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Abstract

This paper presents a logic BIST approach which combines
deterministic logic BIST with test point insertion. Test points are
inserted to obtain a first testability improvement, and next a de-
terministic pattern generator is added to increase the fault effi-
ciency up to 100%. The silicon cell area for the combined ap-
proach is smaller than for approaches that apply a deterministic
pattern generator or test points only. The combined approach also
removes the classical limitations and drawbacks of test point in-
sertion, such as failing to achieve complete fault coverage and a
complicated design flow. The benefits of the combined approach
are demonstrated in experimental results on a large number of
ISCAS and industrial circuits.

1. Introduction

Built-in self-test (BIST) for random logic is becoming an

attractive alternative in IC testing [28]. Advances in deep-

submicron IC process technology and core-based IC design meth-

ods allow to implement system chips that contain millions of tran-

sistors. The traditional approach of external testing using only

automated test equipment (ATE) is becoming more and more

difficult and costly. BIST is therefore expected to be widely used

for IC manufacturing test in the near future. In addition, BIST

already is commonly applied for board-level IC test and field test

of critical applications such as telecommunication systems.

Logic BIST is currently supported by a few commercial

CAD tools that are all based on the STUMPS architecture for

pseudo-random testing. STUMPS is a test-per-scan BIST scheme,

in which BIST hardware is added to a scannable circuit-under-test

(CUT) [1][2]. Pseudo-random test stimuli are generated by a lin-

ear-feedback shift register (LFSR) or cellular automaton (CA),

while the test responses are compacted into a signature by a mul-

tiple-input signature register (MISR). A test control unit controls

the operation of the LFSR, MISR, and the scan chains in the CUT.

A phase shifter is often added to obtain decorrelated pseudo-

random stimuli for multiple scan chains [21].

The STUMPS architecture is attractive since it requires only

a small amount of silicon area. However, the fault coverage that

can be achieved with pseudo-random test patterns is usually insuf-

ficient for manufacturing test or high-quality field test. A straight-

forward approach to achieve complete fault coverage of all non-

redundant faults is to apply additional external test patterns which

have been generated by ATPG (‘top-off patterns’). However, this

approach still requires a considerable amount of external testing.

For instance, it has been reported in [3] that detecting the last 10%

of undetected faults typically requires 70% or more of the test

patterns in an ATPG test set.

An alternative approach for improving fault coverage is to

use an enhanced BIST scheme, in which either the CUT or the on-

chip pattern generator is improved. Commercial logic BIST tools

currently offer test point insertion (TPI) to improve the random

testability of the CUT. Test points however may affect the CUT’s

performance, and additional timing analysis and design iterations

complicate the design flow. TPI improves the fault coverage, but

restrictions on where to insert test points as well as limitations of

TPI algorithms, cause that complete fault coverage is difficult to

achieve with TPI. Hence, additional external ATPG patterns still

have to be applied to improve fault coverage. For instance, top-off

ATPG patterns are applied in [14] on top of logic BIST with TPI

to improve the fault coverage from 95-96% to 96-97%, which still

requires 25-65% of the patterns in the full ATPG test set.

Complete fault coverage without CUT modification and

external test patterns can be achieved by using a BIST scheme

containing a more sophisticated pattern generator. Examples are

weighted pseudo-random or pseudo-exhaustive pattern generators,

which however require a relatively large amount of additional

silicon area. A more promising approach is deterministic logic

BIST (DLBIST) in which a deterministic pattern generator is

used. Various DLBIST schemes have been proposed recently, e.g.

schemes based on reseeding [11][12], bit-fixing [25], bit-flipping

[16][17][18][27], and folding counters [13][19]. The bit-flipping

scheme seems to be most promising.

In this paper we propose a logic BIST scheme that com-

bines the strengths of both test point insertion and deterministic

logic BIST. The general idea is that inserting a limited amount of

test points can already result in a major increase in fault coverage.

TPI is however not suited for obtaining complete fault coverage,

and therefore we apply a deterministic pattern generator in addi-

tion. This combined approach allows to achieve complete fault

coverage, while avoiding the limitations and drawbacks of TPI,

and reducing the silicon area when compared to a pure DLBIST

implementation. We use a TPI method based on [23] and bit-

flipping DLBIST. To the best of our knowledge, this is the first

paper which proposes such a combined approach.

In the remainder of this paper, first prior work on bit-

flipping DLBIST and TPI is summarized in Section 2. The com-

bined DLBIST-TPI approach is described in Section 3, and details

on the TPI algorithm are given in Section 4. The impact of the

combined approach on the design flow is discussed in Section 5.

Experimental results on a large set of ISCAS benchmark circuits

and industrial circuits are reported in Section 6, and Section 7

concludes the paper.
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2. Prior Work

2.1 Bit-Flipping DLBIST

The architecture of the bit-flipping DLBIST scheme is

shown in Figure 1 [16][17][18][27]. The LFSR generates a se-

quence of pseudo-random test stimuli. Some of these stimuli are

modified by the bit-flipping logic (BFL). The BFL is constructed

by considering deterministic ATPG patterns for those faults that

are not detected by the pseudo-random stimuli. Hence, the BFL

changes some pseudo-random test stimuli as generated by the

LFSR into deterministic stimuli, which ensures that complete fault

coverage can be achieved. The stimuli are applied to the CUT via

the scan chains, and the test responses are compacted in a MISR.

Figure 1: Bit-flipping DLBIST

The bit-flipping DLBIST scheme allows to achieve com-

plete fault coverage and requires only a small amount of silicon

area. Experimental results on industrial circuits as reported in [15]

show that 100% fault efficiency can be achieved for circuits up to

100k gates with a test length of 10,000 test patterns at a total cell

area cost for the DLBIST hardware of typically 5-15%. The sili-

con area for the LFSR, MISR, and test controller is more or less

constant, and increases only slightly with increasing circuit sizes.

The size of the BFL however depends mainly on the random test-

ability of the CUT. For circuits that are poorly random testable,

the BFL may become quite large. It is also shown in [15] that the

silicon area for the BFL can be reduced considerably by making

trade-offs in test time and/or test quality.

The main advantage of DLBIST is that no modification of

the CUT is required, provided that the CUT is BIST-ready (i.e. no

unknown values are generated in the CUT that propagate into the

MISR and corrupt the signature). All the DLBIST hardware is

added as a shell around the CUT. This simplifies the design flow,

since the BIST hardware can easily be integrated into the IC de-

sign and no design iterations are required to solve timing viola-

tions as with TPI.

2.2 TPI

Already in the 1970s, TPI was considered as a useful tech-

nique to improve the testability of a CUT [10], and ever since a

large number of TPI methods has been published (e.g.

[7][8][20][22][23][24][26]). The goal of the work presented in this

paper is to investigate the combination of DLBIST and TPI. For

that purpose we selected a TPI method similar to [23] and bit-

flipping  DLBIST.

The TPI method in [23] is based on COP (controllability/

observability program) testability analysis [4]. COP controllability

and observability probabilities are computed for all signal lines in

the CUT, which reflect the random testability of the combina-

tional logic. The COP values can be used to identify suitable lo-

cations for inserting test points [20]. However, COP values have a

very local nature. Better results for TPI are obtained by using a

more global measure based on a cost function that considers the

testability of all faults in the CUT. One way of identifying suitable

locations for test points is to simply insert test points one at a time

at all possible locations, and to consider how this affects the cost

function. However, this is computationally expensive and hence

intractable in practice. A more feasible approach is to first make a

pre-selection of promising locations for inserting test points. This

pre-selection can be made by estimating the impact of test points

on the cost function using gradients (i.e. derivatives of the cost

function with respect to controllability and observability) [20].

Estimating the cost change solely based on gradients is however

also not very accurate, since the gradients represent changes of the

cost function with respect to an infinitely small change in con-

trollability or observability on a signal line. In reality, the inser-

tion of a test point will cause controllability or observability to

change rather drastically. The gradients are therefore used in [23]

to calculate an approximation of the actual cost reduction, called

the Cost Reduction Factor (CRF). The CRF is accurate enough to

identify promising locations for inserting test points. The actual

costs are now only computed for the pre-selected candidate test

points, and the test point that offers the largest cost reduction is

actually inserted.

The work in this paper is largely based on the TPI method

in [23]. The TPI method in [26] is a further improvement of [23]

that uses a more accurate CRF. The TPI method in [7] is another

improvement that also considers the impact of TPI on the CUT’s

performance. The TPI method in [8] is partially based on [23][26],

where TPI is used to reduce the size of compact test sets.

3. Combining DLBIST with TPI

In this paper we present a combination of bit-flipping

DLBIST with TPI. In this combined approach, we first insert a

limited number of test points into the CUT to improve its random

testability. Next, a BFL is generated for the CUT with test points

to achieve 100% fault efficiency.

The insertion of only one or two test points per thousand

gates in general provides a significant testability improvement.

However, TPI has several limitations and drawbacks. First, TPI

implies modification of the CUT, which may have a negative

impact on the performance if test points are inserted in critical

paths. Timing analysis after test point insertion is therefore re-

quired as an additional task in the design process, and several

design iterations may be required to solve timing violations.

Hence, TPI complicates the design flow, while prohibiting the

insertion of test points in critical paths might reduce the fault cov-

erage.

Second, many TPI methods are not able to achieve com-

plete fault coverage. TPI inserts additional wires and logic gates

into the CUT, which consequently increases the number of faults

in the CUT that have to be tested. Hence, at a certain moment

adding new test points may not give any benefits if the reduction

of the cost function due to the test point is exceeded by an in-

crease of the cost function due to the new faults. Furthermore,

inserting a large number of control points increases the probability

that control points start to conflict with each other. Ignoring this

effect may lead to a large number of futile control points and re-

duced fault coverage [24]. In general, the fault coverage improves

well for inserting the first test points, but levels off when inserting
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more test points. Detecting the last remaining faults basically

requires that a dedicated test point is inserted for each fault, which

leads to a large number of test points. All these effects, combined

with the restriction of inserting test points in critical paths, cause

that complete fault coverage can generally not be achieved with

TPI. This is confirmed in several industrial case studies [9][14],

where only 95-96% fault coverage could be achieved by logic

BIST with TPI, and improving the fault coverage required addi-

tional external testing with ATPG patterns.

On the other hand, bit-flipping DLBIST guarantees com-

plete fault coverage, since the BFL can be improved by embed-

ding deterministic ATPG patterns up to the point where all faults

are detected. The size of the BFL may however become rather

large. In [15] is reported that the BFL requires typically less than

10% silicon area, but this can increase up to 30% for circuits that

have poor random testability.

The proposed combined approach therefore is to first insert

a certain number of test points into the CUT. Since the testability

increase tends to be the largest for the first few test points, only a

limited number of test points is inserted. Next, a BFL is generated

for the modified circuit with test points to achieve 100% fault

efficiency. The increased random testability provided by test

points, allows for a smaller BFL. Furthermore, inserting only a

few test points provides that modification of the CUT is mini-

mized, and hence the performance impact caused by test points

can be kept small. A trade-off can be made between the number of

inserted test points (and the resulting impact on CUT area and

timing) and decrease of the BFL size.

Figure 2: Combined DLBIST-TPI

The architecture for the combined DLBIST-TPI approach is

shown in Figure 2. Test points in the form of observation points

(OP) and control points (CP), are added to the CUT. An OP is

implemented by an additional scan flip-flop to increase the ob-

servability of a signal line (e.g. line a in Figure 2). A CP is im-

plemented by either a two-input AND-gate or a two-input OR-

gate with an additional scan flip-flop to increase the 0-

controllability or 1-controllability of a signal line (e.g. line b in

Figure 2). During normal circuit operation, the control input of a

CP is set to its non-controlling value (0 for OR-type CP, 1 for

AND-type CP), while in test mode the control input is assigned by

means of data that is shifted into the scan chain.

4. TPI Method for Combined DLBIST-TPI

Our TPI method for combined DLBIST-TPI is largely

based on [23]. The TPI algorithm is outlined in Figure 3 and de-

scribed in more detail below.

Figure 3: TPI algorithm

1. The TPI algorithm operates on a global fault list that contains

all faults in the CUT. At the beginning of the TPI algorithm, the

redundant faults in the CUT are identified.

2. The algorithm inserts test points into the CUT until a certain

stop criterion is reached. The stop criterion is specified by the

user, e.g. stopping when a certain fault efficiency is reached, when

a certain reduction of the cost function is achieved, or when the

maximum number of test points is inserted. The algorithm may

also stop prematurely if no more suitable locations for inserting

test points can be found.

3. In order to speed up the TPI algorithm, fault simulation with

pseudo-random patterns is performed after a certain amount of test

points has been inserted. The faults that are detected multiple

times correspond to easy-testable faults, and are dropped from the

fault lists. In our experiments, we perform fault simulation each

time after 10% of the maximum allowed number of test points is

inserted, and we drop faults that are detected at least 3 times.

4. Test point insertion may cause some combinationally redun-

dant faults to become detectable. It is checked at regular intervals

whether redundant faults have become detectable, and these faults

may be added to the fault lists. In our experiments however we

ignore these faults, since we observed for some circuits that in-

serting a few test points may cause a large number of redundant

faults to become detectable. In the combined DLBIST-TPI ap-

proach, many of those faults have to be detected by deterministic

patterns and hence cause a considerable increase of the BFL size.

5. The next steps in the TPI algorithm are almost similar to the

TPI method in [23]. COP controllability and observability values,

gradients, and the CRF are computed. A modification is that can-

didate locations which would only improve detectability of the

faults already dropped during pseudo-random simulation, are not

considered as test point candidates.
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6. Candidate test points are inserted temporarily one at a time at

the pre-selected locations, and the cost function is re-evaluated.

7. Once all promising candidates have been evaluated, the one

that gives the best actual cost reduction is selected and perma-

nently inserted. A test point introduces new faults to the CUT, and

these faults are added to the fault lists.

We refer to the above TPI algorithm as global TPI, since it

considers all faults in the CUT. An alternative approach is tar-
geted TPI, in which test points are inserted particularly to detect

the hardest-to-test faults. These faults can generally not be de-

tected by random patterns, and deterministic patterns to detect

these faults require a large number of specified bits. As a conse-

quence, these faults typically cause a considerable increase of the

BFL. This effect has been clearly shown in [15], where increasing

the fault efficiency from 99% to 100% caused an increase of the

BFL size up to 70%. In this case, the last 1% of undetected faults

corresponded to the hardest-to-test faults, which require determi-

nistic patterns with the largest number of specified bits.

The hardest-to-test faults are identified first in targeted TPI.

An intermediate BFL is generated which achieves only a moderate

fault efficiency. The faults that are not detected by the BFL are

considered as target faults. The explicit goal of targeted TPI now

is improving testability for these target faults. After TPI, the ac-

tual BFL is generated for the modified circuit with test points to

achieve 100% fault efficiency.

The TPI algorithm for targeted TPI is very similar to global

TPI with a few modifications. Targeted TPI operates on the list

with target faults, instead of the global fault list. Furthermore, the

gradients of the non-target faults are set to zero. Hence, the non-

target faults do not contribute to the CRF, and the CRF is based

solely on the estimated detectability improvement of target faults.

This also implies that possible test point locations which would

only influence non-target faults, are ignored. A weight factor is

used to control the contribution of target and non-target faults to

the cost function. Our experiments indicated that best results are

obtained using a weight factor of 0.5, which implies that both

target and non-target faults contribute equally to the cost function.

5. Impact of DLBIST-TPI on Design Flow

The main drawbacks of TPI are its impact on the CUT per-

formance, and the complicated design flow. Several solutions

have been proposed to deal with this. In [7], timing-driven TPI is

proposed, which considers the performance impact of test points

in the cost function to avoid the insertion of test points in critical

paths. In [9], TPI is performed in two stages. Unconstrained TPI is

performed first, and timing analysis is performed to identify tim-

ing violations due to test points. This yields a set of constraints

(i.e. paths in which no test points are allowed). The actual TPI is

now performed in a second run which considers the constraints.

Restricting the insertion of test points in critical paths however

results in reduced fault coverage. An alternative approach is to

insert test points at RT level, as proposed in [22]. This simplifies

the design flow, but cannot guarantee that complete fault coverage

is achieved at the gate level after synthesis.

In a combined DLBIST-TPI approach, it is well feasible to

use timing-driven TPI or constrained TPI, and also RTL-TPI may

be used. The combined DLBIST-TPI approach allows to limit the

number of inserted test points, while 100% fault efficiency is still

reached due to the BFL. The BFL and other DLBIST hardware is

added as a shell around the CUT, and can easily be integrated into

the IC design without affecting the CUT’s performance.

6. Experimental Results

We evaluated the combined DLBIST-TPI approach using

ISCAS benchmark circuits [5][6] that still have undetected faults

after applying 10,000 random patterns, as well as industrial cir-

cuits from Philips. More details on the Philips circuits are avail-

able in [15], where the same circuits are used for evaluation of the

bit-flipping DLBIST scheme. The primary goal of the experiments

is to explore the impact on silicon area.

Table 1 shows the experimental results for the ISCAS cir-

cuits, and Table 2 for the industrial circuits. Column 1 shows the

circuit names. The Philips circuits are named pN, where N denotes

the number of signal lines in the circuit.

Columns 2 to 4 report the fault efficiency that is obtained

either with 10,000 pseudo-random patterns (FERandom), with pure

DLBIST and combined DLBIST-TPI (FEDLBIST-TPI), and with TPI

only (FETPI). In principle it is possible to achieve 100% fault effi-

ciency with pure DLBIST and combined DLBIST-TPI in all

cases. However, run-time limitations of  our prototype tools

caused that some faults were aborted for the industrial circuits.

For TPI only, 100% fault efficiency could not be achieved for all

cases, and inserting more test points would not give further im-

provements. Hence, not achieving 100% with TPI is a limitation

of the method, while not achieving 100% with DLBIST or com-

bined DLBIST-TPI is purely a tool limitation and not at all a

limitation of the method. Despite these limitations, higher fault

efficiency is still obtained with combined DLBIST-TPI.

Columns 5 to 11 show the silicon cell area required for the

BFL and test points, as percentage of the CUT area. The size of

the LFSR, MISR, and test controller is more or less constant per

circuit, and the area for these blocks is therefore not included. The

area results are obtained using a 0.25 µm CMOS Philips library

and Synopsys’ Design Compiler. The area numbers cover the cell

area for the logic gates only, and do not include the area for wir-

ing and embedded memories. The best results per circuit are

shown in bold.

Column 5 (BFL100) shows the results for pure bit-flipping

DLBIST (without test points), as reported previously in [15]. Col-

umns 6 and 7 show the results for the combined DLBIST-TPI

approach with targeted TPI. The target faults are obtained by gen-

erating an intermediate BFL achieving either 95.0% (Column 6,

Targ95) or 99.5% (Column 7, Targ99.5) fault efficiency. The

undetected, testable faults are used next as target faults for tar-

geted TPI. The actual BFL is generated on the circuit with test

points to achieve 100% fault efficiency. Columns 8 to 10 show the

results for the combined DLBIST-TPI approach with global TPI,

where either at most one test point is inserted per thousand gates

(Column 8, Glob1pt), or test points are inserted to achieve 95.0%

(Column 9, Glob95) or 99.5% (Column 10, Glob99.5) fault effi-

ciency. The BFL is generated next for the circuit with test points

to achieve 100% fault efficiency. Finally, Column 11 (TPI100)

shows the results for pure TPI (without BFL), where the target is

to achieve 100% fault efficiency. However, this could not be

reached for all circuits, as indicated in Column 4 (FETPI).

The last rows in the tables show the average results for all

circuits. The averages for the silicon cell area are in fact weighted

averages, obtained by dividing the cumulative area of BFL and

test points by the cumulative CUT area of all circuits. The results

indicate that pure bit-flipping DLBIST requires on average con-

siderably more area than pure TPI or a combined DLBIST-TPI

approach. Best results for both the ISCAS and Philips circuits are

obtained by the combined approach of global TPI (Glob99.5) and
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DLBIST. The area results for pure TPI are only slightly worse, but

100% fault efficiency could not always reached with pure TPI.

These results confirm that the combined DLBIST-TPI approach

requires in general less silicon cell area for achieving 100% fault

efficiency in comparison to pure bit-flipping DLBIST or even

pure TPI.

In our experiments, we did not constrain the TPI algorithm

to avoid insertion of test points in critical paths. Consequently, the

performance of some circuits is affected by TPI. In Table 1 and 2,

the circuits in which TPI affected critical timing paths are shaded.

These results are obtained by considering the maximum logic

depth before and after TPI. The results clearly show that inserting

Fault Efficiency (%) Cell Area (%)
1 2 3 4 5 6 7 8 9 10 11

circuit FERandom FEBFL-TPI FETPI BFL100 Targ95 Targ99.5 Glob1pt Glob95 Glob99.5 TPI100
c2670 88.43 100 100 38.06 3.76 3.76 3.76 3.76 2.54 2.18
c7552 96.09 100 100 22.63 20.29 23.07 21.53 21.46 5.23 4.96
s641 97.84 100 100 6.56 5.50 3.82 5.50 6.56 7.18 6.72

s713 98.16 100 99.82 6.46 3.56 3.63 3.56 6.46 14.66 15.53

s838.1 59.72 100 100 49.03 30.36 60.30 30.36 18.26 18.83 17.74
s5378 98.57 100 100 2.64 1.07 1.83 1.35 2.64 1.46 1.28

s9234 89.71 100 100 13.51 4.37 8.37 5.89 6.34 2.81 2.04
s13207 93.92 100 100 2.98 1.40 1.34 1.61 1.27 1.41 0.96
s15850 87.86 100 99.97 6.46 4.59 4.23 5.69 5.83 3.55 3.43
s38417 92.66 100 100 10.21 3.99 4.55 5.02 6.50 3.12 3.08
s38584 97.67 100 100 1.89 1.05 1.02 1.22 1.89 1.20 1.87

Average 90.97 100 99.98 7.48 3.62 4.31 4.30 4.94 2.59 2.64

Table 1: Fault efficiency (%) and cell area (%) of BFL and test points for ISCAS circuits

Fault Efficiency (%) Cell Area (%)
circuit FERandom FEBFL-TPI FETPI BFL100 Targ95 Targ99.5 Glob1pt Glob95 Glob99.5 TPI100

p2221 88.52 100 100 9.50 5.53 4.03 5.22 3.28 2.43 2.87

p2441 92.20 100 100 8.94 5.02 9.15 5.33 5.55 3.42 2.85
p2675 99.70 100 100 0.48 0.24 0.24 1.62 0.48 0.48 2.65

p3295 92.01 100 100 7.16 6.30 5.85 5.89 6.79 5.47 2.73
p4210 94.47 100 100 12.01 5.83 12.22 5.83 7.91 6.01 0.89
p4250 96.09 100 100 8.92 5.17 8.51 5.58 8.53 5.26 9.14

p4919 97.06 100 100 4.46 3.68 3.91 4.48 4.46 4.37 2.92
p5918 97.65 99.95 99.96 6.02 3.39 6.47 3.26 6.15 3.32 5.18

p6291 96.80 100 100 7.25 6.60 5.51 4.77 8.33 2.43 2.60

p7318 99.84 100 100 0.07 0.10 0.10 0.16 0.07 0.07 0.07
p7890 98.64 100 100 3.65 1.27 1.22 0.95 3.65 1.32 1.68

p8689 88.57 99.99 100 19.72 17.06 17.16 14.97 14.97 8.28 4.76
p8873 96.40 100 98.52 6.12 6.51 4.40 3.60 6.12 2.86 0.87
p9041 97.01 100 99.99 12.06 6.98 9.41 7.66 12.06 5.24 2.84
p10705 95.50 99.99 100 6.93 5.83 4.94 5.92 6.70 3.61 1.77
p12292 97.64 99.74 99.83 15.43 7.36 5.88 6.29 15.43 5.29 3.27
p12903 92.92 100 100 8.25 4.83 6.74 5.28 8.19 4.93 3.87
p13033 95.57 100 100 7.92 8.66 8.59 8.66 8.66 4.82 14.16

p13651 99.91 99.93 100 0.27 0.68 0.68 2.13 0.27 0.27 8.52

p14473 86.47 100 99.57 30.27 21.59 23.52 20.83 16.15 10.52 7.99
p17828 96.82 100 100 4.34 2.17 2.54 2.30 4.34 2.11 1.73
p22383 93.02 99.97 100 18.93 3.40 3.55 3.85 11.83 3.08 2.13
p23572 85.53 100 100 8.70 5.00 5.98 4.25 4.61 2.70 1.75
p24370 94.45 99.97 99.79 16.69 12.47 15.27 12.08 16.14 9.25 4.30
p25015 98.41 99.93 100 3.95 2.70 3.04 2.56 3.95 3.04 5.67

p27369 99.31 99.96 99.97 2.04 4.56 3.65 1.96 2.04 2.05 12.96

p27530 98.28 99.98 99.71 13.04 9.14 10.73 7.10 13.04 7.02 1.41
p44177 97.30 99.95 98.69 3.47 3.27 3.27 3.61 3.47 3.58 0.13
p52251 99.58 100 99.99 0.61 0.70 0.70 0.54 0.61 0.58 0.63

p52922 92.77 99.98 99.39 7.57 6.45 9.87 4.97 6.54 2.32 7.82

p64984 94.47 99.98 99.79 10.45 5.41 5.90 5.11 8.55 3.08 1.63
p80590 99.16 99.94 100 2.33 2.75 4.02 0.83 2.33 0.97 1.06

Average 95.38 99.98 99.85 7.23 4.95 5.87 4.24 6.06 3.03 3.34

Table 2: Fault efficiency (%) and cell area (%) of BFL and test points for Philips circuits
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more test points increases the probability that performance is af-

fected, which is particularly the case for global TPI with 99.5%

target fault efficiency (Glob99.5) and pure TPI (TPI100). Al-

though these approaches require minimum silicon area, they may

not be the best choices in practice due to their impact on the per-

formance.

For targeted TPI, a small target fault list restricts the TPI al-

gorithm for selecting proper candidate test point locations, which

leads to inferior results. This effect becomes worse as the target

fault list becomes smaller, which explains why targeted TPI

starting from 99.5% fault efficiency (Targ99.5), performs worse

than targeted TPI starting from 95% fault efficiency (Targ95). In

principle, best results can be achieved by targeted TPI, but this

requires careful tuning of the target fault list.

Circuits p2675, p7318, p13651, p27369, p52251, and

p80590 are very well random testable, and >99% fault efficiency

is achieved with 10,000 pseudo-random patterns. The BFL for

these circuits in pure DLBIST is very small. The silicon area in-

creases slightly for the combined DLBIST-TPI approaches, while

a huge increase is observed for some of these circuits (e.g.

p13651) for pure TPI. Hence, pure DLBIST is the best choice for

circuits that are very well random testable.

For circuits s641, s713, p4250, p13033, p25015, and

p52922, pure TPI also requires more silicon area than pure

DLBIST, while best results are obtained with combined DLBIST-

TPI. These circuits have moderate random testability (95-99%

fault efficiency).

The BFL in pure DLBIST is very large (>15%) for circuits

c2670, c7552, s838.1, p8689, p12292, p14473 p22383, and

p24370, which have poor random testability (<95% fault effi-

ciency). For these circuits, the silicon area is reduced considerably

by using a combined DLBIST-TPI approach or pure TPI.

The Philips circuits are in general better random testable

than the ISCAS circuits: on average, 91% fault efficiency is

achieved with 10,000 random patterns for the ISCAS circuits,

versus 95% for the Philips circuits. This explains why the gain of

combined DLBIST-TPI approaches and pure TPI versus pure

DLBIST is higher for the ISCAS circuits than the Philips circuits.

7. Conclusion

We presented a combined DLBIST-TPI approach, which

combines the strengths of both bit-flipping DLBIST and TPI. A

limited number of test points is inserted first to improve random

testability, and DLBIST hardware is added next to improve the

fault efficiency up to 100%. This combined approach allows to

achieve 100% fault efficiency at a small amount of silicon area. In

addition, the performance impact due to test points can be limited

or avoided, which simplifies the design flow.

Experimental results on a large number of ISCAS and in-

dustrial circuits show that best results are obtained with combined

DLBIST-TPI.
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