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Abstract
We present a technique for making a circuit ready for Logic
BIST by masking unknown values at its outputs. In order
to keep the area overhead low, some known bits in output
responses are also allowed to be masked. These bits are se-
lected based on a stuck-at n-detection based metric, such
that the impact of masking on the defect coverage is mini-
mal. An analysis based on a probabilistic model for resistive
short defects indicates that the coverage loss for unmodeled
defects is negligible for relatively low values of n.
Keywords: X-Masking, Logic BIST, Defect Coverage,

Resistive Bridging Faults

1 Introduction
Built-in self test solves many of today’s testing problems, in-
cluding pin throughput issues, complexity of test programs
and test application at speed, and enables in-field testing [1].
While BIST became industry standard for memories in the
1990s, [2], there are still some obstacles for its application to
random logic. One class of circuits that are difficult to handle
using Logic BIST (LBIST) are those that produce unknown
values (X values) at the outputs. Sources of unknown values
include tri-stated or floating buses, uninitialized flip-flops or
latches, signals that cross clock domains in circuits with mul-
tiple clock domains, and X values coming from analog or
memory blocks that are embedded in the random logic cir-
cuit If an unknown value is fed into a test response evaluator

(TRE), the signature can be affected. For the most popular
TRE, the Multiple Input Signature Register (MISR), a single
X value invalidates the whole signature.

This problem has been attacked from two directions.
First, TREs that are less vulnerable to Xes have been pro-
posed, including X-COMPACT by Intel [3] and Convolu-
tional Compactor by Mentor Graphics [4]. The second so-
lution puts no restriction on the type of TRE used. The un-
known values that appear at the outputs of the circuit are
masked out by additional logic, such that only known values
are fed into the TRE [5, 6]. The technique proposed here is
of the second type. The X Masking Logic (XML) is intro-
duced between the circuit under test and the TRE. It consists
of OR gates and synthesized control logic. The first input of
each OR gate is connected to an output of the circuit under
test, while the second input originates from the control logic.
When the control logic produces a logic-1, the output of the
OR gate is forced to logic-1, and hence the response of the
circuit under test is masked. The control logic is a combina-
tional function that uses as inputs the pattern counter and bit
counter, which are generally part of the LBIST test control
logic for controlling the number of applied patterns and the
scan shift/capture cycles.

In principle, it is possible to mask out only the unknown
values in the response and to leave unchanged all the other
values. However, masking exactly the unknown bits would
result in high area overhead of XML. Furthermore, this is
not necessary, as the vast majority of faults is detected by
many different patterns. Figure 1 shows the number of stuck-
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Figure 1: Number of detections for stuck-at faults of s5378
(1000 random patterns)

at fault detections per pattern for the ISCAS circuit s5378,
which is also representative for other circuits. It indicates
that not all unknown bits are actually required for detection.
Hence, we allow also some of the known bits to be masked
out, in a way that the stuck-at fault coverage is not compro-
mised. However, the coverage of unmodeled defects might
be affected by masking out known bits. To reduce the like-
lihood of coverage loss for unmodeled defects, we introduce
more conservative requirements for allowing a known bit to
be masked out. The requirements are based on n-detection
[7, 8]. In general, introducing XML will lower the number
of times a stuck-at fault is detected (even if each fault is still
detected at least once). For a given parameter n ≥ 1, the
number of detections for a stuck-at fault must not decline
below n due to masking. For instance, assume that a stuck-
at fault is detected 5 times without masking of known bits,
and let n be 3. Then, it is acceptable that the number of de-
tections with XML drops to 4 or 3, but not below. Increasing
n leads to a higher number of stuck-at fault detections (and
hence hopefully to a better coverage of unmodeled defects)
but also to more area overhead.
In this paper, we study the impact of masking on unmod-

eled defects for the proposed architecture. For this purpose,
we consider resistive bridging faults (RBF) [9, 10] as surro-
gates of unmodeled defects. The RBF model [11, 12, 13]
takes into account several non-trivial electrical properties of
resistive defects, such as pattern dependency. Using the sim-
ulator from [13], we compute the RBF coverage with and
without masking of known bits. Note that the information on
RBF coverage is not available to the XML synthesis proce-

dure, which is guided by stuck-at detection information only.
For different values of nwe obtain different implementations
of XML which trade off unmodeled defect coverage vs. area
overhead. It turns out that the difference in RBF coverage
with and without XML are not significant, and for n ≥ 5 it
practically disappears.
The most advanced X-masking solution proposed so far

[6] is based on LFSR reseeding. For a given set of responses,
an LFSR generates control signals for masking. Similarly to
our method, the technique from [6] accepts masking of some
of the known bits as long as the stuck-at fault coverage is
not sacrificed. The LFSR seeds are stored on-chip. How-
ever, the issue of unmodeled defects is not dealt with in [6].
In contrast, we use n-detection information and study the
trade-off between unmodeled defect coverage and the size of
the logic. Furthermore, it turns out that the proposed XML
requires less area than the LFSR-based architecture from [6],
although we use a higher probability of X appearance.
The remainder of the paper is structured as follows: In

Section 2, the X Masking Logic (XML) is introduced and its
synthesis is explained. Essential information on the resistive
bridging fault (RBF) model is summarized in Section 3. Ex-
perimental setup is described and the results are reported in
Section 4. Section 5 concludes the paper.

2 X Elimination Logic

2.1 Problem formulation

Let the circuit under test (CUT) have p outputs, and let the
test set consist of q patterns. Let the responses of the CUT
be (r11, r12, . . . r1p), (r21, r22, . . . r2p), (rq1, rq2, . . . rqp),
where rij ∈ {0, 1,X} is the value that appears at the jth
output of the CUT as a response to the ith test pattern in ab-
sence of any fault. We are looking for a function XML :
N × N → B such that XML(i, j) = 1 iff rij = X (i. e. all
unknown values are masked). Furthermore, some rij that
are important for preserving the fault coverage (called rele-
vant bits) must not be masked (XML(i, j) = 0 must hold
for these bits). Selection of relevant bits will be explained
in Section 2.3. For values of (i, j), for which rij ̸= X and
which are not among the relevant bits, XML is allowed to
assume either 0 or 1. This degree of freedom is utilized for
minimizing the XML logic, as described next.

2.2 Implementation

We describe the implementation of XML for deterministic
logic BIST (DLBIST) based on bit flipping [14, 15]. The
generalization to other architectures is straight-forward.
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Figure 3: DLBIST with XML

Figure 2 shows the DLBIST architecture without XML
logic. An LFSR is used as the source of random patterns.
In order to achieve the desired fault coverage, some of the
bits produced by the LFSR are inverted, which is controlled
by bit-flipping logic (BFL, referred to in [16] as bit-fixing
logic). BFL is a combinational block that takes the LFSR
state, the pattern number (from the pattern counter) and the
bit number (from the bit counter) and selects the LFSR out-
puts to be inverted by driving a logic-1 at the inputs of the
corresponding XOR gates. The responses of the CUT are fed
into a MISR.1
The DLBIST architecture with XML is shown in Figure 3.

1The original DLBIST was proposed for sequential circuits with (multi-
ple) scan chains. The method proposed here works for combinational, se-
quential and scan circuits. When we mention ‘outputs’, this means primary
outputs for combinational and sequential circuits and scan out signals for
scan circuits.

Similarly to BFL, XML is a combinational logic block that
has the LFSR state, the pattern number and the bit number
as inputs. XML provides control signals to the OR gates
between the CUT and the MISR. A bit is masked iff XML
generates a logic-1 at the corresponding OR gate.
The problem to synthesize the XML can be formulated

as an instance of logic synthesis with don’t cares [17]. The
value at jth output of the CUT when the ith test pattern is
applied is uniquely determined by the triple (LFSR state,
pattern number, bit number), i. e. a state of (LFSR, pattern
counter, bit counter). With the notation of Section 2.1, the
logic synthesis instance is composed as follows: the ON set
consists of (LFSR, pattern counter, bit counter) state triples
that correspond to (i, j) with rij = X . The OFF set includes
all those triples that correspond to relevant bits (the descrip-
tion of how the relevant bits are selected follows in the next
section). All other triples constitute the DC (don’t care) set.
Once the ON and OFF sets are known, logic synthesis

can be run. In general, compact ON and OFF sets will lead
to smaller logic, because a logic synthesis tool has more de-
grees of freedom. While the ON set is given by the X values
in the responses, there are several alternative OFF sets, de-
pending on which bits are selected as relevant. Thus, both
the number of relevant bits and the number of patterns they
belong to should be minimized.

2.3 Selection of relevant bits
For the sake of simplicity, we call a value at an output j
of the circuit when a test pattern i is applied a bit (so for p
outputs and q patterns there are pq bits). A subset of these
pq bits has to be selected as relevant bits that are excluded
from masking. Remember that a triple (LFSR state, pattern
number, bit number) corresponds to a bit. The triples cor-
responding to relevant bits are included into the OFF set of
the logic synthesis problem formulated above. If more bits
are selected as relevant, the number of fault detections, but
also the area overhead are both growing. As an additional
constraint, there is a parameter n which is defined as the
minimal number of detections that must be preserved when
known bits are masked out. Obviously, a higher value of n
requires more bits to be selected as relevant.
The selection algorithm uses the fault isolation table to

select relevant bits. The fault isolation table contains for each
stuck-at fault f all bits for which it is detected when no XML
logic is introduced (the number of such bits is denoted as
Nf ). A bit is said to detect a fault if the fault is detected at
the output of the circuit for the test pattern that corresponds
to the bit. For each fault f , the number of detections Df

must be guaranteed to be at least min{Nf , n}.2

2Note that if n bits detecting a fault have been selected as relevant, the
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Procedure select rel bits
Input: Fault isolation table FIT; parameter n
Output: Compact set RB of relevant bits

that fulfills coverage requirements
(1) RB := ∅;
(2) while (FIT not empty) begin
(3) f := fault from FIT with

lowest number of detections;
(4) RB := RB ∪

select bits for fault(f,min{Nf , n}− Df );
// Select bits that ensure sufficient Df

(5) for each fault g from FIT begin
(6) Determine Dg with relevant bits selected so far;
(7) if (Dg ≥ min{Ng, n})
(8) then exclude g from FIT;
(9) end for
(10) end while
(11) return RB;
end select rel bits;

Figure 4: Algorithm for selecting relevant bits

Procedure select bits for fault
Input: Fault f , numberM of bits to select
Output: M bits b1, b2, . . . , bM

(1) set of bits SB := ∅;
(2) while (|SB| < M ) begin
(3) Select a pattern P with at least 1 bit detecting f

(according to cost function CF1 – see text);
(4) SB := SB ∪ bits of P that detect f ;
(5) end while

// Now, SB may contain more thanM bits
(6) Sort SB according to cost function CF2 (see text);
(7) return FirstM elements of SB;
end select bits for fault;

Figure 5: Procedure for selecting relevant bits for a single
fault (bit-based)

The algorithm select rel bits is shown in Figure 4. It con-
structs the set RB of relevant bits such that each fault f is
detected by at least min{Nf , n} bits from RB. This is done
iteratively. In each iteration, (Lines 2 – 10), a fault is picked
and several bits are selected as relevant, such that the fault
is detected by a sufficient number of bits (Df = number of
detections of the fault f ). The selected bits might also detect
other faults. This is checked in Line 6. All faults g whose
number of detectionsDg is greater or equal than the required
numbermin{Ng, n} are excluded from the fault isolation ta-
ble (Line 7). Note that the fault f from Line 3 is always

actual number of detections will typically be higher, because the XML could
(but is not guaranteed to) leave other bits detecting this fault (but not selected
as relevant) unmasked.

among these faults. The algorithm stops when the fault iso-
lation table is empty (Line 2).
The sub-routine select bits for fault (called in Line 4 of

Procedure select rel bits) has to selectM := min{Nf , n}−
Df relevant bits that detect the fault f (where Df is
the number of detections of f by bits selected for other
faults treated before f ). The pseudo-code of Procedure se-
lect bits for fault is shown in Figure 5. The goal is to select
bits from as few different patterns as possible. First, a suit-
able pattern is selected according to cost function CF1. CF1
assigns lower cost to patterns already taken for some other
faults and to patterns that detect a high number of faults.
Also, patterns with a low number of unknown bits are pre-
ferred by CF1, because this helps to decouple unknown bits
(ON set) and relevant bits (OFF set). Bits detecting f are
collected (Lines 3 and 4). If there are less than M bits, then
bits from an additional pattern are added (Line 2). In the end
of the first stage, there is a pool of at least M patterns, from
which exactly M patterns are selected according to the cost
function CF2 (Line 6). CF2 prefers a bit position that corre-
sponds to circuit output j and pattern i such that the number
of Xes for pattern i and other circuit outputs and for output j
and other patterns are minimal. (Again, this is done in order
to decouple the ON-set from the OFF-set). The selected bits
are added to RB in Line 4 of Procedure select rel bits.
For comparison purposes, we implemented an alternative

version of Procedure select bits for fault. For a given n, it
selects all bits from at least n patterns in which at least one
bit detects the fault. If there are less than n such patterns then
all the bits from all the patterns are selected. If the number
of such patterns exceeds n, selection is made based on the
cost function CF1 mentioned above. We refer to this rele-
vant bits selection method as ‘pattern-based’, while we call
the method outlined above ‘bit-based’. Note that the pattern-
based approach typically results in more bits selected as rel-
evant as the bit-based method for the same value of n.

3 Resistive Bridging Fault Model
In this section, we provide a brief overview of the resistive
bridging fault (RBF) model, which is used as a surrogate of
unmodeled defects in this paper. The material here is re-
stricted to concepts necessary for understanding the analysis
in this paper; [13] gives an in-depth consideration.
The main difficulty when dealing with resistive faults is

that, unlike for the non-resistive case, there is an unknown
value to be taken into account, the resistance. This is because
it cannot be known in advance which particle will cause the
short defect corresponding to the bridge (parameters like its
shape, size, conductivity, exact location on the die, evapo-
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ration behavior and electromigration can influence the resis-
tance of the short defect). A short defect may be detected by
a test pattern for one resistance value, and the short between
the same nodes may not be detected by the same pattern for
another resistance. This fundamentally changes the meaning
of standard testing concepts, like redundancy, fault coverage,
and so forth.
In order to handle this ambiguity, Renovell et al. [11, 12]

introduced the concept of Analogue Detectability Interval
(ADI) and probabilistic fault coverage. In the following, we
will illustrate the model by means of an example.
Consider the circuit in Figure 6. The lines a and b are

bridged, with a (b) being the output of a NAND2 (NOR2)
gate. Let us first assume that the applied pattern is 0011.
In CMOS, two p transistors from the pull-up network of the
gate A (connected in parallel) drive the node a, and two n
transistors (also in parallel) from the pull-down network of
the gate B drive the node b. Thus, in absence of the bridge
there will be a 1 on a and a 0 on b. The voltages on a and b
in presence of the bridge, Va resp. Vb, depend on the bridge
resistance Rsh. For Rsh = 0Ω, there will be some inter-
mediate voltage identical for both lines. For Rsh = ∞, Va

will equal VDD and Vb will equal 0V, as if the bridge were

not present. A possible voltage distribution for intermedi-
ate values of Rsh (those between 0Ω and∞) is depicted by
solid curves in Figure 7. The abscissa corresponds to dif-
ferent values of Rsh, the ordinate shows which voltages are
assumed on the lines a and b if the bridge has such a re-
sistance. With increasing Rsh, Va and Vb diverge, with Va

approaching VDD and Vb approaching 0.
The gates succeeding the bridge (gates C and D are suc-

cessors of a and gate E is successor of b) will interpret these
voltages as a logical value of 1 or a logical value of 0, de-
pending on their input threshold. In accordance to previ-
ous works, we assume an exact-defined threshold voltage
Th, which however may be different for different gate types.
Thus, we rule out that some voltage is not recognized as a
logical value; any voltage above Th is interpreted as the log-
ical value of 1, and any below as the logical value of 0.3
Moreover, we also neglect that for different manufactured
ICs, the threshold of the same gate may vary.
In Figure 7, the thresholds for the gates C, D, E are shown

as horizontal lines labeled by ThC , ThD and ThE , respec-
tively. Consider the gate C. Given a resistance Rsh, this gate
will either interpret the value on a as logic-0 (forRsh < RC)
or as logic-1 (for Rsh > RC): for a bridge with low resis-
tance, the value 0 on the line b has larger impact on the volt-
age on a than for a highly-resistive bridge. Hence, the RBF
is detected on the output of the gate C iff Rsh ∈ [0, RC ].
For the gate D, the threshold ThD is below the curve. This
means that for any Rsh the gate D will recognize the voltage
on a as logical value of 1. The fault is not detectable for any
value of Rsh. For the gate E, the solid curve Vb is relevant.
E interprets the voltage on b as faulty logical value (1) only
for Rsh ∈ [0, RE ].
Overall, the fault can be detected at the output of C iff

Rsh ∈ [0, RC ], at the output of D iff Rsh ∈ ∅ (i. e. for
no value of Rsh) and at the output of E iff Rsh ∈ [0, RE ].
The fault effect is visible at one of the outputs iff Rsh ∈
[0, RC ] ∪ ∅ ∪ [0, RE ] = [0, RE ]. The interval [0, RE ] (in
which the fault is detected at (at least) one output) is called
Analogue Detectability Interval (ADI) of the pattern 0011.
In contrast to fault simulation for ‘classical’ fault models
(which determine for a fault whether it has been detected or
not), RBF simulation determines for a fault and a test pattern
the ADI, i. e. for which values of bridge resistance the fault
has been detected. If the ADI is empty, then the fault has not
been detected for any Rsh.
Now imagine that there is a logical value of 1 on the

second input of the NAND gate (pattern applied is 0111).

3In their study of (non-resistive) bridging faults in an AMD design, Ma
et al. [18] reported that disregarding potentially ambiguous intermediate
voltages in the vicinity of the threshold had an impact on fault coverage
which was below 0.007%.
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Then, only one p transistor will pull up the voltage on the
line a to the power supply. This results in logic-1 being
driven with less strength on a. With logic-0 driven on b with
the same strength as before (two parallel n transistors), the
voltage characteristic for Va and Vb in the Rsh-V -diagram
will be described by curves situated underneath the origi-
nal ones (one possibility is shown by the dashed curves).
This results in new detection conditions: Rsh ∈ [0, R′

C ] at
the output of C, Rsh ∈ [0, R′

D] at the output of D (note
that this interval has been empty for the pattern 0011), and
Rsh ∈ [0, R′

E ] at the output of E. The ADI for 0111 is
Rsh ∈ [0, R′

C ] ∪ [0, R′
d] ∪ [0, R′

E ] = [0, R′
C ]. So, a RBF

with Rsh ∈ [R′
C , RE ] is detected by the pattern 0011 but

not by 0111, although the logic values on the lines a and b
in the fault-free circuit are identical for these two patterns
(pattern-dependency).

C-ADI of a test set (C stands for ‘covered’) is defined
as the union of the ADIs of individual test patterns. G-ADI
(G means ‘global’) is the C-ADI of the exhaustive test set.
Hence, C-ADI includes all the bridge resistances for which
the fault has been detected by at least one test pattern, while
G-ADI consists of all values ofRsh for which the fault is de-
tectable. If C-ADI of a test set equals G-ADI, then this test
set is as effective in detecting RBF as the exhaustive test set.
A bridging fault with resistance not in G-ADI is redundant.
The global fault coverage G-FC [12, 13] is defined as

G-FC(f)=100% ·
(∫

C-ADI
ρ(r)dr

)
/

(∫

G-ADI
ρ(r)dr

)
,

where ρ(r) is the probability density function of the short
resistance r obtained from manufacturing data. Thus, G-
FC relates C-ADI to G-ADI, weighted by the likelihood of
different values of Rsh.

4 Experimental Results

We applied the X Masking Logic (XML) synthesis approach
to ISCAS 85 [19] and combinational parts of ISCAS 89 [20]
circuits. As these circuits don’t have tri-state buses or mul-
tiple clock domains, they don’t produce X values at the out-
puts. consequently, we assumed a scenario when a preced-
ing block induces unknown values at the circuit’s inputs. We
used the test sets for stuck-at faults generated by a commer-
cial tool and randomly injected X values at 1% of inputs.
Logic synthesis has been performed using a BDD-based

tool developed at the University of Stuttgart in cooperation
with Philips. For selecting relevant bits, we employed both
the bit-based and the pattern-based approach (explained in
Section 2.3) with different values of n.

Procedure Monte Carlo Evaluation
Input: Input Pattern Set IP with Xes; set XBase

of output bits with Xes; forK XMLs, sets
X1,X2, . . . ,XK of bits masked out

Output: Average RBF coverage RBFC∅
Base of the

base scenario; forK XMLs, average RBF
coverages RBFC∅

1 , RBFC∅
2 , . . . , RBFC∅

K

(1) RBFC∅
Base := RBFC∅

1 := RBFC∅
2

:= · · · := RBFC∅
K := 0;

(2) for (i := 1 to 100) begin
(3) IPi :=IP with Xes randomly assigned to 0s / 1s;
(4) RBFC∅

Base :=RBFC∅
Base+RBFSim(IPi,XBase);

(5) for (j := 1 toK)
(6) RBFC∅

j := RBFC∅
j + RBFSim(IPi,Xj);

(7) end for
(8) return RBFC∅

Base, RBFC∅
1 , RBFC∅

2 , . . . , RBFC∅
K

endMonte Carlo Evaluation;

Figure 8: Monte-Carlo estimation of unmodeled defect cov-
erage

4.1 Experimental setup

In order to estimate the impact of XML on the coverage
of unmodeled defects, we simulated resistive bridging faults
(RBF, see Section 3) in the circuits with and without XML.
The fault set consisted of 10,000 randomly selected non-
feedback faults, where available. For calculating the global
fault coverage G-FC, we employed the density function ρ
derived from one used in [21] (which is based on the data in
[9] and assigns lower probability to higher values of bridge
resistance).
The RBF model cannot handle unknown values at circuit

inputs in a meaningful way.4 Hence, we perform a Monte-
Carlo simulation of the circuit with and without XML. The
X values in the test set IP are set randomly, resulting in a
test set IP1. Resistive bridging fault simulation is performed
with test set IP1 without unknown values. The simulation is
repeated 100 times with test sets IP1, IP2, . . . , IP100. (All
known bits in IP are preserved in every IPi, and the Xes are
set randomly.) The average RBF coverage over IP1, IP2, . . .
is determined then.
Fault detections at some of the output bits should not be

accounted for. In absence of an XML, the output bits which
are Xes don’t contribute to detection. We refer to the test set-
ting without an XML as to the base scenario, and we denote

4Remember that in the circuit from Figure 6, the pattern 0011 detects
the fault for the bridge resistanceRsh ∈ [0, RE ], where the maximal faulty
effect is propagated through the gateE. The pattern 0111 detects the fault in
the resistance interval [0, R′

C ], and the maximal faulty effect is propagated
through the gate C. So, it is hard to say what the detection condition of the
pattern 0x11 is.
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the output bits with unknown values asXBase. If an XML is
present, then no detection is possible at the masked bits. Sev-
eral different architectures of XML are synthesized, using
bit-based and pattern-based approach and different values of
n, and the XML area overhead is determined for these archi-
tectures. Let the number of these architectures beK, and let
Xi be the set of bits masked by the ith XML, 1 ≤ i ≤ j.
(Note that XBase ∈ Xi always holds).
In order to account for masking, we modified the RBF

simulator from [13] such that fault detections by some pat-
terns at some outputs are excluded from consideration. Pro-
cedureRBFSim(IP ′,X ′) simulates the test set IP ′ (which
is not allowed to have X values) not accounting for the de-
tections at the bits specified by X ′.
The exact flow of the experiment is shown in Figure 8.

For each of 100 test sets IPi (which have been obtained from
the original test set IP by randomly assigning the Xes, Line
3), we perform a total ofK +1 simulation runs. The first run
(Line 4) determines RBF coverage RBFCBase for the base
scenario (i. e. when the bits with unknown values XBase at
the outputs do not contribute to fault detection). The same
is repeated for every of the K XML architectures, resulting
in RBF coverages RBFC1, RBFC2, . . . , RBFCK (Lines
5 – 7). Note that RBFCBase is always greater or equal to
any RBFCj . The difference RBFCBase − RBFCj is the
indicator of the coverage loss for unmodeled defects due to
masking out known values by the jth XML. The averaged
RBF values (indicated by superscript ∅) are the output of the
experiment (Line 8).
For instance, consider the circuit from Figure 6 and the

test set IP consisting of one input pattern 00XX. There is an
X value at the output of the gate E. In the first run of the
Monte-Carlo simulation, the Xes in the input pattern are as-
signed randomly, resulting in, e. g., IP1 = 0011. The detec-
tion at the output of the gate E is not accounted for because
of the X value on this output (XBase = {E}). Hence, in
the base scenario the fault is detected in the interval [0, RC ]
(rather than [0, RE ]). Suppose that there is one XML ar-
chitecture (K = 1) that masks out the output of the gate
E (because it has an unknown value) and the output of the
gate C (X1 = {E,C}). The pattern 0011 is simulated once
again, but now neither detections at the output ofE nor at the
output of E are counted. As the fault is not detected at the
output ofD for any bridge resistance, it is not detected at all.
The global coverage for the base scenario is RBFCBase =
100% ·

(∫ RC

0 ρ(r)dr
)

/
(∫

0 REρ(r)dr
)
, and the coverage

for XML is RBFC1 = 100% · 0/
(∫

0 REρ(r)dr
)

= 0%.
Then, the Xes in the pattern 00XX are again randomly as-
signed and G-FC is calculated for the base scenario and the
XML architecture. After this has been iterated 100 times,

the value RBFC∅
Base for the base scenario and the value

RBFC∅
1 for XML are obtained by averaging 100 individual

results, respectively.

4.2 Results
Table 1 summarizes the results for the bit-based relevant bit
selection procedure, while Table 2 contains the results when
the pattern-based approach has been used. The first three
columns contain the circuit name, the number of patterns in
the test set and the number of outputs of a circuit. The num-
ber ‘Bits’ of bits masked out in the base scenario (which is
the number of X values at the output) and ‘FC’, the aver-
age global fault coverage G-FC for the base scenario, fol-
low. The remainder of the table contains the data on XML
architecture. For various values of n, the size of synthesized
logic in gate equivalents (‘LS’), the number of bits masked
out (‘Bits’), and the average global fault coverage G-FC
(‘FC’) are reported. For three of the circuits (c3540, c6288
and c7552), G-ADI required for calculating G-FC was not
available. For these circuits, G-ADI in the denominator is
over-approximated by [0, Rmax], whereRmax is the maximal
bridge resistance for which a faulty effect can be produced.
Note that by over-approximating the denominator the fault
coverage may be below its real value. However, the base
scenario and all XML measurements are affected by this to
the same extent, so comparing them is still meaningful.
From the table, it can be seen that the logic size does grow

with n, however much slower than n. The RBF coverage loss
is not dramatic even for n = 1, but for n = 3 the difference
to the base scenario is very small for most circuits. Note that
the area overhead for n = 3 and n = 1 is quite similar in
most cases.
We repeated the experiment with 3% of input values (in-

stead of 1%) set to X. In order to obtain patterns with rela-
tively large and relatively small fractions of unknown values,
we distributed Xes as follows: we defined a random variable
y that assumes values between 0 and 6 (with uniform proba-
bility). For a pattern, we first assign a random value between
0 and 6 to y. Then, we set y% of the positions in the pattern
to X.
Results (only for the bit-based method) are reported in

Table 3. The structure of Table 3 is identical to Table 1. It
can be seen that the coverage drop is quite severe for n = 1
for some of the circuits. In particular, for c0499 and c1355
the loss is a double-digit number. In such cases, higher val-
ues of n are required in order not to loose too much of the
unmodeled defect coverage.
The results suggest that for low fractions of unknown val-

ues the XML synthesis procedure based on stuck-at fault de-
tection is quite effective. Even if no n-detection properties
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Circ Pat Outs Base n = 1 n = 3 n = 5 n = 10
Bits FC LS Bits FC LS Bits FC LS Bits FC LS Bits FC

c0432 43 7 28 95.72 23 55 95.69 26 31 95.72 28 30 95.72 30 28 95.72
c0499 52 32 63 99.29 37 556 99.29 53 361 99.29 62 310 99.29 75 176 99.29
c0880 33 26 20 96.63 25 88 96.37 29 39 96.61 33 30 96.62 35 23 96.63
c1355 85 32 128 99.58 62 1277 99.22 86 894 99.39 101 669 99.44 132 521 99.51
c1908 116 25 183 99.44 122 881 99.41 168 656 99.42 187 547 99.44 219 394 99.44
c2670 65 140 160 97.89 128 2021 97.73 181 1103 97.88 199 746 97.89 243 420 97.89
c3540 126 22 205 96.94 157 588 96.91 171 383 96.94 205 322 96.94 212 278 96.94
c5315 72 123 406 99.27 228 2657 98.92 365 1485 99.13 428 1107 99.19 494 770 99.27
c6288 21 32 143 90.38 51 188 90.25 53 151 90.38 56 143 90.38 56 143 90.38
c7552 96 108 602 98.81 358 3561 98.66 468 2056 98.79 528 1633 98.80 582 1100 98.81
cs00298 25 20 8 97.48 10 37 97.45 11 18 97.48 11 12 97.48 12 11 97.48
cs00344 16 26 11 95.68 13 37 94.60 14 18 95.66 14 14 95.66 15 11 95.68
cs00400 28 27 17 98.28 26 75 98.19 27 43 98.27 28 37 98.24 30 29 98.28
cs00444 28 27 9 97.82 13 66 97.76 16 35 97.82 18 34 97.82 20 17 97.82
cs00526 55 27 23 98.35 35 180 98.29 45 96 98.34 48 77 98.35 49 54 98.35
cs00713 31 42 15 98.68 20 135 98.57 27 69 98.67 29 48 98.67 31 25 98.68
cs05378 121 228 2024 98.97 455 8292 98.84 608 5262 98.94 716 4410 98.95 863 3320 98.96

Table 2: Experimental results, pattern-based relevant bit selection (1% Xes at the inputs)

are taken into account (n = 1), the RBF coverage loss is
small. For small n > 1, the coverage loss becomes neg-
ligible. But for a higher percentage of Xes, preserving n-
detection is essential in maintaining the coverage of unmod-
eled defects.

4.3 Comparison with earlier work
Table 4 compares our results with those of [6]. [6] reports
results for p = 0.05%, 0.1% and p = 0.2%, where p is the
percentage of the output values set to X randomly. Note that
we set the input values to X with a probability larger than
0.2% and thus end up with more Xes at the outputs, which
are also correlated in a realistic way. For each p, the number
S of seeds and the number P of stages in the LFSR is quoted
in [6]. We compute logic size in gate equivalent according to
the formula

GE = 6 · P + 2 + S · P/4

We count a flip-flop as 6 gate equivalents (GE): two gates
for the RS circuit, 3 gates for the multiplexer, and one gate
for edge handling. We assume that there are two XOR gates
to implement feedback, and we count an XOR gate as one
GE, which is an under-approximation. Hence, the LFSR to-
tals 6 · 6 + 2 GE. Note that the LFSR is not used for random
pattern generation; it is a resource present exclusively for the
purpose of masking Xes. S ·P bits have to be stored on-chip
(reseeding information); we assume a PLA implementation
and count one bit as 1/4 GE.

Column 2 of Table 4 (‘Prop’) contains the size of XML
generated by our approach. We quote the results obtained us-
ing the bit-based method for relevant bit selection and n = 1,
because it corresponds to the goal of [6] (to ensure that every
stuck-at fault is detected at least once without considering
unmodeled defects or n-detection). The percentage p of Xes
among the output bits is shown in the third column (it corre-
sponds to p from [6] and is obtained from the data of Table
1 as (100% · ‘Base Bits’) / (‘Pat’ · ‘Outs’) for the respective
circuits). The remaining columns contain the values of S and
P from [6] and the size of the logic in GE estimated using
the formula above. It can be seen that our solution requires
less area overhead despite a higher value of p.

5 Conclusions

Blocks that produce unknown values at their outputs are hard
to deal with in a BIST environment, as the signature may be
corrupted by the unknown values. Masking the X values at
the outputs of such modules allows the use of arbitrary test
response evaluators, including those vulnerable to X values.
Since most faults are detected by many patterns, some known
bits can also be masked without loss of stuck-at fault cover-
age.
We proposed a method to synthesize X Masking Logic

(XML) that works for combinational, sequential, scan and
partial scan circuits. It can be integrated into any BIST ar-
chitecture. While previous works concentrated on sustain-
ing the stuck-at coverage after masking, we are using more
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Circ Proposed [6], p = 0.05% [6], p = 0.1% [6], p = 0.2%
GE p S P GE S P GE S P GE

s298 9 1.6% 1 6 39.5 2 6 41 2 14 93
s344 12 2.6% 1 6 39.5 1 8 52 1 20 127
s400 25 2.2% 1 9 58.25 1 19 120.75 1 19 120.75
s444 13 1.2% 1 10 64.5 1 8 52 4 10 72
s526 33 1.5% 1 20 127 8 11 90 4 30 212
s713 18 1.2% 1 20 127 4 30 212 9 26 216.5
s5378 338 7.3% 55 19 377.25 59 27 562.25 103 30 954.5

Table 4: Result comparison to [6]

conservative metrics based on n-detection, in order to pre-
serve the coverage of unmodeled defects. To the best of our
knowledge, this is the first study that considers the effects
of X-masking on unmodeled defects. We estimated the cov-
erage of unmodeled defects using a sophisticated resistive
bridging fault model, which accounts for pattern dependency
and the Byzantine General Problem. By varying n, there is
a trade-off between the size of the synthesized XML and the
coverage of unmodeled defects. Relatively small values of
n were sufficient to achieve practically the same coverage
as with no masking logic, as long as the fraction of Xes to
be masked was relatively low. For a higher percentage of
Xes, sacrificing the n-detection properties of the test set for
the sake of minimizing XML results in a significant drop in
coverage of unmodeled defects. In such cases, XML archi-
tectures synthesized using a high value of n should be used.
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Circ Pat Outs Base n = 1 n = 3 n = 5 n = 10 n = 15 n = 20
Bits FC LS Bits FC LS Bits FC LS Bits FC LS Bits FC LS Bits FC LS Bits FC

c0432 43 7 28 95.72 21 66 95.58 24 50 95.68 25 41 95.71 26 31 95.72 28 29 95.72 28 29 95.72
c0499 52 32 63 99.29 35 586 99.29 51 347 99.29 58 293 99.29 73 165 99.29 85 117 99.29 99 84 99.29
c0880 33 26 20 96.63 23 110 96.35 30 36 96.62 32 30 96.62 34 23 96.63 35 23 96.63 36 21 96.63
c1355 85 32 128 99.58 60 1371 99.26 83 979 99.40 97 832 99.40 129 535 99.47 142 431 99.52 166 341 99.53
c1908 116 25 183 99.44 110 1215 99.26 139 920 99.40 157 646 99.43 197 531 99.44 225 440 99.44 232 344 99.44
c2670 65 140 160 97.89 112 2690 97.67 156 1360 97.85 185 1021 97.88 226 682 97.89 247 490 97.89 262 344 97.89
c3540 126 22 205 96.94 118 1080 96.64 149 580 96.92 169 487 96.92 191 403 96.93 214 287 96.94 225 269 96.94
c5315 72 123 406 99.27 206 3430 98.69 330 2021 99.15 369 1502 99.10 451 1103 99.24 467 1096 99.23 496 979 99.20
c6288 21 32 143 90.38 49 211 90.23 52 159 90.36 54 144 90.38 56 143 90.38 56 143 90.38 56 143 90.38
c7552 96 108 602 98.81 336 4359 98.52 437 3044 98.77 493 2225 98.80 550 1713 98.80 595 1283 98.80 610 1040 98.80
cs00298 25 20 8 97.48 9 36 97.45 11 13 97.48 11 15 97.48 12 10 97.48 13 8 97.48 13 8 97.48
cs00344 16 26 11 95.68 12 65 95.34 13 22 95.64 14 20 95.68 15 11 95.68 15 11 95.68 15 11 95.68
cs00400 28 27 17 98.28 25 117 97.91 27 52 98.27 27 45 98.27 28 29 98.28 32 22 98.28 33 17 98.28
cs00444 28 27 9 97.82 13 97 97.71 15 50 97.82 16 40 97.82 20 16 97.82 21 14 97.82 22 10 97.82
cs00526 55 27 23 98.35 33 281 98.09 41 166 98.32 44 97 98.34 48 58 98.35 50 43 98.35 51 37 98.35
cs00713 31 42 15 98.68 18 154 98.58 24 84 98.66 27 60 98.68 31 24 98.68 31 23 98.68 32 16 98.68
cs05378 121 228 2024 98.97 338 10383 98.63 470 7810 98.87 555 6556 98.91 703 5170 98.96 801 4448 98.97 883 4032 98.97

Table 1: Experimental results, bit-based relevant bit selection (1% Xes at the inputs)

Circ Pat Outs Base n = 1 n = 3 n = 5 n = 10 n = 15 n = 20
Bits FC LS Bits FC LS Bits FC LS Bits FC LS Bits FC LS Bits FC LS Bits FC

c0432 43 7 61 94.01 33 122 93.20 41 88 93.86 43 78 94.00 45 70 94.01 46 66 94.01 47 63 94.01
c0499 52 32 314 94.53 75 1222 43.27 111 1023 85.57 123 912 88.20 183 703 88.59 231 525 94.10 275 405 94.52
c0880 33 26 63 96.34 51 240 95.63 64 110 96.25 67 117 96.28 81 81 96.34 83 71 96.34 83 66 96.34
c1355 85 32 542 95.10 98 2245 70.56 156 2110 73.89 203 1859 76.22 258 1581 81.80 304 1287 88.06 411 1047 89.24
c1908 116 25 360 99.10 136 1757 98.61 208 1261 99.01 249 1132 99.08 300 888 99.10 333 776 99.10 356 674 99.10
c2670 65 140 456 93.98 207 4477 92.24 286 3084 93.80 358 2176 93.92 440 1453 93.97 507 1205 93.98 541 774 93.98
c3540 126 22 433 96.18 219 1503 95.06 273 1120 95.80 314 930 96.08 381 735 96.15 414 640 96.17 419 564 96.17
c5315 72 123 925 98.81 305 5090 96.74 502 3820 98.14 623 3153 98.22 762 2238 98.51 846 1976 98.67 875 1678 98.73
c6288 21 32 326 88.25 72 427 85.74 77 344 88.12 82 333 88.25 89 327 88.25 89 326 88.25 89 326 88.25
c7552 96 108 1574 97.57 532 6801 95.14 792 5125 97.28 880 4866 97.45 1004 3984 97.50 1071 3325 97.53 1152 2409 97.53
cs00298 25 20 29 96.94 29 133 96.35 33 76 96.90 38 45 96.93 43 39 96.94 44 33 96.94 46 30 96.94
cs00344 16 26 20 95.69 21 71 94.75 26 33 95.67 29 27 95.69 30 20 95.69 30 20 95.69 30 20 95.69
cs00400 28 27 49 97.58 38 253 95.97 53 155 97.36 57 123 97.46 65 60 97.58 70 54 97.58 74 50 97.58
cs00444 28 27 41 97.01 36 191 95.60 43 89 96.88 48 86 96.87 53 49 97.00 54 45 97.01 54 42 97.01
cs00526 55 27 94 98.19 77 493 97.72 99 300 98.08 104 235 98.14 109 218 98.17 132 146 98.19 134 129 98.19
cs00713 31 42 87 98.31 57 447 97.74 84 273 98.19 99 174 98.30 105 126 98.31 107 123 98.31 111 99 98.31
cs05378 121 228 2926 98.54 518 16112 97.64 792 13659 98.35 997 11497 98.38 1299 8700 98.50 1484 7034 98.53 1658 6331 98.53

Table 3: Experimental results, bit-based relevant bit selection (3% Xes at the inputs)
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