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Abstract 
In this paper a novel architecture for scan-based 

mixed mode BIST is presented. To reduce the storage 
requirements for the deterministic patterns it relies on a 
two-dimensional compression scheme, which combines 
the advantages of known vertical and horizontal com-
pression techniques. To reduce both the number of pat-
terns to be stored and the number of bits to be stored for 
each pattern, deterministic test cubes are encoded as 
seeds of an LFSR (horizontal compression), and the seeds 
are again compressed into seeds of a folding counter 
sequence (vertical compression). The proposed BIST 
architecture is fully compatible with standard scan de-
sign, simple and flexible, so that sharing between several 
logic cores is possible. Experimental results show that 
the proposed scheme requires less test data storage than 
previously published approaches providing the same 
flexibility and scan compatibility. 

 
1 Introduction 

State-of-the-art systems-on-a-chip (SoCs) typically 
consist of some user defined logic and various embedded 
cores, such as memory and processor cores as well as 
mixed-signal, analogue or RF cores. This core-based de-
sign style greatly increases the design productivity and 
speeds up the time to market, but on the other hand, it 
also turns testing into a more and more challenging task. 
The increased system complexities and growing test data 
volumes, the inaccessibility of internal blocks, the need 
for testers specifically tuned to certain types of cores, the 
increasing impact of timing faults, and the growing need 
for periodic maintenance and on-line testing capabilities 
discard traditional external testing with automatic test 
equipment (ATE) as a feasible solution. Built-in self-test 
(BIST) not only circumvents these problems, but, in 
many cases, also offers the cheaper and more efficient 
alternative. Therefore BIST has become a topic of major 
interest in recent years, and pseudo-random BIST using 
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an LFSR for test pattern generation has meanwhile been 
widely accepted as the standard BIST approach [1]. 

For circuits containing pseudo-random pattern resis-
tant faults basically two different strategies have been 
proposed: Techniques for test point insertion modify the 
mission logic to improve the random pattern testability 
and to guarantee a high fault coverage with a feasible 
number of test patterns [8, 20, 22]. To minimize per-
formance degradations, the second strategy avoids any 
changes in the mission logic and relies on more sophisti-
cated test pattern generators instead. This category com-
prises weighted random pattern and pseudo-exhaustive 
testing as well as mixed mode approaches [4, 5, 9, 12-14, 
16-18, 21, 23]. The latter typically use an LFSR to gener-
ate a limited number of pseudo-random patterns detecting 
most of the faults. For the remaining hard to detect faults 
deterministic patterns are provided, which are either 
directly embedded into the LFSR sequence by some extra 
control logic (“bit-fixing”, “bit-flipping”) or stored in 
compressed form and regenerated during BIST (“store-
and-generate”). The bit-flipping approach has been 
proven to be very successful even for large industrial 
circuits [16, 17, 23]. However, the BIST architecture is 
specifically tailored to a given deterministic test set, and a 
small change in the test requirements and the test set may 
make it necessary to resynthesize the BIST hardware. In 
contrast to that, store-and-generate schemes can provide a 
more flexible solution. Here, a powerful technique for 
compressing the deterministic data is the key to an effi-
cient BIST implementation. As sketched in Figure 1, 
there are two natural ways of reducing the amount of test 
data to be stored: Vertical compression schemes reduce 
the number of patterns to be stored, whereas horizontal 
compression schemes reduce the number of bits to be 
stored for each test pattern. 

 
 
 
 
 
 

Figure 1: Vertical and horizontal test data compression. 
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A classical method for horizontal compression (also 
referred to as “test width compression”) is to store identi-
cal columns of the test set only once [6, 7, 19]. In general 
this approach allows a high compression rate, but in a 
scan-based BIST environment it may require a reorgani-
zation of the scan chain and disturb the design flow. On 
the other hand, techniques based on the reseeding of 
LFSRs efficiently compress the width of the information 
to be stored while leaving the scan chain untouched [12, 
18]. As sketched in Figure 2 deterministic test cubes are 
encoded as seeds of an LFSR, and during BIST the LFSR 
expands the seeds to the desired scan patterns. The length 
of the LFSR is determined only by the maximum number 
of specified bits smax in the given set of test cubes. If only 
one polynomial is used, an LFSR of length smax+20 guar-
antees a high probability of successful encoding; for the 
reseeding of multiple-polynomial LFSRs feedback poly-
nomials of degree smax are sufficient [12, 18]. 

 
 
 
 
 
 
 
 

Figure 2: Test width compression based on the reseeding of 
LFSRs. 

To achieve a vertical compression the test data are usu-
ally encoded as seeds of a standard pattern generators or 
of an arbitrary finite state machine [4, 5, 10, 15]. Re-
cently, a vertical compression scheme based on the re-
seeding of folding counters has been proposed [11]. As 
depicted in Figure 3, a folding counter can be realized as 
a Johnson counter with programmable feedback, and for 
each seed it produces a sequence of patterns to be shifted 
into the scan chain.  

 
 
 
 
 
 
 
 
 
 

Figure 3: Vertical test data compression based on the reseed-
ing of folding counters. 

It has been shown in [11] that folding counter se-
quences well reflect the typical properties of deterministic 

patterns, and that in general a reasonably small number 
of seeds is sufficient to characterize the complete test 
data. In this paper a two-dimensional compression tech-
nique will be presented which efficiently combines the 
advantages of the reseeding of folding counters for verti-
cal compression and the reseeding of LFSRs for horizon-
tal compression (see Figure 4). 

 
 
 
 
 

Figure 4: Two-dimensional test data compression. 

The target BIST architecture shown in Figure 5 inte-
grates an LFSR and a folding controller to achieve the 
proposed two-dimensional data compression. It is fully 
compatible with a standard design flow, since it does not 
require any modifications of the scan chain. Moreover, as 
the LFSR can also be used for pseudo-random pattern 
generation, it supports a mixed mode BIST without any 
extra cost. 

However, in their basic forms the reseeding of LFSRs 
and the reseeding of folding counters are not compatible, 
such that a simple merging of the original BIST architec-
tures is not possible. To provide the necessary back-
ground for the detailed description of the proposed 
scheme in Section 3, the next section briefly reviews the 
basic concepts of folding counter sequences and derives 
some new important properties. Section 4 describes the 
complete synthesis procedure for the proposed architec-
ture, and finally Section 5 summarizes the experimental 
results obtained so far. They clearly show that the pre-
sented approach requires less storage requirements than 
other BIST schemes providing the same flexibility and 
scan compatibility. 

 
 
 
 
 
 
 
 
 

Figure 5: Target BIST architecture for two-dimensional test 
data compression. 

 
2 Folding Counters Revisited 

This section briefly summarizes some of the basic con-
cepts and properties of folding counters as introduced in 
[11] and develops the necessary background for the two-
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dimensional reseeding approach proposed in this paper. 
Unlike most other BIST pattern generators folding count-
ers work with a dynamically changing state transition 
function depending on both the state of the counter and 
the “index” of the transition. Starting from an initial state 
s ∈ {0, 1}n a sequence of  n+1 states s = F(0, s), F(1, s), 
…, F(n, s) is produced, such that the transition from 
F(i, s) to F(i+1, s) retains the first i bits and inverts the 
remaining ones. A simple example is shown in Figure 6. 

 
 
 
 
 
 
 

Figure 6: Sequence produced by a 4-bit folding counter. 

Folding counters provide a good means for vertical test 
set compression, since for deterministic BIST a folding 
counter may be run with a number of different seeds, such 
that the resulting folding counter sequences contain a 
given deterministic test set. To store the deterministic test 
set, it is then sufficient to store the folding seeds which 
can be used to regenerate the complete test set during 
BIST. To find an appropriate selection of seeds in [11]  
“folding relations” between pairs of vectors have been 
exploited. In this paper a completely different approach is 
followed which is based on the observations stated below. 

Observation 1: For a state of index i the value at bit 
position j can be derived from the initial state s by per-
forming a number of inversions which is determined only 
by the bit position j and the index i of the state. For 0 ≤ j 
< n and 0 ≤ i ≤ n it is given by 

(*) 


 <+

=
elsei

ijifj
ijinv

1
),( .  

Figure 7 illustrates this important property for the ex-
ample sequence of Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: State transitions and inversions. 

As a consequence, for any given state in a folding 
counter sequence the seed can easily be reconstructed, 
once the index of the state is known. Conversely, for an 
arbitrary vector x ∈ {0,1}n and a given index i a seed 
vector can be constructed, such that the resulting folding 
counter sequence contains x as a state of index i. 

Observation 2: Let x ∈ {0,1}n be an arbitrary vector, 
and let i be a desired index, 0 ≤ i ≤ n. The seed 

s = (s0, …, sn-1) = (¬inv(0, i)x0, …, ¬ inv(n-1, i)xn-1), 
provides a folding counter sequence such that x appears 
as state of index i (¬k xj denotes the operation of invert-
ing xj k times). 

Since a given vector x ∈ {0,1}n can be part of a folding 
counter sequence with an index varying from 0 to n, over-
all there are n+1 possible seed vectors which lead to fold-
ing counter sequences containing x. Figure 8 shows an 
example for x = (0,1,1,0,1). It can easily be verified that 
the seed vectors ( )i

n
ii sss 10 ,, −= K  for x = (x0, …, xn-1) as 

state of index i and ( )2
1

2
0

2 ,, +
−

++ = i
n

ii sss K  for x as state of 
i+2 differ only in bit position i for 0 ≤ i ≤ n-2. Further-
more, sn-1 and sn differ only in bit position n-1. In general, 
due to the inherent regularity of folding counter se-
quences, the following theorem is true. 

Theorem: Let x = (x0, …, xn-1) ∈ {0,1}n be an arbi-
trary vector, and let ( )i

n
ii sss 10 ,, −= K  denote the seed, 

such that x appears as state of index i in an n-bit folding 
counter sequence, 0 ≤ i ≤ n. Then for 0 ≤ i ≤ n-2 the seeds 

( )i
n

ii sss 10 ,, −= K  and ( )2
1

2
0

2 ,, +
−

++ = i
n

ii sss K  differ only in 
bit position i, and the seeds sn-1 and sn differ only in bit 
position n-1. 

Proof: According to Observation 2 the seed si is ob-
tained as si = (¬inv(0, i)x0, …, ¬ inv(n-1, i)xn-1), and in the 
same way si+2 = (¬inv(0, i+2)x0, …, ¬inv(n-1, i+2)xn-1). If 0 ≤ i ≤ 
n-2, four cases must be distinguished for the inversion 
numbers inv(j, i) and inv(j, i+2): 
(i) If j < i holds, then also j < i+2 and inv(j, i) =  

inv(j, i+2). 
(ii) If j = i holds, then inv(j, i) = i, but still j < i+2 and 

inv(j, i+2) = j+1 = i+1. 
(iii) If j = i+1 holds, then inv(j, i) = i, but still j < i+2 

and inv(j, i+2) = j+1 = i+2. However, ¬ixj  = ¬
i+2xj . 

(iv) If j ≥ i+2 then inv(j, i) = inv(j, i+2) = i. 
Only in case (ii) for j = i different results are obtained 

for ¬inv(j, i)xj and ¬inv(j, i)xj , and thus si and si+2 differ only 
in bit position i. In the same way it can be shown that sn-1 
and sn only in bit position n-1, which concludes the proof.
 q.e.d. 

As a consequence of the Theorem, the seeds si and si+2 
can be merged to a seed cube with a don’t care in bit 
position i. For the example of Figure 8 the set of possible 
seeds for x = (0,1,1,0,1) can be represented by  
{(-,1,1,0,1), (1,-,0,1,0), (1,1,0,0,-)}. 

state   index 
 
F(0, s) = 0 1 1 0 0 
F(1, s) = 1 0 0 1 1 
F(2, s) = 1 1 1 0 2 
F(3, s) = 1 1 0 1 3 
F(4, s) = 1 1 0 0 4 

 j =  0 1 2 3 i 

 
state  0 1 1 0 0 
inv(j, i)  0 0 0 0 

state  1 0 0 1 1 
inv(j, i)  1 1 1 1 

state  1 1 1 0 2 
inv(j, i)  1 2 2 2 

state  1 1 0 1 3 
inv(j, i)  1 2 3 3 

state  1 1 0 0 4 
inv(j, i)  1 2 3 4 



   

   

 
 
 
 
 
 
 
 
 
 
 

Figure 8: Possible seeds for x = (0,1,1,0,1). 

 
 
 
 
 
 
 
 
 
 
 

Figure 9: Seed construction for test cubes. 

 
When dealing with test cubes t ∈ {0,1,-}n, a similar 

procedure for extracting possible seed cubes is applied as 
described in the following. For a test cube t = (t0, …, tn-1) 
∈ {0,1,-}n the seed cubes si = (s0, …, sn-1) = (¬inv(0, i) t0, 
…, ¬ inv(n-1, i) tn-1) are constructed with the additional rule 
¬tj = tj for tj = ‘-‘ (see Figure 9). 

As highlighted in Figure 9, even without further merg-
ing some of the seed cubes are identical. In general, if the 
construction rule defined above is applied to a test cube t 
= (t0, …, tn-1) ∈ {0,1,-}n, then according to the Theorem 
for each don’t care ti = ‘-‘ the seed cubes si and si+2 are 
identical. Consequently, if the number of specified bits is 
equal to k, at most k+1 different seed cubes are obtained. 
In the example of Figure 9 the 5-bit cube t = (0,-,1,0,-) 
has 3 specified bits and 2 don’t cares, and therefore there 
are 6-2 = 4 possible seed cubes. Of course, in the same 
way as in the fully specified case, further merging is pos-
sible, and it can be easily verified that the two cubes (-,-
,1,0,-) and (1,-,0,-,-) represent all possible folding seeds 
for t = (0,-,1,0,-).  

Observation 3: Let t ∈ {0,1,-}n be a test cube with k 
specified bits. Then the number of possible seed cubes is 
at most k +1, and each seed cube contains at most k speci-
fied bits. 

Thus for a set of test cubes T ⊂ {0,1,-}n with a maxi-
mum number of specified bits smax for each cube at most 

smax+1 possible seed cubes can be extracted, and a cover-
ing heuristic may be used to derive the best selection of 
seed cubes representing T. The actual BIST architecture 
depends on the realization of the folding counter. In [11] 
a Johnson counter with programmable feedback as shown 
in Figure 10 was proposed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Basic deterministic BIST scheme using a folding 
counter. 

To apply a folding sequence to the MUT a seed is 
loaded into the shift register, and the index counter and 

seed vector s 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 
F(1, s)  0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 
F(2, s)   0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 
F(3, s)    0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 
F(4, s)     0 1 1 0 1 0 1 1 0 0 
F(5, s)      0 1 1 0 1 
0 1 1 0 1       
appears as 0 1 2 3 4 5 
state of index       

seed cube s 0 - 1 0 - 1 - 0 1 - 1 - 1 0 - 1 - 0 1 - 1 - 0 0 - 1 - 0 0 - 
F(1, s)  0 - 1 0 - 0 - 0 1 - 0 - 1 0 - 0 - 1 1 - 0 - 1 1 - 
F(2, s)   0 - 1 0 - 0 - 0 1 - 0 - 0 0 - 0 - 0 0 - 
F(3, s)    0 - 1 0 - 0 - 1 1 - 0 - 1 1 - 
F(4, s)     0 - 1 0 - 0 - 1 0 - 
F(5, s)      0 - 1 0 - 
0 - 1 0 -       
appears as 0 1 2 3 4 5 
state of index       
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bit counter are initialized. While the first pattern is 
loaded into the scan chain the Johnson counter serially 
generates the next state of the folding counter. For each 
bit the state of the index counter is compared to the state 
of the bit counter which controls the loading of the scan 
path. As soon as the pattern is completely loaded, it is 
applied to the MUT, the bit counter is reset and the index 
counter is activated. This procedure is repeated until the 
index counter has cycled through all states and the next 
seed can be processed. 

As mentioned above, embedding deterministic test 
cubes in a folding counter sequence results in a vertical 
test set compression, i.e. in a reduction of the number of 
vectors to be stored. However, the basic scheme of Figure 
10 does not allow any horizontal test set compression, 
and the Johnson counter must be of the same length as 
the scan path. To circumvent this problem in [11] classi-
cal techniques for test width compression were combined 
with the basic architecture of Figure 3 [6, 7, 19]. The 
experimental results in [11] show that this way high 
compression rates for the test data to be stored can be 
achieved, but a major drawback of the applied techniques 
for test width compression is that they require a reorgani-
zation of the scan chain, and that they are not compatible 
with common design flows. The next section will demon-
strate that the combination of appropriate techniques for 
both horizontal and vertical test set compression allows 
both a fully scan compatible implementation of mixed 
mode BIST and high compression rates. 

 
3 A BIST Architecture for Two-Dimensional 

Reseeding 
As already pointed out classical techniques for test 

width compression require a reorganization of the scan 
chain and may not be acceptable within a typical design 
flow. On the other hand, reseeding of LFSRs offers a 
technique for horizontal test data compression which does 
not require any modifications of the scan chain. The pur-
pose of this section is to show that a horizontal compres-
sion based on the reseeding of LFSRs can efficiently be 
combined with a vertical compression based on the re-
seeding of folding counters. The first problem to be 
solved is that the respective hardware schemes of Figures 
2 and 10 cannot simply be merged, because the feedback 
functions of the LFSR and the folding counter cannot be 
activated simultaneously without interfering with each 
other. This problem is eliminated by a more flexible im-
plementation of the folding compression scheme as 
shown below. 

The folding controller in Figure 10 is replaced by a 
controller which is able to produce a state of any given 
index in the folding counter sequence from a given seed. 
Applying the same seed several times while increasing 

the index of the produced states then provides a complete 
folding counter sequence. This way the Johnson counter 
of Figure 10 is no longer necessary for implementing the 
state transitions of the folding counter, and the seed can 
be provided serially by any source (see Figure 11). In par-
ticular, the folding seed can be the output of an LFSR 
decompressing LFSR seeds into test cubes. 

 
 
 
  
 
 
 

Figure 11: Alternative approach to generate scan patterns as 
folding counter sequences. 

Before the resulting BIST architecture is discussed, the 
new folding controller is explained in some more detail. 
According to Observation 1 each bit position j in a state 
of index i is determined by the number of inversions 
inv(i, j) to be performed starting from the seed. As shown 
in Figure 12 the value of inv(j, i) is either i or j+1 de-
pending on the bit position relative to the index.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Structure of the proposed folding controller. 

Since an inversion has to be performed, if and only if 
the value of inv(i, j) is odd, for 0 ≤ j < i the output of the 
folding controller can be provided by the inverted least 
significant bit of the bit counter, and for j ≥ i the least 
significant bit of the index counter may be used. The 
comparator controls the multiplexer accordingly. 

Compared to the folding controller used in the original 
scheme of Figure 10 there is one extra multiplexer and 
one extra inverter, but this extra cost is overcompensated 
by the elimination of the Johnson counter and the scan 
compatibility of the complete BIST architecture shown in 
Figure 13. During BIST an LFSR seed is loaded into the 
LFSR and decompressed into a folding seed by the LFSR 
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operation. While the folding seed is shifted into the scan 
path the folding controller transforms it into a state of 
index i in the folding counter sequence depending on the 
state of the index counter. When the scan path is 
completely loaded, the pattern is applied to the module 
under test, the bit counter is reset, and the index counter 
is activated. If the index counter has not yet cycled 
through all possible states, the same LFSR seed is 
reloaded, otherwise the index counter is reset and the 
next LFSR seed is processed. 

 
 
 
 
 
 
 
 
 

Figure 13: BIST scheme for two-dimensional reseeding. 

 
4 Synthesis Considerations and Encoding 

Procedures 
The scheme of Figure 13 is particularly suitable for a 

mixed mode BIST, since the LFSR can be used for 
pseudo-random pattern generation without any extra cost. 
Folding seeds and the corresponding LFSR seeds there-
fore only have to be determined for the remaining ran-
dom pattern resistant faults Fhard after a given number N 
of pseudo-random patterns. Overall, the synthesis of the 
BIST hardware consists of the following four steps, which 
may be iterated several times. 
1. The feedback polynomial of the LFSR and the de-

sired number N of pseudo-random patterns must be 
selected. Using one polynomial for both pseudo-ran-
dom pattern generation and for encoding may lead 
to sub-optimal solutions for both tasks. In these 
cases the scheme can be applied with two polynomi-
als selected independently. 

2. N pseudo-random patterns are fault simulated to 
determine Fhard. 

3. ATPG for Fhard provides a deterministic test set 
nT },1,0{ −⊂  for the pseudo-random pattern resis-

tant faults. 
4. An optimal set of LFSR seeds must be determined, 

such that during BIST the scheme of Figure 13 gen-
erates a sequence of scan patterns detecting all faults 
in Fhard . 

In the fourth step the objective is to achieve minimum 
storage requirements, i. e. both the number and the width 
of the seeds should be minimized. The straightforward 

approach of determining an optimal set of folding seeds 
and encoding the folding seeds into LFSR seeds is not 
promising, because in an optimal set of folding seeds the 
maximum number of specified bits will be much higher 
than in the original test set. An increased number of 
specified bits results in a need for larger LFSRs for the 
encoding step and implies a decreased overall compres-
sion rate. Instead, a more careful combination of the 
synthesis techniques for folding schemes and the encod-
ing techniques for the reseeding of LFSRs is required. 

The proposed encoding scheme proceeds in three 
phases: 
- For each test cube in T all possible seed cubes are 

constructed as explained in Section 2.  
- The seed cubes are encoded into LFSR seeds by 

solving the corresponding systems of linear equa-
tions as described in [12, 18]. 

- A covering algorithm selects a minimal number of 
LFSR seeds, such that during BIST the patterns ap-
plied to the MUT detect all hard faults.  

This strategy provides excellent possibilities to opti-
mize the LFSR encoding. If the test set T contains a 
maximum number of specified bits smax, then according to 
Observation 3 the maximum number of specified bits for 
all possible seeds cubes is at most smax. A successful en-
coding is possible with a probability of 1-10-6 using a 
single-polynomial LFSR of degree smax+20 or a multiple-
polynomial LFSR of degree smax [12, 18]. In general, the 
degree of the polynomial can be further decreased be-
cause of two reasons: Firstly, as shown in Section 2, 
merging of seed cubes reduces the number of specified 
bits, and, secondly, for a successful BIST it is sufficient to 
encode one of the folding seeds. In our experimental work 
in most cases a polynomial of degree smax-5 turned out to 
be sufficient. 

The covering problem to be solved after the encoding 
phase is illustrated in Figure 14.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Seed Covering Problem. 
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 Each LFSR seed constructed in the first phase corre-
sponds to a subset of Fhard, and a minimum number of 
seeds has to be determined, such that Fhard is completely 
covered. 

To implement the covering algorithm a simple greedy 
algorithm has been developed. For any new LFSR seed 
added to a partial solution fault simulation is performed 
for the expanded folding seed and the complete folding 
counter sequence produced by this seed. The algorithm 
stops, when all faults are detected. Since a folding seed 
expanded from an LFSR seed is a fully specified pattern 
and the resulting folding counter sequence also consists 
of fully specified patterns only, the fault simulation 
process is much more efficient than the fault simulation 
performed during the ATPG phase (during ATPG test 
cubes with a minimum number of specified bits are fault 
simulated). This way, the number of seeds can be kept 
reasonably small. The covering heuristic, of course has a 
higher optimization potential, if more than one seed cube 
can be encoded per test cube, and there is still a trade-off 
between minimizing the degree of the feedback polyno-
mial and minimizing the number of required LFSR seeds. 

 
5 Experimental Results 

To evaluate the proposed BIST scheme, a series of ex-
periments has been performed with the ISCAS-85 and the 
combinational parts of the ISCAS-89 circuits [2, 3]. Only 
circuits which still had undetected faults after 10000 
pseudo-random patterns have been analyzed in further 
detail. Deterministic test cubes for the hard faults have 
been generated to guarantee the detection of all irredun-
dant faults, i. e. to provide 100% fault efficiency. A pro-
prietary ATPG tool has been used with the option to 
minimize the number of specified bits. Since preliminary 
experiments showed, that using only one polynomial for 
both pseudo-random pattern generation and LFSR en-
coding in all cases provided worse results than indepen-
dently chosen feedback polynomials, the synthesis proce-
dure described above has been applied with independently 
chosen feedback polynomials in all further experiments. 
The degrees of the polynomials have been varied from 
smax-5 to smax+2, and the best results have been selected.   

Table 1 shows the results. The names of the circuits 
and the number of pseudo-primary inputs are given in 
columns one and two. The subsequent columns show the 
degree of the LFSR for pseudo-random pattern genera-
tion, the degree of the LFSR for encoding, the number of 
seeds, and the overall number of bits to be stored (ROM). 
The main advantage of the presented scheme is that both 
vertical and horizontal compression leave the scan chain 
untouched.  The next two experiments therefore analyze 
the trade-off between the efficiency of test data 
compression and scan compatibility.  

Circuit # PPI LFSR 
PRPG 

LFSR 
Encoding # Seeds ROM 

s420 34 15 16 10 160 

s641 54 13 16 4 64 

s713 54 13 16 4 64 

s838 66 25 33 26 858 

s953 45 15 10 2 20 

s1196 32 17 10 3 30 

s1238 32 13 14 3 42 

s5378 214 14 14 14 196 

s9234 247 41 40 95 3800 

s13207 700 21 18 58 1044 

s15850 611 22 30 112 3360 

s38417 1664 49 42 267 11214 

s38584 1464 46 49 59 2891 

c2670 233 47 37 28 1036 

c7552 207 127 133 36 4788 

Table 1: Storage requirements for the two-dimensional 
reseeding scheme of Figure 13. 

Table 2 compares the new scheme with the folding 
counter scheme in [11], which achieves high data com-
pression rates but requires a reorganization of the scan 
chain. 

 

Circuit # PPI ROM 2D ROM [11] 
[11] ROM

2D ROM
 

s420 34 160 132 1,21 

s641 54 64 50 1,28 

s713 54 64 36 1,78 

s838 66 858 700 1,23 

s953 45 20 12 1,67 

s1196 32 30 10 3 

s1238 32 42 24 1,75 

s5378 214 196 132 1,48 

s9234 247 3800 2310 1,65 

s13207 700 1044 247 4,23 

s15850 611 3360 2403 1,4 

s38417 1664 11214 6802 1,65 

s38584 1464 2891 660 4,38 

c2670 233 1036 1080 0,96 

c7552 207 4788 2688 1,78 

Table 2: Two-dimensional reseeding versus the folding 
counter scheme combined with scan path reorgani-
zation in [11]. 



   

   

Here it can be observed, that the folding counter 
scheme in [11] requires less test data storage than the 
proposed two-dimensional reseeding. However, the lower 
storage requirements are paid by a non standard scan or-
ganization.  

Next we compare the proposed approach to the ad-
vanced twisted ring counter approach recently published 
in [5], which also is not scan compatible and requires to 
configure the circuit inputs into a twisted ring counter. 
Since the experiments reported in [5] do not rely on 
pseudo-random patterns to eliminate the easy to detect 
faults, the synthesis algorithm has been modified to target 
all faults (in general this requires more seeds than target-
ing Fhard only). The results in Table 3 show that in most 
cases the twisted ring counter approach is characterized 
by a smaller number of seeds, but the proposed approach 
is superior with respect to the number of bits to be stored. 
In the best case, the proposed approach requires only 26% 
of the test data volume for the twisted ring counter 
scheme, on the average approximately 77% are sufficient. 
Thus, the two-dimensional reseeding scheme is superior 
both with respect to the efficiency of test data compres-
sion and the scan compatibility. 

 
Proposed Approach TRC [5] 

Circuit # PPI 
# Seeds ROM 

2D 
# Seeds ROM 

TRC 
[5] ROM
2D ROM

 

s420 34 16 304 9 315 0,97 

s641 54 12 228 6 324 0,7 

s713 54 12 216 8 432 0,5 

s838 66 41 1435 31 2077 0,69 

s953 45 30 330 8 360 0,92 

s1196 32 46 644 15 480 1,34 

s1238 32 57 684 25 800 0,86 

s5378 214 78 1326 18 3852 0,34 

s9234 247 127 5080 50 12350 0,41 

s13207 700 140 2660 2 1400 1,9 

s15850 611 151 4379 11 6721 0,65 

s38417 1664 327 13734 19 31616 0,43 

s38584 1464 169 8281 22 32208 0,26 

Table 3: Comparison of the proposed scheme and advanced 
twisted ring counter approach in [5]. 

Finally, the proposed two-dimensional reseeding is 
compared to the pure LFSR encoding reported in [13], 
which is comparable with respect to flexibility and scan 
compatibility. The results after 10,000 pseudo-random 
patterns for both schemes are shown in Table 4. 

It can be observed that for all circuits the proposed 
scheme achieves a higher compression rate. In the best  

case the number of bits to be stored is reduced down to 
11 %, and on the average a reduction of the test data stor-
age by 57 % is obtained. Furthermore, in all cases the 
proposed scheme requires less polynomials than the con-
ventional reseeding scheme described in [13]. 

 
Two-dimensional 

Reseeding 
Reseeding of  
LFSRs [13] Circuit #PPIs 

# Poly-
nomials ROM 2D # Poly-

nomials 
ROM 
[13] 

[13] ROM
2D ROM

 

s420 34 2 160 3 250 0.64 

s641 54 2 64 2 183 0.35 

s713 54 2 64 2 183 0.35 

s838 66 2 858 6 1623 0.53 

s953 45 2 20 4 141 0.14 

s1196 32 2 30 4 267 0.11 

s1238 32 2 42 4 249 0.17 

s5378 214 2 196 3 726 0.27 

s9234 247 2 3800 8 6923 0.55 

s13207 700 2 1044 6 3570 0.29 

s15850 611 2 3360 6 6528 0.51 

s38417 1664 2 11214 6 24283 0.46 

s38584 1464 2 2891 3 3406 0.85 

c2670 233 2 1036 5 3412 0,30 

c7552 207 2 4788 12 5241 0,91 

Table 4: Comparison of the proposed technique to the reseed-
ing of multiple polynomial LFSRs [13]. 

Overall, the experimental experience shows that there 
is a trade-off between scan compatibility and the memory 
size required to implement a store-and-generate ap-
proach. Compared to previously published approaches 
providing the same flexibility and scan compatibility the 
proposed two-dimensional reseeding approach clearly 
offers the most efficient solution. 

 
 

6 Conclusions 
A new and efficient scheme for scan-based BIST has 

been presented. This scheme applies a two-dimensional 
reseeding technique which encodes deterministic test 
cubes as seeds of a folding counter sequence and again 
compresses the folding seeds into LFSR seeds. This way 
the amount of the test data storage is reduced considera-
bly. Moreover, the simple and regular structure of the 
pattern generator is completely compatible with standard 
scan design, allows an efficient hardware implementation 
and provides a flexible low cost solution for high quality 
BIST. 
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