
Development of an Audio Player as System-on-a-Chip using
an Open Source Platform

Pattara Kiatisevi⇤, Luis Azuara†, Rainer Dorsch‡, Hans-Joachim Wunderlich§
⇤National Institute of Informatics, Tokyo 101-8430, E-mail: pattara@grad.nii.ac.jp

†intel GmbH, 38122 Braunschweig, Germany, E-mail: luis.l.azuara@intel.com
‡IBM Deutschland Entwicklung GmbH, 71003 Böblingen, Germany, E-mail: dorsch@de.ibm.com

§University of Stuttgart, 70565 Stuttgart, Germany, E-mail: wu@informatik.uni-stuttgart.de

Abstract—Open source software are becoming more widely-used,
notably in the server and desktop applications. For embedded systems
development, usage of open source software can also reduce development
and licensing costs. We report on our experience in developing a System-
on-a-Chip (SoC) audio player using various open source components
in both hardware and software parts as well as in the development
process. The Ogg Vorbis audio decoder targeted for limited computing
resource and low power consumption devices was developed on the free
LEON SoC platform, which features SPARC-V8 architecture compatible
processor and AMBA bus. The decoder runs on the open source RTEMS
operating system making use of the royalty-free open source Vorbis
library. We also aim to illustrate the use of hardware/software co-design
techniques. Therefore, in order to speed up the decoding process, after
an analysis, a computing-intensive part of the decoding algorithm was
selected and designed as an AMBA compatible hardware core. The
demonstration prototype was built on the XESS XSV-800 prototyping
board using GNU/Linux workstations as development workstations. This
project shows that development of SoC using open source platform is
viable and might be the preferred choice in the future.

I. INTRODUCTION
Open source software is more and more prevalent in server and

desktop applications. Also for embedded software, it can reduce
development costs, royalty costs, and often increase reliability of the
systems. Embedded system development, especially in the hardware
part, typically requires commercial development tools and hardware
platforms, e.g., an ARM system with an AMBA bus or a PowerPC
core with a CoreConnect bus. For the commercial platforms typically
one time license fees for the development environment and a per
produced chip license fee is charged. However, in recent years
there are open source hardware platform available, e.g., LEON [1],
Opencores [2].
In this paper we describe our experience in developing an open

source Ogg Vorbis [3] audio player as a SoC using the LEON open
source platform, which is roughly comparable to an ARM9 system.
The target systems are low CPU performance embedded devices
like PDAs or cell phones. We intended to explore the possibility
of using open source components in SoC developments. Another
objective is to illustrate the use of hardware/software co-design
techniques to improve system performance. After the design process,
a demonstration prototype was be developed.
The target audio format of the player is Ogg Vorbis. In 1997,

Xiph.Org Foundation developed a new audio compression algorithm
called Ogg Vorbis as a part of Ogg multimedia framework. Ogg
Vorbis is a fully open, non-proprietary, patent-and-royalty-free gen-
eral purpose compressed audio format for high quality audio (44.1-
48.0kHz sampling frequency, 16 bits per sample or more, polyphonic)
at fixed and variable bit-rates from 16 to 128 kbps/channel [3]. Ogg
Vorbis is categorized in the same class as MPEG-4 Audio (AAC and
TwinVQ) and claims to have higher performance than MPEG-1/2
audio layer 3, MPEG-4 audio (TwinVQ), WMA and PAC, which are
all non royalty-free.
The SoC platform used in the project is LEON [1]. LEON fea-

tures a 32-bit SPARC compatible embedded processor, an Advanced

RTEMS and Device Drivers

Player

Vorbis Library

User−defined CoreAudio CoreLEON

Virtex FPGA and Prototyping Board

Fig. 1. Overview of the system

Micro-controller Bus Architecture (AMBA) [4], I/O cores, e.g.,
UART and PCI interfaces. It was developed by the European Space
Agency (ESA) and is available freely with full VHDL source code
under LGPL (GNU Lesser General Public License). The LEON plat-
form is extensively configurable and may be efficiently implemented
on both FPGAs and ASIC technologies. The AMBA [4] enables an
easy integration of user-defined cores. The version of LEON at the
time of project was Leon-2 1.0.2a.
For rapid demonstration prototype development, the FPGA-based

XESS XSV-800 prototyping board is used. The XSV-800 board is
equipped with a Xilinx Virtex XCV800 FPGA with 800,000 gates, 2
banks of 512K x 16-bit SRAM (2 MB in total) and 1 MB of Flash
memory. XSV-800 offers a lot of peripheral interfaces, e.g., audio,
USB, PS2, and VGA. The audio chip AKM AK4520A can process
stereo audio signals with up to 20 bits per sample and a bandwidth
of 20 kHz.

II. THE OGG VORBIS SOC
Components are classified into layers shown in Figure 1. The whole

system was implemented on the FPGA and the prototyping board.
The LEON SoC platform and additional cores compose the upper
hardware layer. The open source RTEMS embedded operating system
is used for tasks management and hardware-resource abstraction.
RTEMS and device drivers for hardware cores run on top of LEON.
The Vorbis player makes use of Vorbis decoding library and runs as
a sole process in the system.
In order to enable decoding of Vorbis data on systems with low

CPU performance, a part of the decoder was implemented as a user-
defined hardware to speed up the computation. Therefore the Vorbis
player is modified to decode compressed music data with the help of
the user-defined core and delivered music output to the audio core
via the audio device driver.
The audio core designed and developed in the Digital Dictation

Machine as System-on-a-Chip project [5], which acts as an interface
to the audio chip, was imported and reused in our system. This audio
core and the later developed user-defined core are integrated into
the platform via AMBA APB and AHB buses. The overall platform
configuration is shown in Figure 2.

III. SOC DESIGN AND DEVELOPMENT
This section describes our work methodology and details of the

development process. Work in the project was evenly divided into

UART I/O Port

IrqCtrlTimers

ROM SRAM I/O

BPROM
1K

Arbiter

AHB−

FPU

AMBA−AHB

AMBA−APB LEON−Plattform

a−cache

d−cachei−cache

LEON SPARC

(AMBA−Master)

(AMBA−Slave)
Memory Controller AHB/APB−

Bridge

32−bit Data bus

Integer Unit

MDCT Core

Audio Core

Fig. 2. Platform configuration

hardware and software part and was done in the collaborative manner
but independent enough so that multiple tasks in both parts could be
done simultaneously. This is illustrated in Figure 3. After the spec-
ification, the feasibility study is done to investigate if the hardware
platform, with future reasonable optimizations, was powerful enough
to decode Vorbis stream and whether some parts of algorithm could
be efficiently implemented in hardware.
Main tasks were then divided into hardware and software parts.

In the software part, hardware/software partitioning evaluation tools
were prepared. At the same time, in the hardware part’s platform
exploration phase, the platform is investigated. The capability and
limitation of the platform were discovered and the parameters were
configured. Once the target platform is set up, hardware/software
partitioning can be done. The Vorbis decoding algorithm was studied.
Based on the result, several hardware/software partition candidates
were proposed. The most suitable ones were chosen with the help
of the prepared hardware/software partitioning evaluation tools. The
selected hardware part of algorithm was designed, modelled and
implemented in hardware part. Concurrently in the software part, the
full version of Vorbis player was developed.
In the final test phase, all components were tested together.

The final player decoded the Vorbis stream with the help of the
user-defined core on the real hardware. Next, important phases are
discussed in more details:
- Feasibility Study: A simple performance observation of the

reference Vorbis decoder library and the reference client player
ogg123 on a PC gave preliminary performance information of Vorbis
decoding process. The machine under test was equipped with Intel
CPU Pentium-III 600 MHz, 256 MB RAM and Linux kernel version
2.4.18. A test sound file with 44kHz sampling frequency and 16-
bit stereo data format was generated using the reference oggenc
encoder at default quality level (level 3). Based on this resource
consumption information on PC and result from Purify [6], the
performance requirement of the target system was approximated.
Profiling of Vorbis decoder gave useful information for indicating the
computing-intensive part of the algorithm, which was later inspected
by human to see if it could be developed as hardware.
After an analysis [7], it was estimated that 60-70% speed im-

provement must be done in order to decode Ogg Vorbis streams at
real-time speed on the target hardware. Considering the possibility
to implement a part of software as hardware to achieve about
30- 40% performance improvement and to apply possible software
optimizations to get another 30-40% improvement, we regarded the

Provide Hardware/
Software Partitioning

Feasibility Study

HW/SW Partitioning

Design the New Core

Final Test

Platform Exploration

Simulation, Synthesis
and Test

Player Development

Stop

Specification

Evaluation Tools

Start

Software Part Hardware Part

Fig. 3. Work packages diagram

project as feasible and proceeded.
- Platform Exploration: In this phase the target hardware plat-

form was studied for capabilities and limitations. Several important
properties were discovered as follows:

• Number of gates: The XCV-800 FPGA used in the prototyping
board can hold designs with up to 800,000 gates.

• LEON timing and the on-board system clock: LEON can be
synthesized for Xilinx XCV-800 speed grade 4 in the range of
25-28 MHz. The on-board clock provides frequencies in sub-
multiples of 100 MHz, i.e., 50,33,25,20,10,5 MHz. Hence the
maximum possible clock frequency that can be used is 25 MHz.

• Sampling frequency: The audio sampling frequency is a sub
multiple of the system clock. As described in [5] the sample
frequency of the audio core is according to the formula fs =

clk
256(2+2 scalerup) , where scalerup can be 0,1, or 2. For this
reason the standard audio sample frequencies such as 44 kHz
and 22 kHz are not possible to achieve. The best approximations
are 48kHz and 24kHz.

• Limited internal RAM on the FPGA: Since the memory on
the XCV-800 has to be shared among different elements of the
platform, such as cache and user-defined cores, it is important
to allocate this memory wisely.

• Meiko FPU limitation: The FPU design from Sun’s Meiko
SPARC implementation can be used with LEON. It can be run
at the maximum frequency of 25 MHz. However, it consumes
a large amount of space on the FPGA.

After an analysis, we decided not to use an FPU since it requires a
large amount of gates on the FPGA and increases the complexity
of the design. Also an integerized version of the Vorbis decoder
library (which is also faster than the floating point version) has been
developed. Thus the need for an FPU could be safely eliminated. And
the clock frequency is set to 25 MHz because of the requirements of
timing and system clock mentioned above — 25 MHz is the highest
frequency to run LEON on the board.
- Embedded Software : Software development in the project was

done on Debian GNU/Linux workstations. Main tools used are
TSIM for system simulation, various utilities from LEON/ERC32
Cross Compilation System (LECCS) provided at [1] including GNU
Compiler Collection for general software development, RTEMS [8] as
operating system (to be discussed in the Player Development section),
and GNU gprof, and kprof, XEmacs, gdb, and DDD for Ogg Vorbis
library study and optimization.

In order to achieve fast software development and verification,
TSIM (LEON simulator) was used to simulate the whole system on
the software. TSIM is a simulator of SPARC architecture capable
of simulating LEON developed by Gaisler Research [1]. It runs
on Linux-x86, SPARC, and Windows/Cygwin platforms. Developers
could then develop, test and debug their programs on TSIM running
on their favorite workstations before testing on the real hardware.
TSIM provides also the capability to plug-in external user-defined

modules (in C programming language) to the system as if the user-
defined hardware core is attached to the LEON platform via AMBA
bus. Read and write access to some provided addresses in the memory
by the application running on TSIM will be mapped to this user-
defined module (which is running on the host machine) as if the
application is accessing that corresponding user-defined hardware
core. Interrupt from user-define module is also supported. Based
on this, our hardware platform was first simulated on TSIM. The
simulation version of the audio hardware core is developed as an
external I/O module.
A simple player program for testing decoding Ogg Vorbis audio

data on TSIM was developed. With all the settings corresponding to
those on the real hardware, it decoded a 15-second test Vorbis stream
in 32.90 seconds, which is very far from real-time. At this point we
need a huge improvement.
As we have no FPU, all floating point calculations have to be

simulated and hence very slow. The reference Vorbis library uses a lot
of floating point calculations. The first attempt was to investigate if it
could use integer calculations instead. At the time of the project, there
was no freely available integer version of Vorbis library1, therefore
we studied, optimized and integerized the Vorbis library. The tools
used to aid the study of Vorbis code include GNU gprof (part of
GNU binutils software package) and kprof . The integerization was
successful. The need to have a real FPU on the system is eliminated.
The resulting integerized version of the Vorbis library gave 40.97%

better performance than the original floating-point version. With this
integerized version, the simple player decoded 15-second music in
19.42 seconds. Although this is still not real-time, from this figure we
have an idea of how much performance gain we need when doing
the hardware/software partitioning in the next step. The simulated
platform on TSIM set up in this phase will be used further as
software/hardware partitioning evaluation tool in the next phase.
- Hardware/Software Partitioning: TSIM is the main tool used in

this process since we can model any desired user-defined hardware
cores as TSIM external I/O modules and test for performance gain
before designing the real hardware core. With proper settings of
the simulated software to match the real hardware configuration
and the profile data obtained in the previous phases, several hard-
ware/software partition candidates were proposed and tested. The
most two suitable partitions are:

• MDCT: includes the whole inverse MDCT transform function
used in the decoding process.

• Mini-MDCT: includes major part of the inverse MDCT trans-
form, covering roughly 60-70% of the whole MDCT.

The test was conducted on TSIM to identify suitable partitions. The
player decoded the 15-second test Vorbis stream in three configura-
tions: without any hardware module, with Mini-MDCT partition, and
with MDCT partition. Table I shows the time needed for the player
to decode the data in each configuration.
According to the result above, the MDCT partition was proposed

as the preferred solution in order to have the music decoded and
played faster than real-time with some safety margin. Mini-MDCT

1Later in September 2002, XIPH released Tremor, the decoder library which
is integer-only and fully Ogg Vorbis compliant under a free BSD-like license.

Fig. 4. Mini-MDCT core architecture

was proposed as the second choice in case that the implementation
of the whole MDCT core was not feasible.
- Designing the New Core: From the two proposed partitions in

the hardware/software partitioning process, the Mini-MDCT partition
was chosen because the resource on the prototyping board (notably
the internal RAM) was not sufficient to accommodate the larger
MDCT core.
MDCT or Modified Discrete Cosine Transform is widely used in

state of the art audio codecs such as MPEG 1 Layer III, Dolby AC/3,
or MPEG AAC and in Ogg Vorbis. It is a linear orthogonal lapped
transform, based on the idea of time domain aliasing cancellation
(TDAC). The inverse MDCT function in Ogg Vorbis is implemented
following the algorithm presented in [9]. For more details information
please consult [7].
As shown in Figure 4, the Mini-MDCT core is designed to have

the following components:
• AMBA Interface provides the connection with AMBA AHB
and APB buses. Access to the RAM is done via AHB. Com-
munication with software holding memory mapped registers is
done via APB.

• Arithmetic Unit is a set of arithmetic elements, 4 (32X32 bits)
multipliers and 6 (32 bits) adders, for data processing according
to the Ogg-Vorbis MDCT algorithm.

• Control Unit commands the activities of the AMBA interface,
and uses the arithmetic unit to calculate the MDCT as a finite
state machine.

- Simulation, Synthesis and Test: The design steps are to simulate
the system, fix bugs, and proceed to the synthesis and test on the real
hardware. The tools used are MODELSIM for simulation, SYNPLIFY
PRO for synthesis, and XILINX ISE 4.1I. In Figure 5, the hardware
design flow is shown. The rectangles with round corners represent
these tools2. Ellipses are other necessary utilities and rectangles are
data files in intermediate states. Starting from the top, the source
VHDL files of the LEON model, DDM, and MDCT (or Mini-MDCT)
core are shown. The left flow is the simulation path, which leads to
the Modelsim simulator in order to test the design, the right flow,
the synthesis path, produces the output design to be uploaded to the
XSV-800 board at the bottom for the implementation on the real
hardware.
- Player Development: On top of the LEON processor, there

are choices of either running the application directly or using an
operating system. The test player used in the previous sections was
an example of running the application directly without the operating
systems (OS). Running the application without the OS (and directly
accessing the hardware) is free from the OS overhead. However, with
an OS, one can get benefits from the provided services like tasks
management, memory management, and abstraction of hardware
devices. Also it would be much easier to port the application code to

2None of these tools, however, were open source.

LEON VHDL
Gate level

 LEON Sources
(VHDL)

(VHDL)(VHDL,Verilog)

DDM, FPU MDCT

.edf

Mentor Model

Modelsim
(vsim)

Testbench
LEON

(VHDL)

Assembler
Test Software

.exo

.ngd

 map

 ngdbuild

.ngm

.ncd

.bit

bitgen

ngd2vhdl

Synplify Pro

vcom

XSV−800

simprim

.pcf

.ucf

.sdc

.nga

ngdanno

par

promgen

Fig. 5. Hardware design flow

decode
signal

wait
decode
read 3rd block
synchronized

decode

synchronized
read 4th block

wait

synchronized

synchronized

read 1st block

read 2nd block
decode
wait

[waiting for signal]

play 2nd block

play 3rd block

Start

[playing music]

[playing music]

[playing music]

[wait]

[wait]

[wait]

[decoding]

[decoding]

[decoding]

[decoding]

show elapsed
time without
interaction
with other tasks

print "1"

print "2"

print "3"

playAudioTask countTaskdecodeTask (main)

play 1st block

Fig. 6. Tasks in the player

other platforms in the future because it uses the abstraction interface
of hardware provided by the OS instead of having direct hardware
accesses. For these reasons, it was decided to have an OS for the
final version of player. Viable choices at that time were RTEMS [8]
and uCLinux [10]. RTEMS was selected because of its features and
maturity [7].
The RTEMS operating system offers the benefits of multi-threading

(POSIX Thread), task synchronization and hardware abstraction.
For hardware abstraction, a device driver for audio device was
written to provide access the hardware audio core. The player in the
previous section was extended to be the multi-threaded final player
with complete Vorbis decoding and sound output functions via the
developed audio device driver. Interactions between tasks are shown
in Figure 6 [7].
After the user-defined hardware core (Mini-MDCT) had been

developed, the final player was extended to utilize the hardware core
instead of calculating the whole inverse MDCT function on its own.

IV. RESULT
With the developed Mini-MDCT hardware core plugged in to the

LEON platform, the final Ogg Vorbis player runs successfully on the
real hardware. The time needed for the player to decode and play
the music is shown in Table I. The Mini-MDCT core speeds up the
decoding process from 21.1 seconds to 17.9 seconds or by a factor
of 1.18.

TABLE I
RESULT RUNNING TIME (IN SECONDS) FOR THE TESTS ON BOTH TSIM
AND REAL HARDWARE UNDER VARIOUS PLAYER CONFIGURATIONS

Configuration/Platform TSIM XSV-800
Player software only 19.42 21.1

Player with Mini-MDCT core 15.41 17.9
Player with (full) MDCT core 11.70 -

Notice that the time needed in the hardware test was higher than the
estimated result from the software test since the software simulation
did not take the processing time of Mini-MDCT hardware core into
account. Also the test had to be conducted at the sampling frequency
of 48 kHz instead of 44 kHz (limitation of the hardware), hence
more data to decode. A different test was done at 24 kHz sampling
frequency and the player could successfully decode Vorbis data and
deliver output music in real time.
The physical amount of RAM available on the prototyping board

places a restriction on our design. If more internal RAM was
available, we could have allow larger design of Mini-MDCT core
(or even extend it to MDCT) and could achieve faster speed.

V. CONCLUSION
This project shows a successful development of a SoC application

based on various open source components including the Ogg-Vorbis
reference library, the RTEMS operating system, the LEON SoC
platform, and Debian GNU/Linux workstations equipped with various
free software. The only commercial component in the process were
the hardware simulation and synthesis software because there was no
good enough open source choice available. Nonetheless, this project
has proved that development of SoC using many open source core
components is viable. Lessons learned in this project could be applied
to others in the future.

REFERENCES
[1] Jiri Gaisler. LEON Web Site. [Online]. Available:

http://www.gaisler.com/
[2] The Open Cores. Project Web Site. [Online]. Available:

http://www.opencores.com/
[3] XIPH. Ogg Vorbis Web Site. [Online]. Available:

http://www.xiph.org/ogg/vorbis/
[4] ARM limited. (1999) AMBA Specification 2.0. [Online]. Available:

http://www.arm.com/
[5] Daniel Bretz, “Digitales Diktiergeraet als System-on-a-Chip mit FPGA-

Evaluierungsboard,” Master’s thesis, Institute of Computer Science,
University of Stuttgart, Germany, February 2001. [Online]. Available:
http://www.ra.informatik.uni-stuttgart.de/Leon/

[6] Rational Inc. Rational Software – Purify. [Online]. Available:
http://www.rational.com/products/pqc/index.jsp

[7] Luis Azuara, Pattara Kiatisevi, “Design of an Audio Player as
System-on-a-Chip,” Master’s thesis, Institute of Computer Science,
University of Stuttgart, Germany, July 2002. [Online]. Available:
http://oggonachip.sf.net/

[8] OAR Corporation. RTEMS Web Site. [Online]. Available:
http://www.oarcorp.com/

[9] Kh. Brandenburg, Th. Sporer, B. Edler, “The use of multirate filter banks
for coding of high quality digital audio,” 6th European Signal Processing
Conference (EUSIPCO), 1992.

[10] uClinux. uClinux – Embedded Linux/Microcontroller Project. [Online].
Available: http://www.uclinux.org/

