
EFFICIENT PATTERN MAPPING FOR
DETERMINISTIC LOGIC BIST

Valentin Gherman,

Hans-Joachim Wunderlich

Universität Stuttgart
Pfaffenwaldring 47
D-70569 Stuttgart

Germany

ghermanv@informatik.uni-stuttgart.de
wu@informatik.uni-stuttgart.de

Harald Vranken

Philips Research
Prof. Holstlaan 4-WAY-41

5656 AA Eindhoven
The Netherlands

harald.vranken@philips.com

Friedrich Hapke,
Michael Wittke,
Michael Garbers

Philips Semiconductors
Georg-Heyken-Strasse 1

D-21147 Hamburg
Germany

friedrich.hapke@philips.com
michael.wittke@philips.com
michael.garbers@philips.com

Abstract
Deterministic logic BIST (DLBIST) is an attractive
test strategy, since it combines advantages of
deterministic external testing and pseudo-random
LBIST. Unfortunately, previously published
DLBIST methods are unsuited for large ICs, since
computing time and memory consumption of the
DLBIST synthesis algorithms increase exponen-
tially, or at least cubically, with the circuit size.

In this paper, we propose a novel DLBIST
synthesis procedure that has nearly linear com-
plexity in terms of both computing time and mem-
ory consumption. The new algorithms are based
on binary decision diagrams (BDDs). We demon-
strate the efficiency of the new algorithms for
industrial designs up to 2M gates.

Keywords: Logic BIST, BDDs

1. Introduction
Logic Built-In Self-Test (LBIST) for random logic
is becoming an attractive alternative in IC testing.
Recent advances in nanometer IC process
technology and core-based IC design are leading
to more widespread use of LBIST since external
testing is becoming more and more difficult and
costly. Also requirements on in-field testing and
limited access into ICs that contain secure
information, are demanding LBIST solutions.

There is a wide range of deterministic logic BIST
methods that apply deterministic test patterns and
hence improve the low fault coverage often ob-
tained by pseudo-random patterns. Straightforward

is the application of additional external determinis-
tic patterns on top of the pseudo-random test [8].
Unfortunately, the very last percentages of fault
coverage require the largest amount of determinis-
tic patterns, so the benefits of LBIST are severely
reduced by this approach.

More efficient are compression and decompression
methods, where a small amount of external test
data is continuously fed into the circuit [12][14].
However, this approach is no longer a BIST
method; it requires still external ATE and looses
some benefits of BIST like in-field testing. An
alternative for increasing the fault coverage is
inserting test points, which has been proposed for
both LBIST and external testing [4][5][15][17].
While the area increase due to test points may be
tolerable, they may also introduce additional
delays, which could require complete resynthesis
and new timing verification [18].

In contrast to the abovementioned LBIST meth-
ods, pure deterministic LBIST schemes try to
avoid both modifying the core under test (CUT)
and applying additional patterns. Their underlying
methods can be classified into “store and generate”
schemes and “test set embedding” schemes [20].

“Store and generate” schemes consist of hardware
structures which store the test patterns on-chip in a
compressed form and implement an algorithm for
decompression.

Widely known representatives of this method are
LFSR-reseeding [12], multi-polynomial reseeding
[6][7] and folding counter based-LBIST [13].

Figure 1: (a) Bit-flipping and (b) bit-fixing BIST schemes.

 “Test set embedding” schemes rely on a pseudo-
random test pattern generator plus some additional
circuitry that modifies the pseudo-random
sequence in such a way that a set of deterministic
patterns is embedded. Widely known techniques
are bit-flipping [9][10][11][19] and bit-fixing [16].

In the bit-flipping approach, the output sequences
of an LFSR are inverted at a few bit positions in
order to increase fault coverage (Figure 1.a), while
the bit-fixing approach applies constant values
(Figure 1.b). The test generation process is
controlled by a bit-flipping function (BFF) or a
bit-fixing function (BFX), respectively.

We use the term pattern mapping for referring to
the embedding of a set of deterministic patterns
into a sequence of pseudo-random patterns. A
DLBIST synthesis procedure consists of pattern
mapping and generation of the hardware structure
to implement the mapping, e.g. by means of a BFF
or BFX. The synthesis procedure for generating
the BFX as published in [16], is based on rectangle
covering, while the synthesis procedure for
generating the BFF as published in [9][19][10], is
based on manipulating sets of test cubes. In both
cases, the procedures are based on heuristics that
generally require at least cubical, but often
exponential, effort in terms of memory consump-
tion and computing time.

In this paper, we present a BDD-based algorithm
for test pattern mapping that outperforms
previously published algorithms by several orders
of magnitude. The paper is organized as follows:
in Section 2 a more formal definition of the pattern
mapping problem is given. Section 3 describes the
BDD-based synthesis in detail and Section 4

shows the significant improvements with the help
of a set of industrial benchmark circuits.

2. The pattern mapping problem
The “test set embedding” schemes provide both
pseudo-random and deterministic test stimuli.
Usually, some of the pseudo-random patterns
generated by an LFSR, are altered into
deterministic test stimuli. Most of the pseudo-
random test patterns do not contribute to the fault
coverage, since they only detect faults that already
were detected by other pseudo-random patterns.
Such useless pseudo-random test patterns may
therefore be skipped or modified in any arbitrary
way. The key idea is to modify some useless
pseudo-random patterns into useful deterministic
test patterns to improve the fault coverage. The
deterministic test patterns are determined by an
ATPG tool, and they target those faults that are not
detected by pseudo-random test stimuli. In such a
deterministic test pattern, only few bits are
actually specified, while most of the bits are don’t
care and hence can arbitrarily be set to 0 or 1.

The method presented here can be applied to both
the bit-flipping and bit-fixing approach, assuming
a few modifications. For the sake of simplicity, we
will explain the method by using the bit-flipping
approach; also the experimental results are given
for this method.

In the bit-flipping approach, the modification of
the pseudo-random patterns is realized by
inverting (flipping) some of the LFSR outputs,
such that the deterministic stimuli are obtained.
The flipping is implemented by combinational
logic, called bit-flipping function (BFF). The BFF

(b) (a)

 BFX

1 0 ... ≥1 &

0 0 ... ≥1 &

0
1
...

0

...

...

...
CUT

...

...

...
CUT

 BFF

1 0 ...

0 0 ...

0
1
...

0

can be kept quite small by exploiting the large
number of useless pseudo-random test patterns
that may be modified, and carefully selecting the
pseudo-random test patterns on which determinis-
tic test patterns are mapped.

As shown in Figure 2, the BFF inputs are con-
nected to the LFSR, the pattern counter, and the
shift counter, while the BFF outputs are connected
to the XOR-gates at the scan inputs. The BFF
determines whether a bit has to be flipped based
on the states of the LFSR, the pattern counter, and
the shift counter. The pattern counter is part of the
test control unit, and counts the number of test
patterns applied during the self-test. The shift
counter is also part of the test control unit, and
counts the number of scan shift cycles for shifting
data in/out the scan chains.

The BFF realizes the mapping of deterministic test
stimuli to pseudo-random test stimuli. Every
specified bit (i.e. care bit) in a deterministic
stimulus either matches to the corresponding bit in
the pseudo-random stimulus, in which case bit-
flipping must not be performed, or the bit does not
match, in which case bit-flipping is required. For
all unspecified bits (i.e. don’t-care bits) in the
deterministic stimulus, the corresponding bits in
the pseudo-random stimulus may be arbitrarily
flipped or not. The BFF should provide that (1) all
conflicting bits are flipped, (2) all matching bits
are not flipped while (3) the don’t-care bits may be
arbitrarily flipped or not. We first consider a CUT
with a single scan chain. The LFSR generates a
pseudo-random sequence of test stimuli that is
shifted into the scan chain. The LFSR and shift

counter (SC) are updated in every clock cycle,
while the pattern counter (PC) is updated when
applying a new test pattern. In every clock cycle,
the DLBIST hardware therefore has a unique state
identified by the states of the LFSR, PC, and SC.
The set S denotes the set of all possible states of
LFSR_PC_SC (here the symbol ‘_’ indicates
concatenation).

The on-set is the set of LFSR_PC_SC states that
correspond to the clock cycles in which the
pseudo-random LFSR output should be flipped.
Similarly, the off-set is the set of LFSR_PC_SC
states that correspond to clock cycles in which the
pseudo-random LFSR output should not be
flipped. The don’t-care set (dc-set) is the set of
LFSR_PC_SC states that correspond to clock
cycles in which the pseudo-random LFSR output
may be arbitrarily flipped or not. The on-set and
off-set are disjoint (on-set ∩ off-set = ∅). The dc-
set contains all states that are not in the union of
the on-set and off-set: dc-set = S \ (on-set ∪ off-
set). The on-set, off-set, and dc-set specify the
operation of the BFF. The dc-set is exploited to
minimize the logic implementation of the BFF.

The on-set, off-set, and dc-set express a Boolean
function ϕ({0,1}k) → {0,1,-} where k corresponds
to the size (i.e. number of bits) of the LFSR, PC,
plus SC. The symbol ‘-‘ indicates don’t care. For
instance, consider a simple example of DLBIST
hardware with a 2-bit LFSR, a 2-bit PC, and a 2-
bit SC. ϕ(01_10_01) = 1 now indicates that the
pseudo-random bit should be flipped when the
LFSR state is 01, the PC state is 10, and SC state
is 01. The state 01_10_01 is therefore part of the

... ...

Circuit Under Test Circuit Under Test

M M
I I
S S
R R

Pattern
Counter

Shift
Counter

Test Control Test Control

+

+

+ L L
F F
S S
R R

BFL

... ...

Circuit Under Test Circuit Under Test

M M
I I
S S
R R

Pattern
Counter

Shift
Counter

Test Control Test Control

+

+

+ L L
F F
S S
R R

BFF

Figure 2: Bit-flipping DLBIST architecture.

on-set. ϕ(01_10_11) = 0 indicates that the pseudo-
random bit should not be flipped when the LFSR
state is 01, the PC state is 10, and SC state is 11.
The state 01_10_11 is therefore part of the off-set.
ϕ(10_01_01) = ‘-‘ indicates that the pseudo-
random bit may be flipped or not when the LFSR
state is 10, the PC state is 01, and SC state is 01.
The state 10_01_01 is therefore part of the dc-set.

In case of a CUT with multiple scan chains, there
are separate on-sets, off-sets, and dc-sets
associated with each scan chain. For a CUT with n
scan chains, the sets are on-seti, off-seti, and dc-seti
for scan chain i, 1 ≤ i ≤ n. The BFF now consists
of the n bit-flipping logics BFFi for each scan
chain. The size of the BFF implementation can be
minimized by sharing logic between the BFFi for
various scan chains.

In the original bit-flipping synthesis [19] [9] [10],
the sets are represented as sets of k-bit cubes. A
cube is element of the set {0,1,-}k, and corre-
sponds to a sequence of k bits that are ‘0’, ‘1’, or
‘-‘. The original synthesis procedure is based on
Espresso-like logic optimization using the cube-
representation [2], and results in a two-level logic
implementation of the BFF.

The size of the on-set and off-set increases with the
number of specified bits and in contrast to
standard logic synthesis problems, the cubes in
these sets are very irregular. Hence, logic
minimization exploiting the on-set, off-set and dc-
set, may have exponential complexity in terms of
the number of specified bits.

3. BDD-based pattern mapping
A binary decision diagram (BDD) is a well-known
representation of a logic function [1]. A BDD is a
tree-like directed graph, starting from a root
vertex. A BDD contains non-terminal vertices that
have two outgoing edges and terminal vertices that
only have incoming edges. For example, Figure 3
shows the BDD representation of a parity function.
The function parity(a,b,c) operates on the input
variables a, b, and c. The function result is 0 if
there is an even number of input variables that
have value 1, while the function result is 1 if there
is an odd number of input variables that have value
1. For instance, parity(011) = 0 and parity(010) =
1. The labels at the edges correspond to the
variable value of the parent vertex. The BDD-
based representation of the parity function with n
input variables contains 2n+1 vertices, while a

cube-based representation of the same function
would require 2n-1 cubes. The example illustrates
that a BDD may be a very compact representation
for certain logic functions. A second advantage of
BDDs is that the complexity of many operations
on a BDD scales linearly with the number of input
variables [3].

 a

b

c

b

c

0 1

0

0

0

1

1 1

1 1

0

0

a

b

c

b

c

0 1

0

0

0

1

1 1

1 1

0

0

Figure 3: BDD representation of parity function.

In the BDD-based bit-flipping synthesis pro-
cedure, the on-set and off-set of the BFF are
represented by characteristic functions, the on-
BDD and the off-BDD. The on-BDD will output
the value ‘1’ if the input is taken from the on-set,
otherwise the output is ‘0’. Similarly, the off-BDD
will output ‘1’, only if the input is selected from
the off-set. Checking whether an assignment is
element of the off-set or the on-set is linear in the
number of input variables of the BDD, whereas the
cube-based representation requires an effort linear
in the cardinality of the sets.

In the presented approach, the sequence of test
stimuli is partitioned into two parts. The first part
of the sequence is used only for pseudo-random
fault detection, and no deterministic stimuli are
embedded into this part. The outputs of the BFF
should be disabled during this part. The
LFSR_PC_SC states for this first part of pseudo-
random test stimuli are included in the dc-set,
since increasing the dc-set gives more room for
logic optimization of the BFF. However, the BFF
will arbitrarily flip some pseudo-random pattern-
bits, and some detected faults may no longer be
detected by the modified sequence with bit-
flipping. In general, most faults are quickly
detected by the first few hundreds or thousands
pseudo-random test patterns. Disabling the BFF
can be achieved using some simple additional cir-
cuitry that considers the most significant bits of
the PC.

All deterministic patterns are embedded into the
second part of the sequence, during which the BFF
is enabled. The second part usually is 1/2, 1/4, or
1/8 of the total test sequence.

In general, the sizes of BDDs may grow expo-
nentially with the number of input variables. For
BDD-based synthesis of the BFF, the only input
variables are the LFSR, the PC, and the SC. In
practice the LFSR size is typically below 64 bits,
the PC size is below 18 bits (which allows to
generate 2 18 = 256k patterns), and the SC size is
below 12 bits (which allows scan chains with
maximum 2 12 = 4,096 flip-flops). Hence, the
number of inputs to the BFF is below
64+18+12=94 bits. The sizes of the BDDs for
representing such BFF are therefore within
practical limits that can be handled by state-of-the-
art computers and BDD software packages, and
the complexity of the main operations used here
are linear in the BDD size. In contrast to that, the
sizes of the on-set and off-set in the cube-based
representation increase linearly with the number of
specified bits, which is increasing with test set and
CUT size, and the operations on the cube sets are
up to exponential.

The BDD-based bit-flipping synthesis procedure is
outlined in Figure 4. The steps are in detail:

1. Fault simulation is performed with the sequence

of pseudo-random test patterns as generated by
the LFSR, to determine which faults are
detected by the pseudo-random patterns.

2. ATPG is used to generate compact deterministic

test patterns for all faults that are not detected by
the pseudo-random patterns. The deterministic
patterns contain a large number of don’t-care
bits.

3. The deterministic ATPG patterns are mapped

onto pseudo-random test patterns. The BFF is
created such that the identified pseudo-random
test stimuli are modified into the deterministic
patterns by flipping the appropriate bits. The
mapping is done such that the size of the
subsequent BFF implementation is minimized,
which can be achieved by exploiting the dc-set.

The first attempt is to assign a pseudo-random
stimulus to a deterministic stimulus such that a
minimum number of bits are conflicting. The
mapping is further optimized using a combina-
tion of the following attempts:

• Minimize the number of clock cycles with

both matching and conflicting bits. This at-
tempts to maximize the sharing of logic
between BFFi implementations for different
scan chains.

• Minimize the number of matching and

conflicting bits per scan chain. This attempts
to decouple the on-BDD and off-BDD for each
scan chain with respect to the state of the PC.
This increases the degrees of freedom for
optimizing the corresponding BFFi imple-
mentations.

4. The BDD-based representation of the BFF is

transformed into a hardware structure de-
scription (e.g. RTL VHDL or Verilog). The
RTL description can be synthesized using
commercial logic synthesis tools.

5. Fault simulation is performed with the sequence

of test stimuli as generated by the LFSR and the
BFF.

Figure 4: Bit-flipping synthesis procedure.

Fault simulation
of pseudo-random LFSR sequence

ATPG

Pattern mapping

BDD-based optimization and
logic synthesis of BFF

Fault simulation of pseudo-random
LFSR sequence with bit-flipping by

BFF

4. Experimental results
Below, experiments are reported performed on
Linux GNU machines equipped with one GB of
memory and an AMD Atlon-XP processor running
at 1500 MHz. The BDD-based computations were
implemented using the CUDD package [21].

The benchmark circuits are industrial designs
described in Table 1. The first column reports the
circuit name encoded like pN, where N denotes the
number of gates in the circuit. The second column
gives the number of scan flip-flops contained in
each design. The last two columns report the fault
coverage and the fault efficiency obtained after
applying 10,000 pseudo-random patterns, which
are the percentage of detected faults and the
percentage of detected and redundant faults,
respectively, with respect to the total number of
faults.

While the original cube-based pattern mapping is
an iterative algorithm [19], where ATPG, pattern
mapping and fault simulation are alternating, the
BDD-based algorithm is a single pass algorithm,
which involves ATPG and fault simulation less
often. Hence computing time savings are not only
due to substituting the cube-based approach by
BDD-based algorithms, also for ATPG and fault
simulation computing time is saved.

Table 2 shows that mapping time is reduced from
several days down to a few minutes, and that also

the other tasks have significant improvements. The
overall computing time (including also the time
spent during the BDD- based synthesis) and the
memory consumption are given in Table 3. The
BDD-based approach reduces computing time
from more than a week down to several hours,
while also the memory requirements scale quite
well with the circuit size.

Design # Flip-
flops

Random fault
coverage [%]

Random fault
efficiency [%]

p19k 1407 63.11 71.68

p59k 4730 87.30 97.30

p127k 5116 82.14 84.30

p278k 9967 79.92 81.61

p333k 20756 93.64 95.65

p951k 104624 92.91 92.92

p2074k 58835 64.11 94.83

Table 1: Benchmark characteristics.

No results are available in Table 2 and 3 with the
cube-based approach for the two largest designs
due to excessive run-time and memory require-
ments.

Finally, the amazing improvements should not be
paid by less quality in terms of fault efficiency and

 Cube-based BDD-based
Design ATPG time

[h:m]
Mapping time

[h:m]
Fault simulation

time [h:m]
ATPG time

[h:m]
Mapping time

[h:m]
Fault simulation

time [h:m]
p19k 00:00 02:57 00:33 00:00 00:02 00:01
p59k 00:05 02:20 00:30 00:01 00:02 00:03

p127k 02:22 76:54 18:25 03:10 00:14 00:12
p278k 05:20 193:10 37:23 02:29 00:09 00:22
p333k 00:48 116:15 47:45 00:37 00:14 00:17
p951k - - - 01:14 03:12 00:57

p2074k - - - 02:55 03:59 00:35

Table 2: Run-time for different tasks of the cube-based and BDD-based algorithm. For the design ‘p2074k’
a machine equipped with 2 GB of memory and an Intel Pentium 4 CPU running at 2.4 GHz was used.

Table 3: Run-time and memory consumption of the cube-based and BDD-based algorithm. For the design
‘p2074k’ a machine equipped with 2 GB of memory and an Intel Pentium 4 CPU running at 2.4 GHz was

used.

hardware overhead. Table 4 reports the fault
efficiencies obtained in both cases. In order to
have comparable results of time and memory, the
fault efficiency of the BDD-based approach was
limited to the one reached by the cube-based
approach. By spending more resources, even
higher fault efficiency could be obtained, only
limited by the resources given to the ATPG tool.
The last column (Cell area) shows the logic over-
head of the BFF implementation relative to the cell
area of the CUT, obtained using a commercial
synthesis tool and a proprietary library. Only logic
overhead of the BFF implementation is given; the
overhead of the other parts of the DLBIST
hardware may be neglected. Again, the BDD-
based approach outperforms the cube-based
approach.

Table 5 illustrates how the computational re-
sources are scaling when the targeted fault effi-

ciency is increased to levels allowed by the ATPG
tool. Most of the additional run-time is consumed
during the deterministic pattern generation and the
BDD-based synthesis, while the time spent for
fault simulation remains constant. These final fault
efficiencies are practically not reachable by the
cube-based approach in the case of the last four
designs. Additionally, Table 5 shows that the over-
head ratio decreases significantly for the larger
designs. The presented approach does not only
scale very well in terms of computing time and
memory, but also in terms of area overhead.

During the generation of the BDD-based repre-
sentation, no static or dynamic variable reordering
was used. The variables were a priori and
optimally arranged in groups corresponding to the
states of the LFSR, PC and SC. The reported
experimental results were obtained with the same
variable order for all the designs.

 Cube-based BDD-based

Design Fault efficiency [%] Cell area [%] Fault efficiency [%] Cell area [%]
p19k 96.86 89.67 97.68 21.71
p59k 99.06 7.64 99.15 3.59
p127k 94.61 27.86 95.57 9.81
p278k 90.83 25.77 91.62 9.66

p333k 97.46 12.07 97.52 3.56

Table 4: Fault efficiency and logic overhead of the cube-based and BDD-based algorithm.

 Cube-based BDD-based

Design Total time [h:m] Total memory [MB] Total time [h:m] Total memory [MB]

p19k 03:30 58 00:27 58

p59k 02:55 138 00:11 66

p127k 97:41 368 11:13 211

p278k 235:53 584 15:21 318

p333k 164:48 660 09:07 290

p951k - - 14:22 1106

p2074k - - 18:37 1865

Design # Embedded
patterns

Fault efficiency
[%]

Total time
[h:m]

Memory
[MB]

Cell area
[%]

p19k 181 99.26 00:32 91 25.36

p59k 137 99.19 00:11 68 3.75

p127k 582 99.27 18:20 295 21.81

p278k 1549 98.89 55:37 536 34.58

p333k 1298 99.31 23:00 359 7.00

p951k 259 99.67 14:22 1106 1.49

p2074k 302 99.29 18:37 1865 2.64

Table 5: Results obtained with the BDD-based approach reaching a fault efficiency level close to 100%.
For the designs ‘p278k’ and ‘p2074k’ a machine equipped with 2 GB of memory and an Intel Pentium 4

CPU running at 2.4 GHz was used.

5. Conclusions
A new pattern mapping algorithm for “test set
embedding” deterministic BIST schemes was
proposed which exploits standard BDD operations.
This way, improvements of several order of
magnitude are obtainable compared with the cube-
based approach, e.g., in terms of both run-time and
memory requirements. With this approach,
computing and memory resources for DLBIST
synthesis are in the same order of complexity as
the resources required for ATPG or fault
simulation. The gains of efficiency can also be
used to obtain even better solutions in terms of
hardware overhead and fault coverage.

Acknowledgments
This research work was supported by the German
Federal Ministry of Education and Research
(BMBF) in the Project AZTEKE under the
contract number 01M3063C.

References
[1] S.B. Akers „Binary Decision Diagrams,”

IEEE Transactions on Computers, Vol. C-27,
No. 6, June 1978, pp. 509-516.

[2] R.K. Brayton, G.D. Hachtel, C.T. McMullen
and A.L. Sangiovanni-Vincentelli „Logic
Minimization Algorithms for VLSI Synthe-
sis,” Kluver Academic Publishers, 1997.

[3] R.E. Bryant „Graph-Based Algorithms for
Boolean Function Manipulation,” IEEE
Transactions on Computers, C-35-8, August
1986, pp. 677-691.

[4] M.J. Geuzebroek, J.Th. van der Linden, A.J.

van de Goor „Test Point Insertion for
Compact Test Sets,” Proceedings of Interna-
tional Test Conference, IEEE, 2000, pp. 506-
514.

[5] J.P. Hayes, A.D. Friedman „Test Point Place-
ment to Simplify Fault Detection,” IEEE
Transactions on Computers, Vol. C-33, July
1974, pp. 727-735.

[6] S. Hellebrand, S. Tarnik, J. Rajski, B.
Courtois „Generation of Vector Patterns
Through Reseeding of Multiple-Polynomial
Linear Feedback Shift Registers,” Proceed-
ings of International Test Conference, 1992,
pp. 120-129.

[7] S. Hellebrand, B. Reeb, S. Tarnick, H.-J.
Wunderlich „Pattern Generation for a
Deterministic BIST Scheme,“ Proceedings
ACM/IEEE International Conference on
CAD-95 (ICCAD95), San Jose, CA,
November 1995, pp. 88-94.

[8] G. Hetherington, T. Fryars, N. Tamarapalli,
M. Kassab, A. Hassan, J. Rajski „Logic BIST
for Large Industrial Designs: Real Issues and
Case Studies,” Proceedings of International
Test Conference, IEEE, 1999, pp. 358-367.

[9] G. Kiefer, H.-J. Wunderlich „Using BIST
Control for Pattern Generation,” Proceedings
International Test Conference, IEEE, 1997,
pp. 347-355.

[10] G. Kiefer, H.-J. Wunderlich „Deterministic
BIST with Multiple Scan Chains,” Proceed-
ings International Test Conference, IEEE,
1998, pp. 1057-1064.

[11] G. Kiefer, H. Vranken, E. J. Marinissen, H.-J.
Wunderlich „Application of Deterministic
Logic BIST on Industrial Circuits,” Proceed-

ings IEEE International Test Conference, ITC
2000, Atlantic City, NJ, October 3-5, 2000,
pp. 105-114.

[12] B. Koenemann „LFSR-Coded Test Patterns
for Scan Designs,” Proceedings of European
Test Conference, 1991, pp. 237-242.

[13] H. Liang, S. Hellebrand, H.-J. Wunderlich
„Two-Dimensional Test Data Compression
for Scan-Based Deterministic BIST,”
Proceedings IEEE International Test
Conference, Journal of Electronic Testing -
Theory and Applications (JETTA), Vol. 18,
No. 2, April 2002, pp. 157-168.

[14] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee,
R. Thompson, K.-H. Tsai, A. Hertwig, N.
Tamarapalli, G. Mrugalski, G. Eide, J. Qian
„Embedded deterministic test for low cost
manufacturing test”, Proceedings of Interna-
tional Test Conference, IEEE, 2002, pp. 301-
310.

[15]

B.H. Seiß, P.M. Trouborst and M.H. Schulz
„Test Point Insertion for Scan-Based BIST,”
European Test Conference (ETC), April 1991,

 pp. 253-262.
[16] N.A. Touba, and E.J. McCluskey „Altering a

pseudo- random bit sequence for scan-based
BIST,” Proceedings IEEE International Test
Conference, 1996, pp.167-175.

[17] H. Vranken, F. Meister, H.-J. Wunderlich
„Combining Deterministic Logic BIST with
Test Point Insertion,” The Seventh IEEE
European Test Workshop, May 26-29, 2002.

[18] H. Vranken, H.-J. Wunderlich, F. Syafei Sapei
„Impact of Test Point Insertion on Silicon
Area and Timing During Layout,” Design,
Automation and Test in Europe, Paris, 16-20
February 2004.

[19] H.-J. Wunderlich, G. Kiefer „Bit-Flipping
BIST,” Proceedings International Conference
on Computer Aided Design, IEEE, 1996, pp.
337-343.

[20] H.-J. Wunderlich „BIST for Systems-on-a-
Chip,” INTEGRATION, the VLSI journal,
1998, pp. 57-78.

[21] http://vlsi.colorado.edu/~fabio/CUDD/cuddInt
ro.html

