
 1

Implementing a Scheme for External Deterministic Self-Test

*Abdul Wahid Hakmi, Hans-Joachim Wunderlich, Valentin Gherman
**Michael Garbers, Jürgen Schlöffel

*Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany

**Philips Semiconductors GmbH, Georg-Heyken-Strasse 1, D-21147 Hamburg, Germany
*(abdul.hakmi, wu, ghermanv)@informatik.uni-stuttgart.de

**(michael.garbers, juergen.schloeffel)@philips.com

Abstract

A method for test resource partitioning is
introduced which keeps the design-for-test logic test
set independent and moves the test pattern dependent
information to an external, programmable chip. The
scheme includes a new decompression scheme for a
fast and efficient communication between the external
test chip and the circuit under test. The hardware costs
on chip are significantly lower compared with a
deterministic BIST scheme while the test application
time is still in the same range. The proposed scheme is
fully programmable, flexible and can be reused at
board level for testing in the field.
Keywords: Deterministic self-test, external BIST,

test resource partitioning, test data compression.

1. Introduction

Test trade-offs include test coverage, test
application time, costs of automatic test equipment
(ATE) and design-for-test costs. While certain built-in
self-test (BIST) schemes reduce ATE costs
significantly, they may affect fault coverage, test time
and hardware overhead. Test resource partitioning
schemes like compression and decompression look for
a compromise between hardware overhead, test time
and ATE costs by using low-cost testers [3, 14, 15, 17].
Unlike BIST, these schemes do not support the reuse
of the test hardware in the field.

So-called built-out self-test (BOST) schemes move
large parts of the test hardware to an external chip,
which generates test patterns and evaluates the
responses of the circuit under test (figure 1). If the test
chip is programmable, it may be put onto a board for
testing several devices and by following the IEEE

1149.1 boundary scan standard, the board test is rather
straightforward (figure 2).

This type of test chips has been proposed for the last
two decades. The first approach supported random
pattern testing [2, 6] which requires random pattern
testable CUTs and very often rather long test
application times, too. Test application times were
reduced by weighted random pattern testing [16], but
in some cases a rather large number of weights had to
be stored on the test chip and put limits to the
feasibility.

Pattern

Generation

Test Chip

Scan Chain 1

. . .

Circuit Under Test

Boundary Scan

Boundary Scan

B
ou

n
dary Scan

Scan Chain 2

Scan Chain n

Figure 1. The BOST scheme

CUT 1 CUT 2

CUT 3

CUT 4

Test Chip

Figure 2. BOST at board level

 2

Less memory and shorter test length are required by
test chips supporting pseudo-exhaustive testing [9],
and they may have benefits concerning defect
coverage, but they put additional constraints on the
CUTs as their cones must not exceed certain limits and
hardware segmentation may be required.

A test chip producing precomputed deterministic
patterns has not been considered feasible up to now as
the amount of test patterns and consequently the
memory requirements increase with the CUT size. In
this paper it is shown that a mixed mode BIST scheme
combining random patterns and deterministic patterns
is also suited for external testing.

The goal of this paper is an external deterministic
BIST strategy which does not touch the mission logic
by segmentation cells or test points but requires just
scan design. Since it is too costly to store a complete
deterministic test set on the test chip, a mixed-test is
implemented which is based on bit-flipping [18] and
encoded bit-flip information stored off-chip [12].
Appropriate hardware development is required for both
sides i.e. off-chip and on-chip and will be described in
section 2.

In order to minimize the transfer of information
from off-chip to on-chip the bit-flipping information is
stored in a compressed form. The use of conventional
decompression methods may lead to long test times,
consequently new decompression architecture is
proposed that is independent of the test set and has the
ability to generate a complete encoded block in a single
clock cycle. The compression and decompression
methods will be described in section 3. In section 4, we
will describe the communication protocol and the

testing procedure, while section 5 will discuss the
experimental results.

2. Target structure

The self-test circuitry is partitioned between off-
chip and on-chip (see figure 3) and a communication
protocol is defined. The selection of the resources to be
built externally has a direct impact on the hardware
overhead and the testing time.

The bit-flipping logic (BFL) changes a few bits of
the random vectors generated by the LFSR in order to
produce precomputed deterministic patterns. In [18] it
is shown, that random vectors can be found which
leave most of the bits of the BFL not specified, the
remaining bits are mostly "0" as they match with the
random vectors, and only very few bits must be "1".

The main idea of the external deterministic BIST is
to compress and store the BFL outputs in an external-
chip memory (3(a)) and to generate the BFL
information on-chip by a small but fast decoder while
other test circuitry is still on-chip (3(b)). This idea is
based on several observations:
• It is impractical to transfer completely specified

deterministic patterns from the external chip.
• Only the bit-flipping logic (BFL) depends on the

test set while the other hardware only depends on
the number of scan chains in the design.

• A dramatic reduction of the hardware is possible if
the BFL is removed.

• As very few bits are needed to be flipped, the
majority of the BFL outputs are either don’t care
(X) or 0 and have high potential for compression.

(a) (b)

Control

Clock

Code

CUT

M
I
S
R

BFL/Decoder

=1

TPG

...

SC n

Test Control Unit

FF

On-chip

Memory

Test Control
Unit

Off-chip

SC 2

SC 1
FF

FF

=1

=1

......

Figure 3. External test based on bit-flipping

 3

• The LFSR, the XOR gates, the MISR and the
Control Unit do not add much hardware overhead
on-chip while their implementation externally
would require extensive communication and very
long test times.

3. Compression and decompression of bit-
flip information

There is a plethora of test data compression/
decompression schemes available which could be
applied to the external BIST scheme. Some of them are
investigated in [1], and it has been shown that
reseeding is optimal with respect to entropy [10, 13]
under general assumptions. But as already pointed out,
the bit-flipping output is strongly biased towards 0 and
contains mainly don’t cares so that other schemes look
more attractive [5, 8, 11, 12, 15]. These schemes would
optimize throughput and data volume while the main
objective of deterministic BIST is test time under
throughput and memory constraints.

To meet the speed target, new decompression
architecture has to be developed which is able to
generate the run-length blocks in parallel and not
serially. Such a decoder along with a compression
method will be presented in this section.

3.1. Compression algorithm

The compression algorithm described below
exploits the fact that the majority of the BFL outputs
are unspecified while among the others the number of
“0”s is always much larger than the number of “1”s.
We define a few basic terms:

X is used for representing a “don’t care”. SC
represents the number of scan chains in the CUT.

A BFL vector v consists of the BFL output that
converts a random test vector tR into a deterministic
test vector tD where tR and tD belong to a random test
set TR and deterministic test set TD for some design,
rsp. A set of BFL vectors that changes a complete TR
into TD will be referred as BFL set denoted by V. The
lengths of a BFL vector v, a random vector tR and a
deterministic vector tD are equal to SC, and the number
of vectors in V is equal to the vectors in TR and TD.
Each tRi has a corresponding vi that converts it to tDi.
Figure 4 shows an example of the BFL set (V) along
with the associated random test set (TR) and
deterministic test set (TD) for a design with SC=4. All
sets contain 6 vectors each of length 4. To form a
deterministic vector tDi, an XOR operation is
performed between the bits bvi,j and bRi,j of vi and tRi
respectively.

To illustrate the compression method, assume we

are implementing a test using p patterns each of length
m × SC. Then the corresponding random test set TR
will contain m × p test vectors each of length SC, and
the corresponding BFL set V will contain the same
number and size of vectors. For example in figure 4,
SC=4, p=2 and m=3, so each set contains 6 vectors
each of length 4. We compress V and store it off-chip
while TR will be generated by the on-chip LFSR. As
the BFL set is biased towards 0s, we will encode the 0
run-lengths.

First all the X’s in the BFL set are replaced by 0s.
In the next step we divide each BFL vector of the BFL
set into runs of 0s having lengths equal or less than SC
and call them blocks. If a BFL vector v ends with a 0,
an imaginary 1 is assumed at its end. The only purpose
for this imaginary 1 is to represent each vector as the
sequence of 0 runs, each of which stops with a 1 at the
end. Stopping each 0 run with 1 reduces the maximum
number of different 0 runs from 2SC to SC+1. This not
only helps in reducing the states of the decoder to
make it small and simple but also provides a way to
generate a complete 0 run within a single clock cycle.
This will be shown in section 3.2. If all the SC bits are
0 in a BFL vector then we have just one block of
length SC+1 and if all are 1 then we have SC blocks
each of length 1.

In the next step a dictionary of these 0 run-length
blocks with their occurrences is built. Using the
dictionary we assign a binary code to each block such
that the block with the highest frequency gets the
shortest codeword. Although the Huffman codes might
offer better compression they are not used as they
require a hardwired decoder on-chip which depends on
the BFL set V.

3.2. Decompression architecture

State-of-the-art decompression approaches e.g. [5, 8,
11, 12, 15] regenerate a block serially and use of them
in external deterministic test will result in very long
test application time. Hence, a parallel decompression
technique had to be developed that produces the
complete run-length block in a single clock cycle as
soon as the decoder detects its codeword. As the vast

tD1 = tR1 ⊕ v1

where
bD1,1= bR1,1⊕ bv1,1
bD1,2= bR1,2⊕ bv1,2
bD1,3= bR1,3⊕ bv1,3
bD1,4= bR1,4⊕ bv1,4

0 1 X X
X 0 X 0
X 0 X X

0 0 X X
X X X X
1 0 0 X

TD

0 1 0 0
1 0 1 1
0 1 0 1

0 0 1 0
1 0 0 0
1 0 1 0

TR

0 0 X X
X 0 X 1
X 1 X X

0 0 X X
X X X X
0 0 1 X

V

Figure 4. BFL vector and BFL set

 4

majority of the BFL output vectors are X’s they
contain only one run-length block and most of the time
the complete BFL vector is generated in a single clock
cycle. This parallelism of the decoder does not only
reduce the test time but also eliminates the need of the
synchronisation signals used in previous techniques to
stop the transfer of codes off-chip to on-chip when the
decoder is busy.
Figure 5 shows the proposed decompression
architecture. It mainly consists of a binary decoder, a
small RAM and a generate unit. The binary decoder
receives a codeword serially from the external chip and
produces the address of the RAM word that stores the
length of the encoded block. The length is passed to the
generate unit that regenerates the run-length block.
When the BFL vector is complete it is passed to the
XOR inputs. Detection of a binary code, reading of a
RAM word and generation of a run-length block can be
performed in parallel.

Figure 5. Decompression architecture

The binary decoder is a simple finite state machine

consisting of at most SC states and implemented by
log2|SC| flip-flops. It receives a code bit by bit through
the code line, and when the code is complete it
generates an address of a RAM word. After detection
of the shortest code (i.e. 0) the decoder gives the
address of the first memory word, after the second
shortest (i.e. 10) the address of the second memory
word and so on. If the code is not complete, the address
of the last RAM word appears at the decoder output. It
depends on SC, i.e. number of scan chains in the

design, and it is independent of the BFL and the test
set.

The RAM stores the length of the blocks in
descending order of their frequencies. In this way, the
length of the block with the highest frequency and the
shortest code (i.e. 0) is always stored in the first word
of the RAM, the length of the block with the second
shortest code (i.e. 10) is in the second word and so on.
The last memory word, the address of which is
produced during the reception of a code, always stores
0. The length of each RAM word is log2 (SC+1), the
maximum number of required words is SC+2, and the
size of the maximally required memory becomes
(SC+2)×log2 (SC+1) bits. If the BFL set and the
frequencies of the different 0 run length blocks are
changed, the RAM words can be reloaded according to
the new frequencies. In this way, the decoder is
independent of the BFL.

The generate unit mainly consists of an adder, a
comparator and some registers. The Register1 is used
to store the number of generated bits of the BFL vector
while the Register2 stores the regenerated BFL vector.
The Register1 is log2 (SC+1) bits wide and the
Register2 is SC bits wide. Initially all the registers are
set to 0. The length of an encoded block is read from
the RAM and passed to the adder. It adds this length to
the contents of the Register1 and stores back the result
in the Register1 while flipping the corresponding bit
from 0 to 1 in Register2. This process continues until
the comparator detects that the value of the Register1 is
greater or equal to SC i.e. complete BFL vector has
been generated and registers are reset to 0. Here simple
OR gates are used to flip the bits of Register2 from 0 to
1 and also to retain the decoded blocks during the
generation of the next ones.

4. Test configuration

The IEEE 1149.1 JTAG boundary scan standard is
used to transfer data from the test chip to the CUT.
This standard allows adding optional instructions, and
for the external deterministic self-test only one extra
instruction named BFTEST is added. Whenever this
instruction is present in the instruction register and the
TAP controller reaches the Run-Test state, it sends a
start signal to the on-chip controller and the TDI is
connected with the binary decoder.

The testing procedure starts by setting the start test
input of the test chip. The test chip controller transfers
the BFTEST instruction into the instruction register
and changes the TAP controller mode to Run-Test.
When the TAP controller reaches this state, code word
transfer starts. The codes are read from the test chip

 1 2 ….. SC

address

vec

1 2 ..….. SC

C
om

pa
r

at
or

Generate Unit

length

 1 2 ….. SC

Log2(SC)* SC Decoder

Register 2

Pipe line register

Binary Decoder
code

clk
reset

RAM

Adder

BFL vector to XOR

clk
reset Register1

 5

memory and are sent to the binary decoder of the CUT
through TDI. The binary decoder detects a codeword
and provides the address of the memory word
containing the length of the encoded block. This length
is passed to the generate unit that regenerates this block
using the procedure described in section 3.2. When the
BFL vector is complete, the comparator sends a signal
to the on-chip controller that sets the scan line to shift
XOR outputs into scan chains. The controller also
decrements the bit counter and changes the state of the
LFSR. When the bit counter reaches 0, the pattern
counter is decremented by 1 and one system clock is
applied. Shift in a new vector and shift out responses
go in parallel. This process continues until the pattern
counter reaches 0.

The test chip is implemented on a prototyping
board. For this purpose, we used a Xilinx board, of the
type xc2v2000-ff896-4. This board contains a Field
Programmable Gate Array (FPGA) from the Virtex-II
family, which offers place for 2 millions gate-
equivalents logic and a 1008 KBit Block-RAM [19].

5. Experimental results

To prove the efficiency of this external self-test
technique, experiments were performed for the ISCAS
benchmark circuits and some industrial circuits [7].
The industrial circuits are represented by a leading p.
The memory requirements and testing time were
calculated by implementing the scheme in C++. To
compute the on-chip hardware overhead, on-chip test
hardware was modeled using VHDL.

Table 1 shows the reduction in the test hardware
size by using the proposed scheme compared to the
deterministic logic BIST (DLBIST) [7]. The hardware
size is computed by using a free library independent of
the technology. In the external self-test (EXTEST) the
bit-flipping logic (BFL) on-chip is replaced with a

fixed size decoder while other components (e.g. LFSR,
MISR, Bit counter, Pattern counter etc) are similar in
both cases. The sub column named FIX represents the
area required by these components, the test hardware is
reduced in the range from 38 to 99.5%. Due to the fact
that the size of the decoder is constant with respect to
the number of scan chains and does not depend on
circuit complexity, the hardware savings are largest for
the most complex circuits. For example, p1 is more
complex than s13207 but both contain the same
number of scan chains (SC=10) and so the same size of
the on-chip decoder (299 cells). The same is true for p2
and s38417.

 Table 2 reports the gain of the external BIST
architecture in terms of memory requirement and test
application time. Here column header Off-chip Mem
shows the size of the external chip memory needed to
store BFL outputs for 10,000 patterns. It can be seen
that even large industrial circuits require so less
memory that a test chip can easily be implemented
using an ordinary prototype board.

 The column named Required Clock Cycles for Test
Application tells the number of clocks required by
different techniques to complete a test containing
10,000 patterns. Here it is assumed that on-chip and
external chip frequencies are identical. The sub column
named DLBIST represents the number of clocks
required in the DLBIST approach. The sub column
EXTEST shows the number of clocks when self test is
implemented using the proposed scheme while the last
sub column Serial shows the number of clocks, if the
BFL set is compressed and decompressed by using
state of the art run length compression/decompression
methods [4, 5, 8, 12]. Only the ideal case for these
schemes is considered when there is no data transfer
overhead. The lower bounds for all are equal because
their decoders create the vector serially using counters.
The external self test is significantly faster compared to

Design SC Area DLBIST (cells)
 BFL FIX Total

Area EXTEST (cells)
 Decoder FIX Total

Test Hardware
Reduction [%]

c7552 4 626 128 754 188 128 316 58.0

s13207 10 596 168 764 299 168 467 38.9

s15850 9 977 162 1139 287 162 449 60.6

s9234 4 505 128 633 188 128 316 50.0

s38417 19 2244 232 2476 470 232 702 71.6

p1 10 137847 193 138040 299 193 492 99.6

P2 19 5178 257 5435 470 257 727 86.6

P3 29 12161 323 12484 608 323 931 92.5

P4 32 199770 348 200118 680 348 1028 99.5

Table 1. Test hardware reduction using external self test in comparison with DLBIST

 6

available techniques and is close to the time of internal
BIST schemes.

Table 2. Memory and clocks required for
completing a test with 10,000 patterns

Required Clock Cycles for
Test Application

(×106)

Design SC Off-
Chip
Mem
[MB] DLBIST EXTEST Serial

c7552 4 0.09 0.771 0.773 3.085
s13207 10 0.10 0.857 0.860 8.565
s15850 9 0.10 0.874 0.880 7.867
s9234 4 0.09 0.737 0.738 2.947
s38417 19 0.11 0.936 0.957 17.790

p1 10 0.86 5.210 7.195 52.095
P2 19 0.62 5.154 5.199 97.919
P3 29 0.10 0.499 0.806 14.483
P4 32 1.25 3.007 10.456 96.226

6. Conclusions

A low cost external self-test scheme has been
implemented for deterministic testing. It combines the
benefits of high fault coverages of deterministic test,
low test application times of internal deterministic
BIST and hardware savings of external self-test.

The reduction of the test time is possible due to a
novel decompression scheme which generates a run-
length block in parallel. Moreover, the decompression
architecture on-chip is programmable and independent
of the test set.

Acknowledgements

This research work was supported by the German

Federal Ministry of Education and Research (BMBF)
in the Project AZTEKE under the contract number
01M3063C.

We would like to thank to Yuyi Tang, Günter
Bartsch and Tobias Bergmann from the University of
Stuttgart for valuable discussions and help.

References

[1] K.J. Balakrishan, N.A. Touba “Relating Entropy Theory
to Test Data Compression”, IEEE Proceedings of the
European Test Symposium (ETS), 2004, pp. 187- 192.
[2] P.H. Bardell, W.H. McAnney “Self-testing of multichip
logic modules”, Proceedings IEEE International Test
Conference (ITC), 1982, pp. 200-204.
[3] C. Barnhart et all. “OPMISR: The foundation for
compressed ATPG vectors”, Proceedings of International
Test Conference (ITC), IEEE, 2001, pp.748-757
[4] A. Chandra, K. Chakrabarty “Test Data Compression
for System-on-a-Chip Using Golomb Codes”, Proceedings
of VLSI Test Symposium (VTS), 2000, pp. 113-120.
[5] A. Chandra, K. Chakrabarty “Frequency-Directed Run

Length (FDR) Codes with Application to System-on-a-
Chip Test Data Compression”, Proceedings VLSI Test
Symposium (VTS), 2001, pp. 42-47.
[6] E.B. Eichelberger, E. Lindbloom “Random-Pattern
Coverage Enhancement and Diagnosis for LSSD Logic
Self-Test”, In IBM J. Res. Develop., Vol.27, No.3, May
1983.
[7] V. Gherman, H.-J. Wunderlich, H. Vranken, F. Hapke,
M. Wittke, M. Garbers, “Efficient Pattern Mapping for
Deterministic Logic BIST”, International Test Conference
(ITC), IEEE, 2004, (to appear).
[8] P. Gonciari, B. Al-Hashimi, N. Nicolici „Improving
Compression Ratio, Area Overhead, and Test Application
Time for System-on-a-Chip Test Data
Compression/Decompression”, Proceedings Design,
Automation and Test in Europe Conference and Exhibition
(DATE), 2002, pp 604-611.
[9] S. Hellebrand, H.-J.Wunderlich, O.F. Haberl
“Generating Pseudo-Exhaustive Vectors for External
Testing”, Proceedings IEEE International Test Conference
(ITC), 1990, pp. 670-679.
[10] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois
“Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers”,
Proceedings of International Test Conference (ITC), 1992,
pp. 120-129.
[11] A. Jas, J. Gosh-Dastidar, N.A. Touba “Scan Vector
Compression/Decompression Using Statistical Coding”,
Proceedings VLSI Test Symposium (VTS), 1999, pp. 114-
120.
[12] D. Kay, S. Mourad “Compression Technique for
Interactive BIST Application”, Proceedings of 19th VLSI
Test Symposium (VTS), Marina Del Rey, CA, USA, 2001,
pp. 9-14.
[13] B. Koenemann “LFSR-Coded Test Patterns for Scan
Designs”, Proceedings of European Test Conference (ETS),
1991, pp. 237-242.
[14] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee
“Embedded deterministic test”, IEEE Trans. on CAD, 23,
May 2004, pp. 776–792.
[15] S. Reda, A. Orailoglu “Reducing Test Application
Time Through Test Data Mutation Encoding”, Proceedings
of the 2002 Design and Test in Europe Conference and
Exhibition (DATE’02), pp. 387-393.
[16] A. Ströle, H.-J. Wunderlich “TESTCHIP: A chip for
weighted random pattern generation, evaluation, and test
control”, IEEE Journal of Solid State Circuits, Vol. 26, No.
7, July 1991, pp. 1056-1063.
[17] E.H. Volkerink, A. Khoche, S. Mitra “Packet-based
Input Test Data Compression Techniques”, Proceedings
IEEE International Test Conference (ITC), 2002, pp. 154-
163.
[18] H.-J. Wunderlich, G. Kiefer “Bit-Flipping BIST”,
Proceedings International Conference on Computer-Aided
Design (ICCAD), IEEE, 1996, pp. 337-343.
[19] http://www.xilinx.com

