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Abstract 
Deterministic logic BIST (DLBIST) is an attractive 
test strategy, since it combines advantages of 
deterministic external testing and pseudo-random 
LBIST. Unfortunately, previously published 
DLBIST methods are unsuited for large ICs, since 
computing time and memory consumption of the 
DLBIST synthesis algorithms increase exponen-
tially, or at least cubically, with the circuit size. 
 
In this paper, we propose a novel DLBIST 
synthesis procedure that has nearly linear com-
plexity in terms of both computing time and mem-
ory consumption. The new algorithms are based 
on binary decision diagrams (BDDs). We demon-
strate the efficiency of the new algorithms for 
industrial designs up to 2M gates.  
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1. Introduction 
Logic Built-In Self-Test (LBIST) for random logic 
is becoming an attractive alternative in IC testing. 
Recent advances in nanometer IC process 
technology and core-based IC design are leading 
to more widespread use of LBIST since external 
testing is becoming more and more difficult and 
costly. Also requirements on in-field testing and 
limited access into ICs that contain secure 
information, are demanding LBIST solutions. 
 
There is a wide range of deterministic logic BIST 
methods that apply deterministic test patterns and 
hence improve the low fault coverage often ob-
tained by pseudo-random patterns. Straightforward 

is the application of additional external determinis-
tic patterns on top of the pseudo-random test [8]. 
Unfortunately, the very last percentages of fault 
coverage require the largest amount of determinis-
tic patterns, so the benefits of LBIST are severely 
reduced by this approach. 
 
More efficient are compression and decompression 
methods, where a small amount of external test 
data is continuously fed into the circuit [12][14]. 
However, this approach is no longer a BIST 
method; it requires still external ATE and looses 
some benefits of BIST like in-field testing. An 
alternative for increasing the fault coverage is 
inserting test points, which has been proposed for 
both LBIST and external testing [4][5][15][17]. 
While the area increase due to test points may be 
tolerable, they may also introduce additional 
delays, which could require complete resynthesis 
and new timing verification [18]. 
 
In contrast to the abovementioned LBIST meth-
ods, pure deterministic LBIST schemes try to 
avoid both modifying the core under test (CUT) 
and applying additional patterns. Their underlying 
methods can be classified into “store and generate” 
schemes and “test set embedding” schemes [20]. 
 
“Store and generate” schemes consist of hardware 
structures which store the test patterns on-chip in a 
compressed form and implement an algorithm for 
decompression. 
 
Widely known representatives of this method are 
LFSR-reseeding [12], multi-polynomial reseeding 
[6][7] and folding counter based-LBIST [13]. 



 

 
 
  
 
 
  
 
 
 
 
 
 

 

Figure 1: (a) Bit-flipping and (b) bit-fixing BIST schemes. 

 
 “Test set embedding” schemes rely on a pseudo-
random test pattern generator plus some additional 
circuitry that modifies the pseudo-random 
sequence in such a way that a set of deterministic 
patterns is embedded. Widely known techniques 
are bit-flipping [9][10][11][19] and bit-fixing [16].  
 
In the bit-flipping approach, the output sequences 
of an LFSR are inverted at a few bit positions in 
order to increase fault coverage (Figure 1.a), while 
the bit-fixing approach applies constant values 
(Figure 1.b). The test generation process is 
controlled by a bit-flipping function (BFF) or a 
bit-fixing function (BFX), respectively. 
 
We use the term pattern mapping for referring to 
the embedding of a set of deterministic patterns 
into a sequence of pseudo-random patterns. A 
DLBIST synthesis procedure consists of pattern 
mapping and generation of the hardware structure 
to implement the mapping, e.g. by means of a BFF 
or BFX. The synthesis procedure for generating 
the BFX as published in [16], is based on rectangle 
covering, while the synthesis procedure for 
generating the BFF as published in [9][19][10], is 
based on manipulating sets of test cubes. In both 
cases, the procedures are based on heuristics that 
generally require at least cubical, but often 
exponential, effort in terms of memory consump-
tion and computing time. 
 
In this paper, we present a BDD-based algorithm 
for test pattern mapping that outperforms 
previously published algorithms by several orders 
of magnitude. The paper is organized as follows: 
in Section 2 a more formal definition of the pattern 
mapping problem is given. Section 3 describes the 
BDD-based synthesis in detail and Section 4 

shows the significant improvements with the help 
of a set of industrial benchmark circuits. 
 

2. The pattern mapping problem 
The “test set embedding” schemes provide both 
pseudo-random and deterministic test stimuli. 
Usually, some of the pseudo-random patterns 
generated by an LFSR, are altered into 
deterministic test stimuli. Most of the pseudo-
random test patterns do not contribute to the fault 
coverage, since they only detect faults that already 
were detected by other pseudo-random patterns. 
Such useless pseudo-random test patterns may 
therefore be skipped or modified in any arbitrary 
way. The key idea is to modify some useless 
pseudo-random patterns into useful deterministic 
test patterns to improve the fault coverage. The 
deterministic test patterns are determined by an 
ATPG tool, and they target those faults that are not 
detected by pseudo-random test stimuli. In such a 
deterministic test pattern, only few bits are 
actually specified, while most of the bits are don’t 
care and hence can arbitrarily be set to 0 or 1. 
 
The method presented here can be applied to both 
the bit-flipping and bit-fixing approach, assuming 
a few modifications. For the sake of simplicity, we 
will explain the method by using the bit-flipping 
approach; also the experimental results are given 
for this method. 
 
In the bit-flipping approach, the modification of 
the pseudo-random patterns is realized by 
inverting (flipping) some of the LFSR outputs, 
such that the deterministic stimuli are obtained. 
The flipping is implemented by combinational 
logic, called bit-flipping function (BFF). The BFF 
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can be kept quite small by exploiting the large 
number of useless pseudo-random test patterns 
that may be modified, and carefully selecting the 
pseudo-random test patterns on which determinis-
tic test patterns are mapped. 
 
As shown in Figure 2, the BFF inputs are con-
nected to the LFSR, the pattern counter, and the 
shift counter, while the BFF outputs are connected 
to the XOR-gates at the scan inputs. The BFF 
determines whether a bit has to be flipped based 
on the states of the LFSR, the pattern counter, and 
the shift counter. The pattern counter is part of the 
test control unit, and counts the number of test 
patterns applied during the self-test. The shift 
counter is also part of the test control unit, and 
counts the number of scan shift cycles for shifting 
data in/out the scan chains. 
 
The BFF realizes the mapping of deterministic test 
stimuli to pseudo-random test stimuli. Every 
specified bit (i.e. care bit) in a deterministic 
stimulus either matches to the corresponding bit in 
the pseudo-random stimulus, in which case bit-
flipping must not be performed, or the bit does not 
match, in which case bit-flipping is required. For 
all unspecified bits (i.e. don’t-care bits) in the 
deterministic stimulus, the corresponding bits in 
the pseudo-random stimulus may be arbitrarily 
flipped or not. The BFF should provide that (1) all 
conflicting bits are flipped, (2) all matching bits 
are not flipped while (3) the don’t-care bits may be 
arbitrarily flipped or not. We first consider a CUT 
with a single scan chain. The LFSR generates a 
pseudo-random sequence of test stimuli that is 
shifted into the scan chain. The LFSR and shift

counter (SC) are updated in every clock cycle, 
while the pattern counter (PC) is updated when 
applying a new test pattern. In every clock cycle, 
the DLBIST hardware therefore has a unique state 
identified by the states of the LFSR, PC, and SC. 
The set S denotes the set of all possible states of 
LFSR_PC_SC (here the symbol ‘_’ indicates 
concatenation). 
 
The on-set is the set of LFSR_PC_SC states that 
correspond to the clock cycles in which the 
pseudo-random LFSR output should be flipped. 
Similarly, the off-set is the set of LFSR_PC_SC 
states that correspond to clock cycles in which the 
pseudo-random LFSR output should not be 
flipped. The don’t-care set (dc-set) is the set of 
LFSR_PC_SC states that correspond to clock 
cycles in which the pseudo-random LFSR output 
may be arbitrarily flipped or not. The on-set and 
off-set are disjoint (on-set ∩ off-set = ∅).  The dc-
set contains all states that are not in the union of 
the on-set and off-set: dc-set = S \ (on-set  ∪ off-
set). The on-set, off-set, and dc-set specify the 
operation of the BFF. The dc-set is exploited to 
minimize the logic implementation of the BFF. 
 
The on-set, off-set, and dc-set express a Boolean 
function ϕ({0,1}k) → {0,1,-} where k corresponds 
to the size (i.e. number of bits) of the LFSR, PC, 
plus SC. The symbol ‘-‘ indicates don’t care. For 
instance, consider a simple example of DLBIST 
hardware with a 2-bit LFSR, a 2-bit PC, and a 2- 
bit SC. ϕ(01_10_01) = 1 now indicates that the 
pseudo-random bit should be flipped when the 
LFSR state is 01, the PC state is 10, and SC state 
is 01. The state 01_10_01 is therefore part of the
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Figure 2: Bit-flipping DLBIST architecture. 



 

on-set. ϕ(01_10_11) = 0 indicates that the pseudo-
random bit should not be flipped when the LFSR 
state is 01, the PC state is 10, and SC state is 11. 
The state 01_10_11 is therefore part of the off-set. 
ϕ(10_01_01) = ‘-‘ indicates that the pseudo-
random bit may be flipped or not when the LFSR 
state is 10, the PC state is 01, and SC state is 01. 
The state 10_01_01 is therefore part of the dc-set. 
 
In case of a CUT with multiple scan chains, there 
are separate on-sets, off-sets, and dc-sets 
associated with each scan chain. For a CUT with n 
scan chains, the sets are on-seti, off-seti, and dc-seti 
for scan chain i, 1 ≤ i ≤ n. The BFF now consists 
of the n bit-flipping logics BFFi for each scan 
chain. The size of the BFF implementation can be 
minimized by sharing logic between the BFFi for 
various scan chains. 
 
In the original bit-flipping synthesis [19] [9] [10], 
the sets are represented as sets of k-bit cubes. A 
cube is element of the set {0,1,-}k, and corre-
sponds to a sequence of k bits that are ‘0’, ‘1’, or 
‘-‘. The original synthesis procedure is based on 
Espresso-like logic optimization using the cube-
representation [2], and results in a two-level logic 
implementation of the BFF. 
 
The size of the on-set and off-set increases with the 
number of specified bits and in contrast to 
standard logic synthesis problems, the cubes in 
these sets are very irregular. Hence, logic 
minimization exploiting the on-set, off-set and dc-
set, may have exponential complexity in terms of 
the number of specified bits. 
 

3. BDD-based pattern mapping  
A binary decision diagram (BDD) is a well-known 
representation of a logic function [1]. A BDD is a 
tree-like directed graph, starting from a root 
vertex. A BDD contains non-terminal vertices that 
have two outgoing edges and terminal vertices that 
only have incoming edges. For example, Figure 3 
shows the BDD representation of a parity function. 
The function parity(a,b,c) operates on the input 
variables a, b, and c. The function result is 0 if 
there is an even number of input variables that 
have value 1, while the function result is 1 if there 
is an odd number of input variables that have value 
1. For instance, parity(011) = 0 and  parity(010) = 
1. The labels at the edges correspond to the 
variable value of the parent vertex. The BDD-
based representation of the parity function with n 
input variables contains 2n+1 vertices, while a

cube-based representation of the same function 
would require 2n-1 cubes. The example illustrates 
that a BDD may be a very compact representation 
for certain logic functions. A second advantage of 
BDDs is that the complexity of many operations 
on a BDD scales linearly with the number of input 
variables [3]. 
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Figure 3: BDD representation of parity function. 

 

In the BDD-based bit-flipping synthesis pro-
cedure, the on-set and off-set of the BFF are 
represented by characteristic functions, the on-
BDD and the off-BDD. The on-BDD will output 
the value ‘1’ if the input is taken from the on-set, 
otherwise the output is ‘0’. Similarly, the off-BDD 
will output ‘1’, only if the input is selected from 
the off-set. Checking whether an assignment is 
element of the off-set or the on-set is linear in the 
number of input variables of the BDD, whereas the 
cube-based representation requires an effort linear 
in the cardinality of the sets. 
 
In the presented approach, the sequence of test 
stimuli is partitioned into two parts. The first part 
of the sequence is used only for pseudo-random 
fault detection, and no deterministic stimuli are 
embedded into this part. The outputs of the BFF 
should be disabled during this part. The 
LFSR_PC_SC states for this first part of pseudo-
random test stimuli are included in the dc-set, 
since increasing the dc-set gives more room for 
logic optimization of the BFF. However, the BFF 
will arbitrarily flip some pseudo-random pattern-
bits, and some detected faults may no longer be 
detected by the modified sequence with bit-
flipping. In general, most faults are quickly 
detected by the first few hundreds or thousands 
pseudo-random test patterns. Disabling the BFF 
can be achieved using some simple additional cir-
cuitry that considers the most significant bits of 
the PC. 



 

All deterministic patterns are embedded into the 
second part of the sequence, during which the BFF 
is enabled. The second part usually is 1/2, 1/4, or 
1/8 of the total test sequence. 
 
In general, the sizes of BDDs may grow expo-
nentially with the number of input variables. For 
BDD-based synthesis of the BFF, the only input 
variables are the LFSR, the PC, and the SC. In 
practice the LFSR size is typically below 64 bits, 
the PC size is below 18 bits (which allows to 
generate 2 18 = 256k patterns), and the SC size is 
below 12 bits (which allows scan chains with 
maximum 2 12 = 4,096 flip-flops). Hence, the 
number of inputs to the BFF is below 
64+18+12=94 bits. The sizes of the BDDs for 
representing such BFF are therefore within 
practical limits that can be handled by state-of-the-
art computers and BDD software packages, and 
the complexity of the main operations used here 
are linear in the BDD size. In contrast to that, the 
sizes of the on-set and off-set in the cube-based 
representation increase linearly with the number of 
specified bits, which is increasing with test set and 
CUT size, and the operations on the cube sets are 
up to exponential. 
 
The BDD-based bit-flipping synthesis procedure is 
outlined in Figure 4. The steps are in detail: 
 
1. Fault simulation is performed with the sequence 

of pseudo-random test patterns as generated by 
the LFSR, to determine which faults are 
detected by the pseudo-random patterns. 

 
2. ATPG is used to generate compact deterministic 

test patterns for all faults that are not detected by 
the pseudo-random patterns. The deterministic 
patterns contain a large number of don’t-care 
bits. 

 
3. The deterministic ATPG patterns are mapped 

onto pseudo-random test patterns. The BFF is 
created such that the identified pseudo-random 
test stimuli are modified into the deterministic 
patterns by flipping the appropriate bits. The 
mapping is done such that the size of the 
subsequent BFF implementation is minimized, 
which can be achieved by exploiting the dc-set.  

The first attempt is to assign a pseudo-random 
stimulus to a deterministic stimulus such that a 
minimum number of bits are conflicting. The 
mapping is further optimized using a combina-
tion of the following attempts: 
 
• Minimize the number of clock cycles with 

both matching and conflicting bits. This at-
tempts to maximize the sharing of logic 
between BFFi implementations for different 
scan chains.  

 
• Minimize the number of matching and 

conflicting bits per scan chain. This attempts 
to decouple the on-BDD and off-BDD for each 
scan chain with respect to the state of the PC. 
This increases the degrees of freedom for 
optimizing the corresponding BFFi imple-
mentations. 

 
4. The BDD-based representation of the BFF is 

transformed into a hardware structure de-
scription (e.g. RTL VHDL or Verilog). The 
RTL description can be synthesized using 
commercial logic synthesis tools. 

 
5. Fault simulation is performed with the sequence 

of test stimuli as generated by the LFSR and the 
BFF. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: Bit-flipping synthesis procedure. 
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4. Experimental results  
Below, experiments are reported performed on 
Linux GNU machines equipped with one GB of 
memory and an AMD Atlon-XP processor running 
at 1500 MHz. The BDD-based computations were 
implemented using the CUDD package [21]. 
 
The benchmark circuits are industrial designs 
described in Table 1. The first column reports the 
circuit name encoded like pN, where N denotes the 
number of gates in the circuit. The second column 
gives the number of scan flip-flops contained in 
each design. The last two columns report the fault 
coverage and the fault efficiency obtained after 
applying 10,000 pseudo-random patterns, which 
are the percentage of detected faults and the 
percentage of detected and redundant faults, 
respectively, with respect to the total number of 
faults. 
 
While the original cube-based pattern mapping is 
an iterative algorithm [19], where ATPG, pattern 
mapping and fault simulation are alternating, the 
BDD-based algorithm is a single pass algorithm, 
which involves ATPG and fault simulation less 
often. Hence computing time savings are not only 
due to substituting the cube-based approach by 
BDD-based algorithms, also for ATPG and fault 
simulation computing time is saved. 
 
Table 2 shows that mapping time is reduced from 
several days down to a few minutes, and that also 

the other tasks have significant improvements. The 
overall computing time (including also the time 
spent during the BDD- based synthesis) and the 
memory consumption are given in Table 3. The 
BDD-based approach reduces computing time 
from more than a week down to several hours, 
while also the memory requirements scale quite 
well with the circuit size. 
 

Design # Flip-
flops 

Random fault 
coverage [%] 

Random fault 
efficiency [%] 

p19k 1407 63.11 71.68 

p59k 4730 87.30 97.30 

p127k 5116 82.14 84.30 

p278k 9967 79.92 81.61 

p333k 20756 93.64 95.65 

p951k 104624 92.91 92.92 

p2074k 58835 64.11 94.83 

Table 1: Benchmark characteristics. 

 
No results are available in Table 2 and 3 with the 
cube-based approach for the two largest designs 
due to excessive run-time and memory require-
ments. 
 
Finally, the amazing improvements should not be 
paid by less quality in terms of fault efficiency and 

 
 Cube-based BDD-based 
Design ATPG time 

[h:m] 
Mapping time 

[h:m] 
Fault simulation 

time [h:m] 
ATPG time 

[h:m] 
Mapping time 

[h:m] 
Fault simulation 

time [h:m] 
p19k 00:00 02:57 00:33 00:00 00:02 00:01 
p59k 00:05 02:20 00:30 00:01 00:02 00:03 

p127k 02:22 76:54 18:25 03:10 00:14 00:12 
p278k 05:20 193:10 37:23 02:29 00:09 00:22 
p333k 00:48 116:15 47:45 00:37 00:14 00:17 
p951k - - - 01:14 03:12 00:57 

p2074k - - - 02:55 03:59 00:35 

Table 2: Run-time for different tasks of the cube-based and BDD-based algorithm. For the design ‘p2074k’ 
a machine equipped with 2 GB of memory and an Intel Pentium 4 CPU running at 2.4 GHz was used. 



 

Table 3: Run-time and memory consumption of the cube-based and BDD-based algorithm. For the design 
‘p2074k’ a machine equipped with 2 GB of memory and an Intel Pentium 4 CPU running at 2.4 GHz was 

used. 
 
hardware overhead. Table 4 reports the fault 
efficiencies obtained in both cases. In order to 
have comparable results of time and memory, the 
fault efficiency of the BDD-based approach was 
limited to the one reached by the cube-based 
approach. By spending more resources, even 
higher fault efficiency could be obtained, only 
limited by the resources given to the ATPG tool. 
The last column (Cell area) shows the logic over-
head of the BFF implementation relative to the cell 
area of the CUT, obtained using a commercial 
synthesis tool and a proprietary library. Only logic 
overhead of the BFF implementation is given; the 
overhead of the other parts of the DLBIST 
hardware may be neglected. Again, the BDD-
based approach outperforms the cube-based 
approach. 
 
Table 5 illustrates how the computational re-
sources are scaling when the targeted fault effi-

ciency is increased to levels allowed by the ATPG 
tool. Most of the additional run-time is consumed 
during the deterministic pattern generation and the 
BDD-based synthesis, while the time spent for 
fault simulation remains constant. These final fault 
efficiencies are practically not reachable by the 
cube-based approach in the case of the last four 
designs. Additionally, Table 5 shows that the over-
head ratio decreases significantly for the larger 
designs. The presented approach does not only 
scale very well in terms of computing time and 
memory, but also in terms of area overhead. 
 
During the generation of the BDD-based repre-
sentation, no static or dynamic variable reordering 
was used. The variables were a priori and 
optimally arranged in groups corresponding to the 
states of the LFSR, PC and SC. The reported 
experimental results were obtained with the same 
variable order for all the designs. 

 
 Cube-based BDD-based 

Design Fault efficiency [%] Cell area [%] Fault efficiency [%] Cell area [%] 
p19k 96.86 89.67 97.68 21.71 
p59k 99.06 7.64 99.15 3.59 
p127k 94.61 27.86 95.57 9.81 
p278k 90.83 25.77 91.62 9.66 

p333k 97.46 12.07 97.52 3.56 

Table 4: Fault efficiency and logic overhead of the cube-based and BDD-based algorithm.  

 
 

 Cube-based BDD-based 

Design Total time [h:m] Total memory [MB] Total time [h:m] Total memory [MB] 

p19k 03:30 58 00:27 58 

p59k 02:55 138 00:11 66 

p127k 97:41 368 11:13 211 

p278k 235:53 584 15:21 318 

p333k 164:48 660 09:07 290 

p951k - - 14:22 1106 

p2074k - - 18:37 1865 



 

 

Design # Embedded 
patterns 

Fault efficiency 
[%] 

Total time    
[h:m] 

Memory   
[MB] 

Cell area    
[%] 

p19k 181 99.26 00:32 91 25.36 

p59k 137 99.19 00:11 68 3.75 

p127k 582 99.27 18:20 295 21.81 

p278k 1549 98.89 55:37 536 34.58 

p333k 1298 99.31 23:00 359 7.00 

p951k 259 99.67 14:22 1106 1.49 

p2074k 302 99.29 18:37 1865 2.64 

 
Table 5: Results obtained with the BDD-based approach reaching a fault efficiency level close to 100%. 
For the designs ‘p278k’ and ‘p2074k’ a machine equipped with 2 GB of memory and an Intel Pentium 4 

CPU running at 2.4 GHz was used. 
 
5. Conclusions 
A new pattern mapping algorithm for “test set 
embedding” deterministic BIST schemes was 
proposed which exploits standard BDD operations. 
This way, improvements of several order of 
magnitude are obtainable compared with the cube-
based approach, e.g., in terms of both run-time and 
memory requirements. With this approach, 
computing and memory resources for DLBIST 
synthesis are in the same order of complexity as 
the resources required for ATPG or fault 
simulation. The gains of efficiency can also be 
used to obtain even better solutions in terms of 
hardware overhead and fault coverage. 
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