the
fault at the various levels down to the real defect. Usually,
the logic behavior of the design has been validated during
simulation, verification and rapid prototyping. But numerous
parasitic and timing effects may show up in the first silicon,
identifying them is part of silicon debug. Hence, diagnosis
is more related to defects and debug is closer to design
errors, i. e. errors of the designer. However, there is a large
overlap in between dealing with yield ramping and design for
manufacturability.
For the rest of this paper we try to point out common aspects

of the tasks mentioned above.

II. TEST BENCH GENERATION AND VIRTUAL TESTING

During validation, the test bench is an environment for
generating input stimuli and evaluating the response of the
design under test (figure 1). High coverage of possible design
faults requires that the design is exercised in all of its operation
modes by a sufficient amount of input patterns. Usually, test
benches are generated concurrently with the design under test
in early design phases.

Fig. 1. General test bench

Virtual test provides a model of the automatic test equip-
ment (figure 2). This model is used in late design phases or



even after design for test program generation. The ATE test
program can be generated, simulated and debugged without the
presence of an ATE. Development time is saved by concurrent
engineering, and expensive ATE time is saved as well.

Fig. 2. Virtual Testing

Writing test benches for system verification is a very te-
dious task and error prone. Traditionally, verification engineers
generate these test benches manually. However, with today’s
complex designs, it is almost impossible to cover all possible
corner cases successfully. This motivated research to facilitate
and improve the process of test bench generation.
One approach is based on a divide-and-conquer algorithm

to automatically generate the test bench [4]. The key issue in
this approach is identifying the partitioning boundaries where
interactions among divided components are minimized.
Another approach is based on random simulation-vectors

generation [5]. The key issue in this algorithm is simplifying
conjunctive Boolean constraints defined over state and input
variables, and applying it to constrained random simulation
vector generation using binary decision diagrams (BDDs).
The authors present a method to generate a relatively small
sized BDD representation of the constraints, which in turn is
reflected on reduced time to generate the simulation vectors.
Industrial products took over these ideas. Questa [3] of

Mentor Graphics and Vera [6] of Synopsys, for example, use
the constrained random simulation vector generation approach.
The designer describes stimulus scenarios in terms of con-
straints, and the simulators generate random stimuli vectors
based on the given constraints.
Other approaches [2], [7], [8], [9], [10], [11] have consid-

ered accelerating the test benches, by mapping them partially
or fully into hardware, as a means to improve the efficiency
of test benches and speedup the verification process. This step
could be considered complementary to the above approaches.
The authors in [7] propose a mechanism to partition a behav-
ioral test bench into two parts: one part residing on hardware,
and the other on software. This is beneficial when using the co-
emulation approach discussed above. The proposed algorithm
results in an optimal partition to reduce the communication
overhead between the two components.

From the industry’s side, Infineon has developed an adaptive
approach to generate test benches that can be applied to
simulation, test, and emulation depending on the abstraction
level the verification task is being conducted at [11].
As shown in figure 3, each unit is connected to a compatible

test bench element, depending on the abstraction level, and
all the elements communicate via a bus to a main test bench
kernel. This adaptive architecture for structuring test benches
allows verifying the complete system with the same test bench,
even if the system is described using different abstraction
levels.

Fig. 3. Adaptive approach for structuring test benches

Reuse of test benches for virtual test is subject of recent
research mainly in the mixed-signal area [12], up to now a
considerable amount of double work is done by the design
and test community.

III. TRANSACTION LEVEL MODELS AND EMBEDDED TEST
Software simulators are the most common means for val-

idation. However, the performance of these simulators is
inadequate to handle today’s and future design complexity.
These simulators run on general purpose workstations, where
they execute tasks sequentially.
To keep up with today’s complexity, research and devel-

opment efforts have been put up together to develop new
and more efficient means for validation. One of these was
hardware emulators, which provided a gigantic acceleration
to the traditional simulation process. Hardware emulators run
the circuit’s model in real time on configurable hardware.
Although emulation provides high verification performance,
it is unable on its own to run a behavioral test bench. This
reduces its flexibility in comparison to software simulators,
which can execute system calls, such as terminal display and
file I/O, and high-level test benches, such as Vera and C++.
Therefore, to achieve a more efficient verification process,
software simulators are coupled with hardware emulators [13],
[14], [15].
This has given rise to a new verification methodology known

as Transaction-based verification (TBV) [16], which poses a
new bottleneck to the process: communication overhead.
In an attempt to reduce the communication overhead,

transaction-level interface was introduced by Accellera as



Standard Co-Emulation Modeling Interface (SCE-MI) [17],
which defines application program interfaces (APIs) for test
bench and hardware interfaces for transactor description. For
this method, the transactor should be described in a synthe-
sizable form and the test bench should be written in a high
level language. The test pattern program communicates with
the transactors on the hardware side in a compressed form,
while the transactors generate comprehensive stimuli for the
DUT and evaluate the responses (figure 4).

Fig. 4. Transaction level modeling according to [18]

Several attempts try to improve the functional coverage of
TLV [3], [19], [20], [21], [22]. For example, the authors of [21]
propose fine-grained transaction-level verification, where high
signal level coverage is achieved by systematically modifying
the operation of the transactors and rerunning the simulation
rather than changing transaction-level scenarios. According to
the authors, this should reveal more bugs in a shorter time.
While TLM supports the early design phases, embedded

testing is a means for enabling an economic test after manu-
facturing. Test resources are partitioned between the external
ATE and the chip.
The control of the test hardware is not generated on chip but

provided by a low cost tester. Commercial schemes like EDT
or OPMISR implement this type of test resource partitioning
[23], [24]. Figure 5 illustrates this principle on the basis of
embedded deterministic test (EDT).
It is immediately seen that the basic architectures for TLM

and ET are identical, test data reduction may be considered as
a special phase of transactions. Reuse of transactions in both
domains is an emerging field of research.

IV. DEBUG AND DIAGNOSIS

A. Assertion-based debug
The so far mentioned techniques may help in verifying the

functionality of a design. If the verification process detects
a mismatch in the result, it might be unable to pinpoint the
cause of this mismatch. To overcome this weakness, assertions
are introduced into the process to monitor the activity of the

Fig. 5. Principle of embedded test

circuit, and report any present bugs. This process is known as
assertion-based verification (ABV)(see figure 4).
Assertions are statements that describe how a design’s logic

is intended to behave. They are embedded into the hardware
description language (VHDL or Verilog) code that describes
the IP block’s logic. When this code is fed into a design
verification program, the program can check the assertions
to determine whether the block behaves as it should. For
example, assertions check that two signals never contend a
certain bus at the same time, as shown in figure 6.

Fig. 6. Assertion check to prevent the hazard

The benefits of assertions are as follows:
• Improve observability and controllability of the design,
• Capture design specification in a formal way,
• Improve the verification efficiency by detecting more
inherent bugs,

• Improve integration and reuse of third party designs,
• Improve communication through documentation.
Today, there are a number of tools to describe asser-

tions with, such as Superlog, Property Specification Language
(PSL), OpenVera Assertions (OVA), Open Verification Library
(OVL) [25]. To ease the design and verification process,
Accellera has taken action to provide a unified Hardware
Description and Verification Language (HDVL) that can serve
the dual purpose of designing as well as “assertion-based”



verifying the design by releasing SystemVerilog as a new
standard [26].
Once inserted into a code, assertions can be used as moni-

tors to detect incorrect behavior. And the same assertions can
also be used for formal verification, such as in model checking.
Model checkers see assertions either as properties inside a
discrete block of code or as a constraint that describe legal
inputs to the IP block.
Recently, ABV has been the center of attention of a number

of researchers and developers. Some researchers have made
the attempt to upgrade existing modeling description lan-
guages, such as SystemC, by adding new features that support
assertion-based design [27], [28], while others have brought
up the necessary concepts, developed new strategies and even
modified existing ones to support this powerful process [1],
[25], [29], [30], [31], [32], [33].
After describing and synthesizing the assertions, the logical

following step would be generating the correct stimuli vectors
that would prove (or falsify) them. This field also has seen
recently some activity [32], [34], [35], [36], where algorithm
developers have proposed some practical solutions. The basis
for developing such solutions is quite diversified. Some are
based on interval analysis [32], [35], where the range of
applicable inputs that trigger the assertion is analyzed to
generate the best stimuli vectors. Other methods are based
on SAT solvers [34], [36], which try to generate the stimuli
vectors by satisfying the constraints set by the assertions. [32]
even utilizes genetic algorithms to even further optimize the
test generation to get more efficient coverage of the assertions.
While assertions help in identifying regions and modules with
a faulty behavior the target of diagnosis is an even more fine-
grained analysis.

B. Fault models and dictionaries
For test and diagnosis, fault models play an important role

as it is not feasible to generate tests for an arbitrary faulty
behavior. Fault models at the various abstraction levels restrict
the complexity of test generation, on the other hand, they
also reduce resolution. Some of these faults may not have
a counterpart at lower levels or in reality. For instance, there
may be a gate level model of a design with a corresponding
fault, but actually, the layout was generated by a single pass
synthesis directly from register transfer level. On the other
hand, some defects may not be modeled at all.
In nanometer technology, one must be aware that the

parametric and functional properties of each single gate,
transistor or line may vary within a large range of values [37].
Specification compliance testing tries to select a module and to
check whether its properties are still within the allowed range
despite the variations of its devices. If such a module is too
large, compliance testing will not be feasible, but if it is too
small, the test outcome may be invalidated into a false accept
or false reject by the variations of the environment.
Path delay fault testing may be considered as a special case

of compliance testing, where all the gates of a certain path are
varying within the allowed range, but the path is still slow [38],

[39]. In order to deal with the increasing variations, statistical
methods for both, fault and circuit modeling are required to
obtain diagnostic test patterns [40], [41], [42], [43], [44], [45].
A special type of delay faults is formed by so called cross

talk faults. This fault model describes the capacitive coupling
of two lines. If these lines are switched in parallel to opposite
values, the aggressor line may finally slow down the signal
change of the victim line. Here, a diagnostic pattern pair must
first initialize two nodes and, second, observe the transition
speed of the victim node. Most often these tests are required
during chip characterization and are part of silicon debug,
since these faults mainly exhibit a design flaw [46]. But also
after manufacturing variations may cause cross talk effects on
some dies to be diagnosed.
A more direct coupling of two lines is formed by bridging

faults. Additional material or missing insulators connect two
lines a and b, and a standard fault model maps this fault to
wired-AND or wired-OR structures [47], [48]. To implement
a more realistic model, resistive bridges are considered, too
[49].
A fault dictionary is a matrix containing the information

which pattern detects which faults. Once a fault dictionary is
computed, a simple search algorithm is sufficient to deduce at
least for single faults which fault caused the observed faulty
circuit behavior.
The number of faults grows at least linearly with the size

of the circuit. As the number of faults increases linearly, so
does the number of necessary test patterns. This results in
a O(n2) growth for the fault dictionary, which renders the
straight forward approach impractical for larger circuits.
Some attempts keep fault dictionary sizes low [50] by

generating them on the fly in order to handle the complexity.
Fault dictionaries are bound to a specific fault model. The

larger the number of faults defined by the fault model for a
given circuit, the bigger the dictionary becomes.

C. Diagnosis
The main goal of diagnostic techniques is to achieve the

highest diagnostic resolution within a short application time
[51].
Design for test techniques are reused and mandatory, but

not all of these techniques really support diagnosis. There is a
plethora of pattern compression and compaction techniques
available which loose efficiency if diagnostic patterns are
applied. The main reason is that these techniques work best
for patterns with a large account of unspecified bits while
high resolution usually increases the number of specified bits.
Nearly all of the diagnosis algorithms rely on a scan design.
The traditional approach for diagnosis is using a pre-

calculated fault dictionary for circuit response analysis. This
is also called static diagnosis.
For example [52] describes Poirot, a tool for diagnosis

of full-scan and partial-scan sequential circuits using this
approach. This tool first does static (just circuit structure
based) or dynamic (also including pattern simulation based)
structural processing on the given circuit. In this step cones



originating from scan cells are extracted from the circuit for
later deduction of fault locations from circuit responses.
The composite Fault Model is a diagnostic fault model

which uses stuck-at fault information to model bridging faults,
node faults (gates representing a wrong logic function) and
stuck-open faults. Each complex fault is represented by a
number of possible stuck-at fault configurations which are then
matched to the observed stuck-at faults.
First defined in [53], adaptive diagnosis does not need pre-

calculated fault dictionaries and test patterns and therefore
reduces the complexity issues with the static diagnosis ap-
proaches.
[53] suggest an iterative algorithm which generates in each

step a small number of test patterns for a small set of faults.
Then this small set of patterns (which does not necessarily
cover the whole fault list for the circuit) is applied and the
responses are used for dropping those faults which have been
covered but have not been observed in the circuit. This is
repeated until no further faults can be removed from the list.
The test patterns used in this approach are generated in three

phases: In the beginning the test patterns are randomly gener-
ated. In the next phase patterns are generated specifically for
hard-to-control parts of the circuit and finally deterministically
generated patterns for the remaining faults are generated.
One advantage of this approach is that existing tools for

static diagnosis can be reused. The main disadvantage is,
however, that a complete fault list for the circuit has to be
generated which can become huge for complex fault models.
Since the DfT measures mentioned above do not necessarily
support diagnosis, additional means are rather helpful. For this
reason, behavioral assertions are synthesized into structures on
chip not only for design debug and removed afterwards but
also for chip diagnosis and kept for manufacturing.

V. DEBUG AND ONLINE TEST

As mentioned in the previous section, assertions support
pattern generation for both debug and diagnosis. For this
purpose in addition to describing assertions, mapping them
efficiently to hardware has to be considered. The research
and development community has spared no effort into de-
veloping optimized synthesis mechanisms to accommodate
for assertions in the designs. [54] addresses the problem of
HW/SW co-verification after system synthesis and presents a
novel assertion synthesis technique, which converts system-
level assertions to implementation-level assertions automati-
cally during the synthesis process. This way, assertions defined
in system-level can be reused in lower levels of abstraction
for run-time system verification. On the other hand, [55]
provides an algorithm that automates the synthesis process
of assertion monitors from a high level visual specification
language. [56] provides a hardware environment and protocol
for using synthesized assertions effectively in the verification
and debug processes.
Again, if these assertions are kept in the circuit structure

for manufacturing, they are a useful means for online test.

VI. CONCLUSIONS
Today’s complex designs require special structures to allow

validation and verification. These structures, called synthesiz-
able assertions, are also useful later in the development and
system lifecycle, for debug, diagnosis, online and offline test-
ing. Moreover, not only the structures but also the validation
and debug patterns generated for these structures support test
and diagnosis.
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