
0-7803-7542-4/02 $17.00 © 2002 IEEE 1169

ITC INTERNATIONAL TEST CONFERENCE Paper 41.2

Adapting an SoC to
ATE Concurrent Test Capabilities

Rainer Dorsch
�

, Ramón Huerta Rivera
�

Hans-Joachim Wunderlich
�

, Martin Fischer
�

�

Computer Architecture Lab, University of Stuttgart, Germany
�

Agilent Technologies, Böblingen, Germany

Abstract— Concurrent test features are available in the SoC
testers to increase ATE throughput. To exploit these new features
design modifications are necessary. In a case study, these modifica-
tions were applied to the open source LEON SoC platform contain-
ing an embedded 32 bit CPU, an AMBA bus, and several embedded
cores. The concurrent test of LEON was performed on an SoC tester.
The gain in test application time and area costs are quantified and
obstacles in the design flow for concurrent test are discussed.

Keywords: ATE, Concurrent Test, SoC Test, Test Resource Parti-
tioning

I. INTRODUCTION

A system-on-a-chip (SoC) typically contains various pre-
designed and prevalidated embedded cores like memory cores,
processor cores, interface cores, mixed-signal, and analog
cores. The system integrator embeds cores designed and val-
idated once by a core designer in many systems. In order to fa-
cilitate the reuse of embedded cores, vendor independent docu-
mentation guidelines and widely accepted communication stan-
dards, like the AMBA, IBM core connect, MIPS PI (Peripheral
Interface) or wishbone buses, have been developed [1–3]. Also
the test of an embedded core is developed and validated once
by the core designer and reused and integrated by system in-
tegrators in many SoCs. The system integrator is responsible
for designing an appropriate test access mechanism (TAM) to
transport the test data from the chip boundary to the embedded
core under test [4–11].

Typically, each embedded core and each interface type in a
hierarchical SoC design requires either a different test method
or has at least a different test application time. Previously, tester
limitations required a close to serial test of all embedded cores.
The SoC testers on the market now may overcome these limits.
An SoC tester has an additional port layer in its pin hierarchy
[12]. Each port has the same setup possibilities as the device
layer had in traditional testers.

An SoC tester may assign a port to each functional embedded
core to test the cores concurrently, even if they require different
test methods. For example, a properly configured SoC tester
may activate and control a core containing memory BIST and
at the same time run tests at a different frequency on a phase-

locked-loop core located elsewhere on the chip. The only pre-
requisite is that the two cores do not use the same resource (ATE
resource or IC resource, such as pin, wire, . . .) in a conflicting
way at the same time. Concurrent test of many embedded cores
reduces test time for an SoC in many cases significantly [13,14].

In the next section, we review the tester requirements for con-
current test and introduce the design requirements of an SoC
for concurrent test. To evaluate gains and costs of concurrent
test and requirements for the EDA tools, we adapted the open
source LEON SoC platform for a concurrent test on an Agilent
93000 SoC tester. In Section III the LEON SoC platform itself
and the implemented modifications necessary to make it suit-
able for a concurrent test are described. Section IV discusses
the used design flow which includes standard tools and user de-
fined scripts. Also manual steps and problems in the design
flow are discussed. The area costs, the impact on test appli-
cation time and the test program development time of the con-
current test approach and a list of requirements to automate the
design flow are given in Section V.

II. CONCURRENT TEST

Concurrent test reduces test application time by applying as
many tests as possible at the same time. The test program de-
velopment time is reduced, because the test pattern files for the
cores tested concurrently need not to be merged by a test devel-
opment engineer, but are loaded directly on the SoC tester. In
order to perform concurrent test, both tester and design have to
fullfil certain requirements.

A. Tester Requirements

In standard ATE, the common hierarchy reflected by the soft-
ware in charge of building the device setup for the specific tester
has three levels of abstraction as depicted in Figure 1. These
levels were introduced to ease the programming of the tester.
At the lowest level in the hierarchy we find the individual IC
pin, for which I/O characteristics, voltage levels, timing shape
of signals and test data may be configured. If we step one level
up, we find the pin group which is used to manage the setup
of pins which share common properties such as a memory data

1170

Paper 41.2

or address bus. Finally, at the topmost level in the hierarchy,
we have the device under test (DUT) which corresponds to the
whole IC.

PIN

PIN GROUP

DUT

Fig. 1. Levels of hierarchy for standard ATE machines.

From the design point of view, SoCs introduce one additional
level of hierarchy: the core level. This situation introduces a
gap in the traditional ATE hierarchy which has to be filled in.
For that reason, new generation testers include the so called test
PORT in the ATE hierarchy, which is mapped with the embed-
ded core in the chip design hierarchy, as shown in Figure 2.

PIN

PIN GROUP

DUT

PORT

Fig. 2. Hierarchy present in new generation testers.

The test port allows the same setup possibilities as we had
before for the DUT. This means that multiple port setups may
be concurrently in the ATE as the DUT is now above in the
hierarchy. The main implications regarding the ATE operation
can be summarized as follows:

� Multiple clock frequencies are allowed to operate at the
same time (each one assigned to a different port).

� Multiple pattern files are also possible to be applied con-
currently to the same device (with no overlapping pin con-
tained in them).

So the test port in the ATE will be highly correlated with the
core in the SoC, providing the additional flexibility and perfor-
mance required to deal with core-based designs as depicted in
Figure 3.

B. Design Requirements

The concurrent test approach for core-based ICs tests as
many cores as possible at system level as it is shown in Fig-
ure 4. The number of cores concurrently tested is often limited
by the number of available chip pins or available tester chan-
nels. The concurrent test methodology is compatible with the
design methodology of SoCs maintaining the hierarchy levels

CPU MPEG

RAM UDL

SoC

PORT #1 PORT #2

PORT #3 PORT #4

Fig. 3. Test scenario after the introduction of test ports.

contained in the IC, distinguishing the core level tests and trans-
lating them into system tests which will be core oriented.

RF

RAM

CPU

UDL

MPEG

TIME

Fig. 4. Concurrent Test Approach

In order to test the blocks of an SoC concurrently, the design
must be modified as follows:

� A test wrapper must be inserted which will isolate the core
from its system environment during test [15–17].

� A test access mechanism (TAM) must be inserted, which
will transport the test patterns from the chip pins to the
cores and the test reponses from the cores to the chip pins
[4–10].

� To the test of one or more cores a port must be assigned.
If more than one core is assigned to a port, some control
and clock signals may be shared.

� A multi-objective test scheduling must be done. The ob-
jectives of the scheduling are

– to maximize the cores per test port in order to share
control signals,

– to maximize the throughput of the test access mecha-
nism,

– to minimize the test length, and
– to keep the test power consumption below a certain

limit.
The goal of this paper is to present a case study where all these
tasks are performed manually in order to evaluate:

� Advantages in terms of shorter test application time.
� Advantages in shorter test program development time.
� Hardware costs for the required additional DfT.

1171

Paper 41.2

� Additional features of EDA tools required to automate the
DfT process and minimize the impact on the design.

III. LEON SOC PLATFORM

LEON is an open source SoC platform for embedded appli-
cations [18]. It was developed for space mission applications
by the European Space Agency (ESA). We used it to develop
a concurrent test for an SoC. The necessary modifications were
performed manually in order to evaluate the methodology using
a real design on a real tester.

A. Design

LEON contains an embedded 32 bit processor, an AMBA bus
[2], and peripherals. The processor core is compatible with the
Scalable Processor ARchitecture (SPARC) Version 8 [19] and
includes an integer unit, a register file (embedded RAM) as well
as data and instruction caches. The platform provides an inter-
face for a floating point unit and a coprocessor. Moreover, sev-
eral peripherals such as UARTs, timers, a memory controller,
and an I/O port are included. The platform may be customized
by connecting user defined cores to the AMBA bus. The block
diagram of LEON containing the main parts of the design is
shown in Figure 5.

INTEGER UNIT

CACHEMEM REGFILE

ACACHE

MEMORY
CONTROLLER

I/O PORT TIMERS

AHB MASTER

IRQ CTRL

UART1 UART2 APB BRIDGE

AHB BUS

APB BUS

INSTR.
CACHE

DATA
CACHE

Fig. 5. LEON Block Diagram.

The interconnection scheme between the blocks is imple-
mented by the Advanced Microcontroller Bus Architecture
(AMBA). It consists of two on-chip buses: the Advanced High-
performance Bus (AHB) for high data volume transactions and
the Advanced Peripheral Bus (APB) for lower power consump-
tion peripherals with low data transfer rates.

B. Block Test

The LEON platform comes without a detailed test concept.
The starting point for test development was a set of bare blocks
for which a test had to be implemented. We decided to employ

full scan design for the individual blocks. As for any firm or
hard cores the scan chain configuration was taken as fixed later
on. After scan chain insertion ATPG was performed for each
individual block. On-chip memories were assigned a zero solid
/one solid sequence of patterns to test them. The results are
shown in Table I. Column 1 shows the names of the blocks of
LEON as shown in Figure 5. Columns 2 and 3 show the number
of primary inputs and outputs of each block. Column 4 shows
the size of the combinational part of each unit in combinational
area units (CAU) reported by the logic synthesis tool and Col-
umn 5 the number of flip-flops of each unit. The number of test
patterns generated for each block is shown in Column 6.

Block Name PI PO CAU FF Test
count patterns

Integer Unit 139 273 2196 592 134
Data Cache 221 215 824 167 74
Inst. Cache 192 171 361 53 57
Mem. Ctrl. 145 155 578 216 268

Timers 32 27 516 127 51
UART2 20 18 228 94 36
UART1 20 18 228 94 34
I/O Port 63 80 220 104 31

IRQ Ctrl. 56 34 236 64 68
APB Bridge 301 377 299 13 29
AHB Master 145 191 181 9 15

Acache 157 161 77 13 16
Reg. File1 58 64 – – 512

Cache Mem.2 140 114 – – 1024

TABLE I
ATPG RESULTS FOR THE SET OF CORES.

C. Test Wrappers

Test wrappers isolate each block from its system environment
during test. A test wrapper was inserted manually at RT level
by modifying the VHDL source code. The selected architec-
ture was based on the IEEE P1500 wrapper model [16,17]. For
each core this model was only partially implemented as not all
the functionality provided by the P1500 was necessary for con-
current test purposes. That means that each core wrapper only
supports two of the six modes proposed by the standard IEEE
P1500:

� Normal operation mode, in which the wrapper acts as a
transparent interface between the core logic and the system
chip.

� Internal test mode, either parallel or serial internal test,
depending upon core necessities. In this mode the neces-
sary core isolation is provided as well as the internal core
test through the input and output TAMs, implementing the
necessary parallel to serial or serial to parallel test data

1172

Paper 41.2

conversion to cope with the relationship between core ter-
minals and chip pins.

In the test of the Leon SoC platform we focused on the test
of the blocks itself, since they usually dominate the test ap-
plication time. No external test modes were implemented for
interconnection test.

After wrapping the cores (including on-chip memories),
the required TAM width and required test application time is
known. The data are shown in Table II. Column 1 shows the
name of the block, Column 2 the required TAM width, which
is the total number of scan chains and wrapper chains of the
block. In Column 3 the number � of clock cycles necessary to
run the test is given. This number is the sum of the number of
scan cycles and capture cycles

� � � � �
 � � � � � � � � � � � " �
 � '

where � is the number of patterns that the test set for a given
core contains and � � � � � � � � " is the maximum number of nec-
essary clock cycles to scan in or scan out a test pattern of the
wrapped core.

Block name TAM Width Test cycles
Integer Unit 20 6344
Data Cache 5 6374
Ins. Cache 1 14267
Mem. Ctrl. 8 14794

Timers 5 1715
UART2 3 1775
UART1 3 1679
I/O Port 4 1695

IRQ Ctrl. 2 4484
APB Master 1 2879
AHB Master 1 3215

Acache 1 2974
Reg. file 12 4102

Cache mem. 14 13323

TABLE II
EXPERIMENTAL RESULTS FOR THE WRAPPED CORES

D. Concurrent Test

Concurrent test requires, that the blocks are accessible from
the chip pins by implementing a test access mechanism (TAM).
A test controller was implemented, which scheduled the test of
the blocks.

For each block of LEON we configured a separate port in the
ATE. That implies that each core may be tested with its own
pattern file and with its own frequency (which was not required

+
The register file was a 4Kbyte embedded RAM built from specific library

cells for which no area information was provided by the synthesis tool.,
The same applies for the 6Kbyte embedded cache memory.

for the LEON platform). 40 pins were available to test the SoC.
Half of these were used for scan in, the other half were used for
scan out.

1) TAM Design: The TAM transports test patterns on-chip.
When selecting the TAM architecture for a core-based design
the system integrator can tradeoff the TAM bandwidth (trans-
port capacity) against area costs of the TAM. In our case study
we maximized TAM bandwidth (i.e. minimized test time ap-
plication) by matching the 40 externally accessible pins of the
chip. This results in twenty pins available to apply test data
through the input TAM and twenty pins to transport captured
responses.

In a multiplexing TAM architecture every core gets assigned
all available TAM bandwidth, i. e. all cores are connected to all
scan inputs and all scan outputs of the IC [20]. Only one core
may be tested at a time. In the distribution TAM architecture
each core gets assigned its private TAM part and all cores may
be tested concurrently [20]. Figure 6 sketches the selected TAM
architecture, which is a mixture between a multiplexing and a
distribution architecture.

Core B

Core A

Core C

IN OUT
M
U
X

n

n n

n

n

na na

nb nb

Fig. 6. Multiplexed Distribution TAM Architecture [20]

The pure distribution architecture maximizes concurrency,
since the entire set of cores is tested concurrently. This archi-
tecture was not possible due to the constraint of total available
bandwidth. The implemented concurrent test contained some
sequential stages containing one or more cores (depending on
bandwidth allocation necessities for the individual cores) in the
same stage.

2) Test Scheduling: The goal of test scheduling is to max-
imize throughput by concurrently addressing as many cores as
possible at every point in time without exceeding the constraint
of global available bandwidth, i. e. twenty pins for test input
stimuli and twenty pins for test responses capture. Test schedul-
ing was performed manually in the case study. A test controller
with 8 states was designed and implemented on-chip to per-
form the desired core test schedule. The test controller will set
up the wrapper control inputs of each core properly thus estab-
lishing which core(s) is(are) under test at every moment during
test execution. The selected test schedule for the set of cores is
shown in Figure 7. The - axis shows the total TAM bandwidth
usage, where 100% are 20 signals. The . axis shows the test
application time in clock cycles. One to five cores are tested

1173

Paper 41.2

concurrently and throughput and test controller complexity are
optimized. Introducing more controller states allows to remove
the “idle time” between cache memory and memory controller.

5000

10000

15000

20000

25000

30000

35000

10 20 30 40 50 60 70 80 90 100

INTEGER
UNIT

CACHE
MEMORY

MEMORY
CONTROLLER

REGISTER FILE

DATA
CACHE

APB MST IOPORT UART1

UART2

TIMERS
IRQCTRL

AHB_MST

ACACHE

ICACHE

TEST
CYCLES

BW USE
(%)

Fig. 7. Final test schedule

E. Testing Silicon on the Agilent 93000

The design was mapped on an FPGA and, after some man-
ual manipulations to adapt the prototyping board to the tester
loadboard, the global SoC test was run on the Agilent 93000
tester. This SoC tester was chosen for the case study, because
it’s Test-Processor-per-Pin architecture provides all capabilities
to meet the tester requirements for concurrent testing as out-
lined in section II-A. The tester’s programming environment
for concurrent testing supports to freely assign every tester pin
to an arbitrary number of independent ports, which is a prereq-
uisite for efficiently testing core-based designs [12]. For each
block of the platform, a tester port was allocated and the pa-
rameters such as the test frequency and the pattern file were
customized on a block basis. Experimental results about testing
times will be presented in Section V.

IV. TEST FLOW

LEON does not come with any DfT or test patterns. In order
to perform a concurrent test for each block, scan chains were
inserted and configured as shown in the previous section. For
each block test patterns were generated. Then wrappers and the
TAM were inserted at RT level.

A. General Flow

The general design flow for the implementation of the con-
current test approach on the Leon SoC is shown in Figure 8.

VHDL BEHAVIORAL DESCRIPTION:
FUNCTIONAL DESIGN + TEST WRAPPERS

SYNTHESIS

ATPG &
SCAN INSERTION

PROTOTYPE
TARGETING

LOGIC
SIMULATION

FINAL DESIGN

RTL

NETLIST
LEVEL

PLACE &
ROUTE

STANDARD
SYNTHESIS TOOL

ATPG & SCAN TOOL

USER DEFINED
SCRIPT

PLACE & ROUTE
BACKEND

LOGIC
SIMULATOR

Fig. 8. Initial Design Flow.

In the first step all the necessary test wrappers, the TAM
architecture and the test controller adding the necessary pins
to the top entity file have to be codified in VHDL at register
transfer level. Logic synthesis should produce the first system
netlist. In the netlist of each block scan chains were inserted,
and the necessary test patterns were generated using a commer-
cial test insertion tool.

Finally, the steps corresponding to the physical domain such
as place and route were performed with physical backend for
the FPGA flow so that at the end we had the final design ready
to be downloaded in the evaluation board. The wrapper’s func-
tionality as well as the correct operation of the test controller
have been validated by a gate level simulator. Once the whole
design was successfully simulated and no more modifications
were needed the last step was to place the device on the real
ATE and perform its concurrent test following the designed
schedule.

B. Manual Interaction

There were caveats that induced to manually interact with
the design flow. These problems can be mainly categorized as
follows:

� Unused bus signals: the AMBA bus has a standardized
set of signals in order to allow to plug predesigned and
prevalidated cores in the LEON SoC platform. Even if the
core does not use all bus signals, they are included in the
core interface definition and are removed during logic syn-
thesis. If these signals are wrapped:

– Additional wrapper cells are needed

1174

Paper 41.2

– Logic and interconnects cannot be removed during
logic optimization, because it would change the be-
havior of the test wrapper when a pattern is shifted
through the wrapper cells.

This may increase the area cost for concurrent test signif-
icantly and decrease yield due to unused but tested logic
on the chip. In the wrapper design we kept track of the un-
connected inputs and avoided with this manual procedure
unnecessary wrapper cells. This task could be avoided if
these cells would be tagged and a logic optimization tool
removing these cells and the unused logic as it is done
without a test wrapper.

� Abstraction level related problems: the designer de-
cided to instantiate the wrappers at RTL because usually
this implies less impact on the design performance than if
the instantiation was done at netlist level. But the wrap-
per relies on a “DfT-ready” core and this happens to be
true later on the design flow. For that reason some of the
core to wrapper connections (e.g. scan in/out core termi-
nals with wrapper TAM terminals) had to be implemented
at netlist level. A script was developed which was insert-
ing the connections. Alternatively, the complete wrapper
could have been inserted at netlist level.

V. RESULTS AND EXPERIENCES

The main impacts of concurrent test on the design and test of
the Leon SoC platform have been gate count costs, test applica-
tion time reduction, and ease of core test integration.

A. Gate Count Costs

The area penalty introduced by the concurrent test approach
is due to the following elements:

� The costs in terms of additional gates introduced by the
test controller can be neglected in the total gate count. In
our case, we implemented it as a finite state machine with
eight different states, thus resulting in three additional flip-
flops and some combinational gates. In a real SoC this is
more than acceptable, as we are talking about designs con-
taining several millions of transistors in the same silicon
die.

� The costs caused by the wrappers was very high. It ap-
proximately tripled the total design size. Table III3 shows
that this increment in the design size was mainly due to in-
stantiations of the wrappers for blocks, in which the wrap-
per logic was several times larger than the block logic.
Column CAU shows the size of the blocks without wrap-
pers in area units (AU) reported by the logic synthesis tool
and Column WCAU the size of the blocks with wrappers.
Column IF shows the incremenation factor. The costs may
be reduced by clustering several blocks in a single wrap-
per. These costs are not specific for concurrent testing, but

�

Statistics were not provided by the synthesis tool for the embedded memory
cores.

it is present in any core based SoC which isolates the cores
from the system during test [16, 17, 21, 22].

Block name CAU WCAU IF
Integer Unit 2929 4764 1.62
Data Cache 998 2946 2.95
Ins. Cache 424 2060 4.85
Mem. Ctrl. 1127 2329 2.06

Timers 686 933 1.36
UART2 351 504 1.43
UART1 351 502 1.43
I/O Port 325 903 2.77

IRQ Ctrl. 301 665 2.21
APB Master 294 3287 11.18
AHB Master 112 1558 13.91

Acache 97 1376 14.18

Total 7995 21827 2.73
TABLE III

WRAPPER ARED COSTS

� The number of interconnections reported by the physical
design backend for the FPGA increased for the modified
LEON design by a factor of 2.7. This is roughly the same
number as the gate count increase for the test wrappers.
Thus the additional wiring for the multiplexed-distribution
TAM scheme may be neglected.

B. Test Application Time Reduction

Since the test assumption was that all blocks need a differ-
ent test port, with a traditional tester only a multiplexing TAM
would have been possible and all cores would be tested seri-
ally. This would result in a test application time of 79620 clock
cycles, which is the sum of the cycles in the last column in Ta-
ble II. On an SoC tester and prepared for concurrent testing
Leon required a test application time for its blocks of 35,486
clock cycles with the described design modifications. Thus, we
have reduced the test time by 44134 clock cycles, which is a re-
duction of 55,43 % compared to the serial test application time.

C. Core Test Integration

The integration of the core test into the system test was
straight forward. It was sufficient to load the pattern file for
each core onto the tester, no software conversion was necessary
to merge the core tests into one big test pattern file. Only a cou-
ple of little scripts were developed to adapt the ASCII output
produced by the ATPG tool to the ASCII input format required
by the ATE software.

D. Tool Requirements

Implementing concurrent testing for the LEON SoC platform
would be significantly easier if commercial EDA tools would
fulfill the following requirements:

1175

Paper 41.2

� Automatic selection of cores which are clustered into one
block which is wrapped in order to avoid large area costs
for the insertion of test wrappers

� Automatic insertion of a standardized wrapper at RT or
netlist level. Unused signals removal and potential wrap-
per modifications should be done by the logic synthesis or
a netlist postprocessing tool

� Selection of the TAM architecture and insertion of the
TAM should be automated

� Tools for test scheduling, which were not available at the
time the case study had been conducted

� Assigning ports in a way that they may share resources
like clock signals could further improve the results

The past three items are not independent. So the selection of a
TAM architecture in which two cores share resources may pro-
hibit that they are tested concurrently. Furthermore, the integra-
tion of the scan chain design of soft cores into the optimization
process for TAM, scheduling, and port assignment would be
desirable.

VI. CONCLUSIONS

A concurrent test approach was implemented for an existing
SoC platform. The implementation requirements for concur-
rent test are a subset of any core based test approach, like the
IEEE P1500 standard for embedded core test [16, 17, 21, 22]
or proprietary methods like PhilipsTESTRAIL / TESTSHELL /
TESTCONTROLMECHANISM [15]. The area costs for imple-
menting a concurrent test strategy for systems which have a
core based test strategy is very low. Using the concurrent test-
ing functionality of an SoC tester reduced test application time
significantly. Test generation for concurrent test is currently a
time consuming task due to a lack of tool support. With the
efforts to define a standardized test interface between core and
system, appropriate EDA tools may be implemented to auto-
mate the concurrent test methodology, fulfilling the short time
to market requirements for today’s SoCs.

REFERENCES

[1] M. Birnbaum and H. Sachs, “How VSIA Answers the SOC Dilema,”
IEEE Computer, vol. 32, pp. 42–50, June 1999.

[2] D. Flynn, “AMBA: Enabling Reusable On-Chip Design,” IEEE Micro,
pp. 20–27, July 1997.

[3] W. Peterson, “Design philosophy of the wishbone soc architecture,” 1999.
[4] D. Bhattacharya, “Hierarchical Test Access Architecture for Embedded

Cores in an Integrated Circuit,” in Proceedings of the VLSI Test Sympo-
sium (VTS), pp. 8–14, IEEE, 1998.

[5] M. Nourani and C. Papachristou, “Parallelism in Structural Fault Testing
of Embedded Cores,” in Proceedings of the VLSI Test Symposium (VTS),
pp. 15–20, IEEE, 1998.

[6] I. Ghosh, N. K. Jha, and S. Dey, “A Low Overhead Design for Testabil-
ity and Test Generation Technique for Core-Based Systems,” in Proceed-
ings of the IEEE International Test Conference (ITC), pp. 50–59, October
1997.

[7] I. Ghosh, S. Dey, and N. K. Jha, “A Fast and Low Cost Testing Tech-
nique for Core-based System-on-Chip,” in Design Automation Confer-
ence, pp. 542–547, June 1998.

[8] L. Whetsel, “Addressable Test Ports: An Approach to Testing Embedded
Cores,” in Proceedings of the IEEE International Test Conference (ITC),
pp. 1055–1064, IEEE Computer Society Press, September 1999.

[9] M. Nourani and C. Papachristou, “Structural Fault Testing of Embedded
Cores Using Pipelining,” Journal of Electronic Testing Theory and Appli-
cations (JETTA), vol. 15, pp. 129–144, August/October 1999.

[10] E. Larsson and Z. Peng, “An Integrated System-On-Chip Test Frame-
work,” in Proceedings of the Design Automation and Test in Europe
(DATE), pp. 138–144, 2001.

[11] Y. Zorian, E. Marinissen, and S. Dey, “Testing Embedded-Core-Based
System Chips,” in Proceedings of the IEEE International Test Conference
(ITC), pp. 130–143, IEEE, 1998.

[12] M. Goto and K.-D. Hilliges, “The DFT-Age ATE Architecture - The
Multi-Port ATE,” in SEMICON – SEMI Technology Symposium (STS),
(Chiba, Japan), pp. 5–82 – 5–91, 2000.

[13] L.-T. Wang and M. Fischer, “Concurrent testing races to catch up with
SoCs,” Integrated Communications Design (ICD), March 2001.

[14] M. Fischer, “Concurrent Test - A Breakthrough Approach for Test Cost
Reduction,” in European Manufacturing Test Conference (EMTC), 2001.

[15] E. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, and
C. Wouters, “A Stuctured and Scalable Mechanism for Test Access to
Embedded Reusable Cores,” in Proceedings of the IEEE International
Test Conference (ITC), (Washington, DC), pp. 284–293, IEEE Computer
Society Press, October 1998.

[16] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Towards
a Standard for Embedded Core Test: An Example,” in Proceedings of the
IEEE International Test Conference (ITC), pp. 616–627, IEEE, 1999.

[17] E. J. Marinissen, “On Using IEEE P1500 SECT for Test Plug-n-Play,” in
Proceedings of the IEEE International Test Conference (ITC), (Atlantic
City, NJ), pp. 770–777, IEEE, IEEE, 2000.

[18] J. Gaisler, “LEON Web Site.” http://www.gaisler.com/, 2002.
[19] SPARC International, Inc, http://www.spart.org/standards/, The SPARC

Architecture Manual Version 8, 1992. Revision SAV080SI9308.
[20] J. Aerts and E. J. Marinissen, “Scan Chain Design for Test Time Reduc-

tion in Core-Based ICs,” in Proceedings of the IEEE International Test
Conference (ITC), pp. 448–457, IEEE, 1998.

[21] Y. Zorian, “Test Requirements for Embedded Core-based Systems and
IEEE P1500,” in Proceedings of the IEEE International Test Conference
(ITC), pp. 191–199, 1997.

[22] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing Embedded-Core-Based
System Chips,” IEEE Computer, vol. 32, pp. 52–60, June 1999.

	ITC02
	Table of Contents
	Author Index

