
Proceedings IEEE International Test Conference, Baltimore, MD, October 30 – November 1, 2001

TWO-DIMENSIONAL TEST DATA COMPRESSION FOR
SCAN-BASED DETERMINISTIC BIST

Hua-Guo Liang†, Sybille Hellebrand‡, Hans-Joachim Wunderlich†

† University of Stuttgart, Germany
‡ University of Innsbruck, Austria

Abstract
In this paper a novel architecture for scan-based

mixed mode BIST is presented. To reduce the storage
requirements for the deterministic patterns it relies on a
two-dimensional compression scheme, which combines
the advantages of known vertical and horizontal com-
pression techniques. To reduce both the number of pat-
terns to be stored and the number of bits to be stored for
each pattern, deterministic test cubes are encoded as
seeds of an LFSR (horizontal compression), and the seeds
are again compressed into seeds of a folding counter
sequence (vertical compression). The proposed BIST
architecture is fully compatible with standard scan de-
sign, simple and flexible, so that sharing between several
logic cores is possible. Experimental results show that
the proposed scheme requires less test data storage than
previously published approaches providing the same
flexibility and scan compatibility.

1 Introduction

State-of-the-art systems-on-a-chip (SoCs) typically
consist of some user defined logic and various embedded
cores, such as memory and processor cores as well as
mixed-signal, analogue or RF cores. This core-based de-
sign style greatly increases the design productivity and
speeds up the time to market, but on the other hand, it
also turns testing into a more and more challenging task.
The increased system complexities and growing test data
volumes, the inaccessibility of internal blocks, the need
for testers specifically tuned to certain types of cores, the
increasing impact of timing faults, and the growing need
for periodic maintenance and on-line testing capabilities
discard traditional external testing with automatic test
equipment (ATE) as a feasible solution. Built-in self-test
(BIST) not only circumvents these problems, but, in
many cases, also offers the cheaper and more efficient
alternative. Therefore BIST has become a topic of major
interest in recent years, and pseudo-random BIST using

* Part of this work has been supported by the DFG grant WU 245/1-4

“Test and Synthesis of Fast Embedded Systems”. Hua-Guo Liang is also
associated with Hefei University, China.

an LFSR for test pattern generation has meanwhile been
widely accepted as the standard BIST approach [1].

For circuits containing pseudo-random pattern resis-
tant faults basically two different strategies have been
proposed: Techniques for test point insertion modify the
mission logic to improve the random pattern testability
and to guarantee a high fault coverage with a feasible
number of test patterns [8, 20, 22]. To minimize per-
formance degradations, the second strategy avoids any
changes in the mission logic and relies on more sophisti-
cated test pattern generators instead. This category com-
prises weighted random pattern and pseudo-exhaustive
testing as well as mixed mode approaches [4, 5, 9, 12-14,
16-18, 21, 23]. The latter typically use an LFSR to gener-
ate a limited number of pseudo-random patterns detecting
most of the faults. For the remaining hard to detect faults
deterministic patterns are provided, which are either
directly embedded into the LFSR sequence by some extra
control logic (“bit-fixing”, “bit-flipping”) or stored in
compressed form and regenerated during BIST (“store-
and-generate”). The bit-flipping approach has been
proven to be very successful even for large industrial
circuits [16, 17, 23]. However, the BIST architecture is
specifically tailored to a given deterministic test set, and a
small change in the test requirements and the test set may
make it necessary to resynthesize the BIST hardware. In
contrast to that, store-and-generate schemes can provide a
more flexible solution. Here, a powerful technique for
compressing the deterministic data is the key to an effi-
cient BIST implementation. As sketched in Figure 1,
there are two natural ways of reducing the amount of test
data to be stored: Vertical compression schemes reduce
the number of patterns to be stored, whereas horizontal
compression schemes reduce the number of bits to be
stored for each test pattern.

Figure 1: Vertical and horizontal test data compression.

Vertical compression

Test set,
rows are

test patterns

Horizontal compression

 2/9

A classical method for horizontal compression (also
referred to as “test width compression”) is to store identi-
cal columns of the test set only once [6, 7, 19]. In general
this approach allows a high compression rate, but in a
scan-based BIST environment it may require a reorgani-
zation of the scan chain and disturb the design flow. On
the other hand, techniques based on the reseeding of
LFSRs efficiently compress the width of the information
to be stored while leaving the scan chain untouched [12,
18]. As sketched in Figure 2 deterministic test cubes are
encoded as seeds of an LFSR, and during BIST the LFSR
expands the seeds to the desired scan patterns. The length
of the LFSR is determined only by the maximum number
of specified bits smax in the given set of test cubes. If only
one polynomial is used, an LFSR of length smax+20 guar-
antees a high probability of successful encoding; for the
reseeding of multiple-polynomial LFSRs feedback poly-
nomials of degree smax are sufficient [12, 18].

Figure 2: Test width compression based on the reseeding of
LFSRs.

To achieve a vertical compression the test data are usu-
ally encoded as seeds of a standard pattern generators or
of an arbitrary finite state machine [4, 5, 10, 15]. Re-
cently, a vertical compression scheme based on the re-
seeding of folding counters has been proposed [11]. As
depicted in Figure 3, a folding counter can be realized as
a Johnson counter with programmable feedback, and for
each seed it produces a sequence of patterns to be shifted
into the scan chain.

Figure 3: Vertical test data compression based on the reseed-
ing of folding counters.

It has been shown in [11] that folding counter se-
quences well reflect the typical properties of deterministic

patterns, and that in general a reasonably small number
of seeds is sufficient to characterize the complete test
data. In this paper a two-dimensional compression tech-
nique will be presented which efficiently combines the
advantages of the reseeding of folding counters for verti-
cal compression and the reseeding of LFSRs for horizon-
tal compression (see Figure 4).

Figure 4: Two-dimensional test data compression.

The target BIST architecture shown in Figure 5 inte-
grates an LFSR and a folding controller to achieve the
proposed two-dimensional data compression. It is fully
compatible with a standard design flow, since it does not
require any modifications of the scan chain. Moreover, as
the LFSR can also be used for pseudo-random pattern
generation, it supports a mixed mode BIST without any
extra cost.

However, in their basic forms the reseeding of LFSRs
and the reseeding of folding counters are not compatible,
such that a simple merging of the original BIST architec-
tures is not possible. To provide the necessary back-
ground for the detailed description of the proposed
scheme in Section 3, the next section briefly reviews the
basic concepts of folding counter sequences and derives
some new important properties. Section 4 describes the
complete synthesis procedure for the proposed architec-
ture, and finally Section 5 summarizes the experimental
results obtained so far. They clearly show that the pre-
sented approach requires less storage requirements than
other BIST schemes providing the same flexibility and
scan compatibility.

Figure 5: Target BIST architecture for two-dimensional test
data compression.

2 Folding Counters Revisited

This section briefly summarizes some of the basic con-
cepts and properties of folding counters as introduced in
[11] and develops the necessary background for the two-

 seeds

scan chain

MUT

LFSR

feedback

folding
controller

scan path

MUT

seeds

register
folding

controller

scan path

MUT
 seeds

LFSR

feedback

Reseeding of LFSRs

Reseeding
 of folding
counters

 3/9

dimensional reseeding approach proposed in this paper.
Unlike most other BIST pattern generators folding count-
ers work with a dynamically changing state transition
function depending on both the state of the counter and
the “index” of the transition. Starting from an initial state
s ∈ {0, 1}n a sequence of n+1 states s = F(0, s), F(1, s),
…, F(n, s) is produced, such that the transition from
F(i, s) to F(i+1, s) retains the first i bits and inverts the
remaining ones. A simple example is shown in Figure 6.

Figure 6: Sequence produced by a 4-bit folding counter.

Folding counters provide a good means for vertical test
set compression, since for deterministic BIST a folding
counter may be run with a number of different seeds, such
that the resulting folding counter sequences contain a
given deterministic test set. To store the deterministic test
set, it is then sufficient to store the folding seeds which
can be used to regenerate the complete test set during
BIST. To find an appropriate selection of seeds in [11]
“folding relations” between pairs of vectors have been
exploited. In this paper a completely different approach is
followed which is based on the observations stated below.

Observation 1: For a state of index i the value at bit
position j can be derived from the initial state s by per-
forming a number of inversions which is determined only
by the bit position j and the index i of the state. For 0 ≤ j
< n and 0 ≤ i ≤ n it is given by

(*)

 <+

=
elsei

ijifj
ijinv

1
),(.

Figure 7 illustrates this important property for the ex-
ample sequence of Figure 6.

Figure 7: State transitions and inversions.

As a consequence, for any given state in a folding
counter sequence the seed can easily be reconstructed,
once the index of the state is known. Conversely, for an
arbitrary vector x ∈ {0,1}n and a given index i a seed
vector can be constructed, such that the resulting folding
counter sequence contains x as a state of index i.

Observation 2: Let x ∈ {0,1}n be an arbitrary vector,
and let i be a desired index, 0 ≤ i ≤ n. The seed

s = (s0, …, sn-1) = (¬inv(0, i)x0, …, ¬ inv(n-1, i)xn-1),
provides a folding counter sequence such that x appears
as state of index i (¬k xj denotes the operation of invert-
ing xj k times).

Since a given vector x ∈ {0,1}n can be part of a folding
counter sequence with an index varying from 0 to n, over-
all there are n+1 possible seed vectors which lead to fold-
ing counter sequences containing x. Figure 8 shows an
example for x = (0,1,1,0,1). It can easily be verified that
the seed vectors ()i

n
ii sss 10 ,, −= K for x = (x0, …, xn-1) as

state of index i and ()2
1

2
0

2 ,, +
−

++ = i
n

ii sss K for x as state of
i+2 differ only in bit position i for 0 ≤ i ≤ n-2. Further-
more, sn-1 and sn differ only in bit position n-1. In general,
due to the inherent regularity of folding counter se-
quences, the following theorem is true.

Theorem: Let x = (x0, …, xn-1) ∈ {0,1}n be an arbi-
trary vector, and let ()i

n
ii sss 10 ,, −= K denote the seed,

such that x appears as state of index i in an n-bit folding
counter sequence, 0 ≤ i ≤ n. Then for 0 ≤ i ≤ n-2 the seeds

()i
n

ii sss 10 ,, −= K and ()2
1

2
0

2 ,, +
−

++ = i
n

ii sss K differ only in
bit position i, and the seeds sn-1 and sn differ only in bit
position n-1.

Proof: According to Observation 2 the seed si is ob-
tained as si = (¬inv(0, i)x0, …, ¬ inv(n-1, i)xn-1), and in the
same way si+2 = (¬inv(0, i+2)x0, …, ¬inv(n-1, i+2)xn-1). If 0 ≤ i ≤
n-2, four cases must be distinguished for the inversion
numbers inv(j, i) and inv(j, i+2):
(i) If j < i holds, then also j < i+2 and inv(j, i) =

inv(j, i+2).
(ii) If j = i holds, then inv(j, i) = i, but still j < i+2 and

inv(j, i+2) = j+1 = i+1.
(iii) If j = i+1 holds, then inv(j, i) = i, but still j < i+2

and inv(j, i+2) = j+1 = i+2. However, ¬ixj = ¬
i+2xj .

(iv) If j ≥ i+2 then inv(j, i) = inv(j, i+2) = i.
Only in case (ii) for j = i different results are obtained

for ¬inv(j, i)xj and ¬inv(j, i)xj , and thus si and si+2 differ only
in bit position i. In the same way it can be shown that sn-1
and sn only in bit position n-1, which concludes the proof.
 q.e.d.

As a consequence of the Theorem, the seeds si and si+2
can be merged to a seed cube with a don’t care in bit
position i. For the example of Figure 8 the set of possible
seeds for x = (0,1,1,0,1) can be represented by
{(-,1,1,0,1), (1,-,0,1,0), (1,1,0,0,-)}.

state index

F(0, s) = 0 1 1 0 0
F(1, s) = 1 0 0 1 1
F(2, s) = 1 1 1 0 2
F(3, s) = 1 1 0 1 3
F(4, s) = 1 1 0 0 4

 j = 0 1 2 3 i

state 0 1 1 0 0
inv(j, i) 0 0 0 0

state 1 0 0 1 1
inv(j, i) 1 1 1 1

state 1 1 1 0 2
inv(j, i) 1 2 2 2

state 1 1 0 1 3
inv(j, i) 1 2 3 3

state 1 1 0 0 4
inv(j, i) 1 2 3 4

Figure 8: Possible seeds for x = (0,1,1,0,1).

Figure 9: Seed construction for test cubes.

When dealing with test cubes t ∈ {0,1,-}n, a similar

procedure for extracting possible seed cubes is applied as
described in the following. For a test cube t = (t0, …, tn-1)
∈ {0,1,-}n the seed cubes si = (s0, …, sn-1) = (¬inv(0, i) t0,
…, ¬ inv(n-1, i) tn-1) are constructed with the additional rule
¬tj = tj for tj = ‘-‘ (see Figure 9).

As highlighted in Figure 9, even without further merg-
ing some of the seed cubes are identical. In general, if the
construction rule defined above is applied to a test cube t
= (t0, …, tn-1) ∈ {0,1,-}n, then according to the Theorem
for each don’t care ti = ‘-‘ the seed cubes si and si+2 are
identical. Consequently, if the number of specified bits is
equal to k, at most k+1 different seed cubes are obtained.
In the example of Figure 9 the 5-bit cube t = (0,-,1,0,-)
has 3 specified bits and 2 don’t cares, and therefore there
are 6-2 = 4 possible seed cubes. Of course, in the same
way as in the fully specified case, further merging is pos-
sible, and it can be easily verified that the two cubes (-,-
,1,0,-) and (1,-,0,-,-) represent all possible folding seeds
for t = (0,-,1,0,-).

Observation 3: Let t ∈ {0,1,-}n be a test cube with k
specified bits. Then the number of possible seed cubes is
at most k +1, and each seed cube contains at most k speci-
fied bits.

Thus for a set of test cubes T ⊂ {0,1,-}n with a maxi-
mum number of specified bits smax for each cube at most

smax+1 possible seed cubes can be extracted, and a cover-
ing heuristic may be used to derive the best selection of
seed cubes representing T. The actual BIST architecture
depends on the realization of the folding counter. In [11]
a Johnson counter with programmable feedback as shown
in Figure 10 was proposed.

Figure 10: Basic deterministic BIST scheme using a folding
counter.

To apply a folding sequence to the MUT a seed is
loaded into the shift register, and the index counter and

seed vector s 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0
F(1, s) 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1
F(2, s) 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0
F(3, s) 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1
F(4, s) 0 1 1 0 1 0 1 1 0 0
F(5, s) 0 1 1 0 1
0 1 1 0 1
appears as 0 1 2 3 4 5
state of index

seed cube s 0 - 1 0 - 1 - 0 1 - 1 - 1 0 - 1 - 0 1 - 1 - 0 0 - 1 - 0 0 -
F(1, s) 0 - 1 0 - 0 - 0 1 - 0 - 1 0 - 0 - 1 1 - 0 - 1 1 -
F(2, s) 0 - 1 0 - 0 - 0 1 - 0 - 0 0 - 0 - 0 0 -
F(3, s) 0 - 1 0 - 0 - 1 1 - 0 - 1 1 -
F(4, s) 0 - 1 0 - 0 - 1 0 -
F(5, s) 0 - 1 0 -
0 - 1 0 -
appears as 0 1 2 3 4 5
state of index

bit counter
comparator

 ...

folding
controller

index counter

scan path

MUT
 seeds

bit counter are initialized. While the first pattern is
loaded into the scan chain the Johnson counter serially
generates the next state of the folding counter. For each
bit the state of the index counter is compared to the state
of the bit counter which controls the loading of the scan
path. As soon as the pattern is completely loaded, it is
applied to the MUT, the bit counter is reset and the index
counter is activated. This procedure is repeated until the
index counter has cycled through all states and the next
seed can be processed.

As mentioned above, embedding deterministic test
cubes in a folding counter sequence results in a vertical
test set compression, i.e. in a reduction of the number of
vectors to be stored. However, the basic scheme of Figure
10 does not allow any horizontal test set compression,
and the Johnson counter must be of the same length as
the scan path. To circumvent this problem in [11] classi-
cal techniques for test width compression were combined
with the basic architecture of Figure 3 [6, 7, 19]. The
experimental results in [11] show that this way high
compression rates for the test data to be stored can be
achieved, but a major drawback of the applied techniques
for test width compression is that they require a reorgani-
zation of the scan chain, and that they are not compatible
with common design flows. The next section will demon-
strate that the combination of appropriate techniques for
both horizontal and vertical test set compression allows
both a fully scan compatible implementation of mixed
mode BIST and high compression rates.

3 A BIST Architecture for Two-Dimensional

Reseeding
As already pointed out classical techniques for test

width compression require a reorganization of the scan
chain and may not be acceptable within a typical design
flow. On the other hand, reseeding of LFSRs offers a
technique for horizontal test data compression which does
not require any modifications of the scan chain. The pur-
pose of this section is to show that a horizontal compres-
sion based on the reseeding of LFSRs can efficiently be
combined with a vertical compression based on the re-
seeding of folding counters. The first problem to be
solved is that the respective hardware schemes of Figures
2 and 10 cannot simply be merged, because the feedback
functions of the LFSR and the folding counter cannot be
activated simultaneously without interfering with each
other. This problem is eliminated by a more flexible im-
plementation of the folding compression scheme as
shown below.

The folding controller in Figure 10 is replaced by a
controller which is able to produce a state of any given
index in the folding counter sequence from a given seed.
Applying the same seed several times while increasing

the index of the produced states then provides a complete
folding counter sequence. This way the Johnson counter
of Figure 10 is no longer necessary for implementing the
state transitions of the folding counter, and the seed can
be provided serially by any source (see Figure 11). In par-
ticular, the folding seed can be the output of an LFSR
decompressing LFSR seeds into test cubes.

Figure 11: Alternative approach to generate scan patterns as
folding counter sequences.

Before the resulting BIST architecture is discussed, the
new folding controller is explained in some more detail.
According to Observation 1 each bit position j in a state
of index i is determined by the number of inversions
inv(i, j) to be performed starting from the seed. As shown
in Figure 12 the value of inv(j, i) is either i or j+1 de-
pending on the bit position relative to the index.

Figure 12: Structure of the proposed folding controller.

Since an inversion has to be performed, if and only if
the value of inv(i, j) is odd, for 0 ≤ j < i the output of the
folding controller can be provided by the inverted least
significant bit of the bit counter, and for j ≥ i the least
significant bit of the index counter may be used. The
comparator controls the multiplexer accordingly.

Compared to the folding controller used in the original
scheme of Figure 10 there is one extra multiplexer and
one extra inverter, but this extra cost is overcompensated
by the elimination of the Johnson counter and the scan
compatibility of the complete BIST architecture shown in
Figure 13. During BIST an LFSR seed is loaded into the
LFSR and decompressed into a folding seed by the LFSR

scan path folding seed
(applied several

times)

folding

controller

produces states of
increasing index

i 0 n-1

inv(j, i) = j+1 inv(j, i) = i

... ...

bit counter

comparator

MUX

LSB

LSB

folding
seed

folding
controller

1

index counter

operation. While the folding seed is shifted into the scan
path the folding controller transforms it into a state of
index i in the folding counter sequence depending on the
state of the index counter. When the scan path is
completely loaded, the pattern is applied to the module
under test, the bit counter is reset, and the index counter
is activated. If the index counter has not yet cycled
through all possible states, the same LFSR seed is
reloaded, otherwise the index counter is reset and the
next LFSR seed is processed.

Figure 13: BIST scheme for two-dimensional reseeding.

4 Synthesis Considerations and Encoding

Procedures
The scheme of Figure 13 is particularly suitable for a

mixed mode BIST, since the LFSR can be used for
pseudo-random pattern generation without any extra cost.
Folding seeds and the corresponding LFSR seeds there-
fore only have to be determined for the remaining ran-
dom pattern resistant faults Fhard after a given number N
of pseudo-random patterns. Overall, the synthesis of the
BIST hardware consists of the following four steps, which
may be iterated several times.
1. The feedback polynomial of the LFSR and the de-

sired number N of pseudo-random patterns must be
selected. Using one polynomial for both pseudo-ran-
dom pattern generation and for encoding may lead
to sub-optimal solutions for both tasks. In these
cases the scheme can be applied with two polynomi-
als selected independently.

2. N pseudo-random patterns are fault simulated to
determine Fhard.

3. ATPG for Fhard provides a deterministic test set
nT },1,0{ −⊂ for the pseudo-random pattern resis-

tant faults.
4. An optimal set of LFSR seeds must be determined,

such that during BIST the scheme of Figure 13 gen-
erates a sequence of scan patterns detecting all faults
in Fhard .

In the fourth step the objective is to achieve minimum
storage requirements, i. e. both the number and the width
of the seeds should be minimized. The straightforward

approach of determining an optimal set of folding seeds
and encoding the folding seeds into LFSR seeds is not
promising, because in an optimal set of folding seeds the
maximum number of specified bits will be much higher
than in the original test set. An increased number of
specified bits results in a need for larger LFSRs for the
encoding step and implies a decreased overall compres-
sion rate. Instead, a more careful combination of the
synthesis techniques for folding schemes and the encod-
ing techniques for the reseeding of LFSRs is required.

The proposed encoding scheme proceeds in three
phases:
- For each test cube in T all possible seed cubes are

constructed as explained in Section 2.
- The seed cubes are encoded into LFSR seeds by

solving the corresponding systems of linear equa-
tions as described in [12, 18].

- A covering algorithm selects a minimal number of
LFSR seeds, such that during BIST the patterns ap-
plied to the MUT detect all hard faults.

This strategy provides excellent possibilities to opti-
mize the LFSR encoding. If the test set T contains a
maximum number of specified bits smax, then according to
Observation 3 the maximum number of specified bits for
all possible seeds cubes is at most smax. A successful en-
coding is possible with a probability of 1-10-6 using a
single-polynomial LFSR of degree smax+20 or a multiple-
polynomial LFSR of degree smax [12, 18]. In general, the
degree of the polynomial can be further decreased be-
cause of two reasons: Firstly, as shown in Section 2,
merging of seed cubes reduces the number of specified
bits, and, secondly, for a successful BIST it is sufficient to
encode one of the folding seeds. In our experimental work
in most cases a polynomial of degree smax-5 turned out to
be sufficient.

The covering problem to be solved after the encoding
phase is illustrated in Figure 14.

Figure 14: Seed Covering Problem.

 F1
F2

F3

Fk Fhard

Faults covered by k-th LFSR seed:
- The seed is expanded by the LFSR into a

fully specified folding seed.
- The folding seed provides a sequence of

fully specified scan patterns.
- Fault simulation determines the faults

detected by this sequence.

Fk

folding
controller

scan path

MUT
 seeds

LFSR

feedback
bit counter

 Each LFSR seed constructed in the first phase corre-
sponds to a subset of Fhard, and a minimum number of
seeds has to be determined, such that Fhard is completely
covered.

To implement the covering algorithm a simple greedy
algorithm has been developed. For any new LFSR seed
added to a partial solution fault simulation is performed
for the expanded folding seed and the complete folding
counter sequence produced by this seed. The algorithm
stops, when all faults are detected. Since a folding seed
expanded from an LFSR seed is a fully specified pattern
and the resulting folding counter sequence also consists
of fully specified patterns only, the fault simulation
process is much more efficient than the fault simulation
performed during the ATPG phase (during ATPG test
cubes with a minimum number of specified bits are fault
simulated). This way, the number of seeds can be kept
reasonably small. The covering heuristic, of course has a
higher optimization potential, if more than one seed cube
can be encoded per test cube, and there is still a trade-off
between minimizing the degree of the feedback polyno-
mial and minimizing the number of required LFSR seeds.

5 Experimental Results

To evaluate the proposed BIST scheme, a series of ex-
periments has been performed with the ISCAS-85 and the
combinational parts of the ISCAS-89 circuits [2, 3]. Only
circuits which still had undetected faults after 10000
pseudo-random patterns have been analyzed in further
detail. Deterministic test cubes for the hard faults have
been generated to guarantee the detection of all irredun-
dant faults, i. e. to provide 100% fault efficiency. A pro-
prietary ATPG tool has been used with the option to
minimize the number of specified bits. Since preliminary
experiments showed, that using only one polynomial for
both pseudo-random pattern generation and LFSR en-
coding in all cases provided worse results than indepen-
dently chosen feedback polynomials, the synthesis proce-
dure described above has been applied with independently
chosen feedback polynomials in all further experiments.
The degrees of the polynomials have been varied from
smax-5 to smax+2, and the best results have been selected.

Table 1 shows the results. The names of the circuits
and the number of pseudo-primary inputs are given in
columns one and two. The subsequent columns show the
degree of the LFSR for pseudo-random pattern genera-
tion, the degree of the LFSR for encoding, the number of
seeds, and the overall number of bits to be stored (ROM).
The main advantage of the presented scheme is that both
vertical and horizontal compression leave the scan chain
untouched. The next two experiments therefore analyze
the trade-off between the efficiency of test data
compression and scan compatibility.

Circuit # PPI LFSR
PRPG

LFSR
Encoding # Seeds ROM

s420 34 15 16 10 160

s641 54 13 16 4 64

s713 54 13 16 4 64

s838 66 25 33 26 858

s953 45 15 10 2 20

s1196 32 17 10 3 30

s1238 32 13 14 3 42

s5378 214 14 14 14 196

s9234 247 41 40 95 3800

s13207 700 21 18 58 1044

s15850 611 22 30 112 3360

s38417 1664 49 42 267 11214

s38584 1464 46 49 59 2891

c2670 233 47 37 28 1036

c7552 207 127 133 36 4788

Table 1: Storage requirements for the two-dimensional
reseeding scheme of Figure 13.

Table 2 compares the new scheme with the folding
counter scheme in [11], which achieves high data com-
pression rates but requires a reorganization of the scan
chain.

Circuit # PPI ROM 2D ROM [11]
[11] ROM

2D ROM

s420 34 160 132 1,21

s641 54 64 50 1,28

s713 54 64 36 1,78

s838 66 858 700 1,23

s953 45 20 12 1,67

s1196 32 30 10 3

s1238 32 42 24 1,75

s5378 214 196 132 1,48

s9234 247 3800 2310 1,65

s13207 700 1044 247 4,23

s15850 611 3360 2403 1,4

s38417 1664 11214 6802 1,65

s38584 1464 2891 660 4,38

c2670 233 1036 1080 0,96

c7552 207 4788 2688 1,78

Table 2: Two-dimensional reseeding versus the folding
counter scheme combined with scan path reorgani-
zation in [11].

Here it can be observed, that the folding counter
scheme in [11] requires less test data storage than the
proposed two-dimensional reseeding. However, the lower
storage requirements are paid by a non standard scan or-
ganization.

Next we compare the proposed approach to the ad-
vanced twisted ring counter approach recently published
in [5], which also is not scan compatible and requires to
configure the circuit inputs into a twisted ring counter.
Since the experiments reported in [5] do not rely on
pseudo-random patterns to eliminate the easy to detect
faults, the synthesis algorithm has been modified to target
all faults (in general this requires more seeds than target-
ing Fhard only). The results in Table 3 show that in most
cases the twisted ring counter approach is characterized
by a smaller number of seeds, but the proposed approach
is superior with respect to the number of bits to be stored.
In the best case, the proposed approach requires only 26%
of the test data volume for the twisted ring counter
scheme, on the average approximately 77% are sufficient.
Thus, the two-dimensional reseeding scheme is superior
both with respect to the efficiency of test data compres-
sion and the scan compatibility.

Proposed Approach TRC [5]

Circuit # PPI
Seeds ROM

2D
Seeds ROM

TRC
[5] ROM
2D ROM

s420 34 16 304 9 315 0,97

s641 54 12 228 6 324 0,7

s713 54 12 216 8 432 0,5

s838 66 41 1435 31 2077 0,69

s953 45 30 330 8 360 0,92

s1196 32 46 644 15 480 1,34

s1238 32 57 684 25 800 0,86

s5378 214 78 1326 18 3852 0,34

s9234 247 127 5080 50 12350 0,41

s13207 700 140 2660 2 1400 1,9

s15850 611 151 4379 11 6721 0,65

s38417 1664 327 13734 19 31616 0,43

s38584 1464 169 8281 22 32208 0,26

Table 3: Comparison of the proposed scheme and advanced
twisted ring counter approach in [5].

Finally, the proposed two-dimensional reseeding is
compared to the pure LFSR encoding reported in [13],
which is comparable with respect to flexibility and scan
compatibility. The results after 10,000 pseudo-random
patterns for both schemes are shown in Table 4.

It can be observed that for all circuits the proposed
scheme achieves a higher compression rate. In the best

case the number of bits to be stored is reduced down to
11 %, and on the average a reduction of the test data stor-
age by 57 % is obtained. Furthermore, in all cases the
proposed scheme requires less polynomials than the con-
ventional reseeding scheme described in [13].

Two-dimensional

Reseeding
Reseeding of
LFSRs [13] Circuit #PPIs

Poly-
nomials ROM 2D # Poly-

nomials
ROM
[13]

[13] ROM
2D ROM

s420 34 2 160 3 250 0.64

s641 54 2 64 2 183 0.35

s713 54 2 64 2 183 0.35

s838 66 2 858 6 1623 0.53

s953 45 2 20 4 141 0.14

s1196 32 2 30 4 267 0.11

s1238 32 2 42 4 249 0.17

s5378 214 2 196 3 726 0.27

s9234 247 2 3800 8 6923 0.55

s13207 700 2 1044 6 3570 0.29

s15850 611 2 3360 6 6528 0.51

s38417 1664 2 11214 6 24283 0.46

s38584 1464 2 2891 3 3406 0.85

c2670 233 2 1036 5 3412 0,30

c7552 207 2 4788 12 5241 0,91

Table 4: Comparison of the proposed technique to the reseed-
ing of multiple polynomial LFSRs [13].

Overall, the experimental experience shows that there
is a trade-off between scan compatibility and the memory
size required to implement a store-and-generate ap-
proach. Compared to previously published approaches
providing the same flexibility and scan compatibility the
proposed two-dimensional reseeding approach clearly
offers the most efficient solution.

6 Conclusions
A new and efficient scheme for scan-based BIST has

been presented. This scheme applies a two-dimensional
reseeding technique which encodes deterministic test
cubes as seeds of a folding counter sequence and again
compresses the folding seeds into LFSR seeds. This way
the amount of the test data storage is reduced considera-
bly. Moreover, the simple and regular structure of the
pattern generator is completely compatible with standard
scan design, allows an efficient hardware implementation
and provides a flexible low cost solution for high quality
BIST.

7 References

1 M. Abramovici, M. Breuer, A. Friedman: Digital Systems
Testing and Testable Design; New York: Computer Science
Press (W. H. Freeman and Co.), 1990

2 F. Brglez et al.: Accelerated ATPG and fault grading via
testability analysis; Proc. IEEE International Symposium on
Circuits and Systems, Kyoto, 1985

3 F. Brglez, D. Bryan and K. Kozminski: Combinational Pro-
files of Sequential Benchmark Circuits; Proc. IEEE Interna-
tional Symposium on Circuits and Systems, 1989, pp. 1929-
1934

4 K. Chakrabarty, B. T. Murray, and V. Iyengar: Built-In Test
Pattern Generation for High-Performance Circuits Using
Twisted-Ring Counters; Proc. 17th IEEE VLSI Test Sympo-
sium, Dana Point, CA, 1999, pp. 22-27

5 K. Chakrabarty and S. Swaminathan: Built-in self testing of
high-performance circuits using twisted-ring counters; Pro-
ceedings 2000 IEEE International Symposium on Circuits
and Systems, 2000, pp. I-72 - I-76

6 C.-A. Chen, S. K. Gupta: A Methodology to Design Effi-
cient BIST Test Pattern Generators; Proc. IEEE Interna-
tional Test Conference, Washington, DC, 1995, pp. 814-823

7 C.-A. Chen, S. K. Gupta: Efficient BIST TPG Design and
Test Set Compaction via Input Reduction; IEEE Transac-
tions on CAD of Integrated Circuits and Systems, Vol. 17,
No. 8, August 1998, pp. 692-705

8 K.-T. Chen, C.-J. Lin: Timing Driven Test Point Insertion
for Full-Scan and Partial-Scan BIST, Proceedings IEEE In-
ternational Test Conference, Washington, DC, 1995, pp.
506-514

9 C. Dufaza, G. Cambon: LFSR based Deterministic and
Pseudo-Random Test Pattern Generator Structures; Pro-
ceedings European Test Conference, Munich, 1991, pp. 27-
34

10 C. Fagot, O. Gascuel, P. Girard, C. Landrault: On calculat-
ing efficient LFSR seeds for built-in self test; Proc. IEEE
European Test Workshop 1999 (ETW’99), Constance, Ger-
many, 1999, pp. 7-14

11 S. Hellebrand, H.-G. Liang, H.-J. Wunderlich: A Mixed
Mode BIST Scheme Based on the Reseeding of Folding
Counters; Proceedings IEEE International Test Conference,
Atlantic City, NJ, October 2000, pp. 778-784

12 S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and
B. Courtois: Built-in Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers; IEEE Trans. on Comp., Vol. 44, No.2, February
1995, pp. 223-233

13 S. Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunderlich: Pat-
tern Generation for a Deterministic BIST Scheme; Proc.
IEEE/ACM Int. Conf. on CAD-95, San Jose, CA, November
1995, pp. 88-94

14 S. Hellebrand, H.-J. Wunderlich, A. Hertwig: Mixed-Mode
BIST Using Embedded Processors; Journal of Electronic
Testing Theory and Applications (JETTA), Vol. 12, Nos.
1/2, February/April 1998, pp. 127-138

15 D. Kagaris, S. Tragoudas, A. Majumdar: On the Use of
Counters for Reproducing Deterministic Test Sets; IEEE
Trans. on Comp., Vol. 45, No. 12, Dec. 1996, pp.1405-1419

16 G. Kiefer, H.-J. Wunderlich: Using BIST Control for Pat-
tern Generation; Proc. IEEE Int. Test Conf., Washington,
DC, November 1997, pp. 347-355

17 G. Kiefer, H. Vranken, E. J. Marinissen, H.-J. Wunderlich:
Application of Deterministic Logic BIST on Industrial Cir-
cuits; Proc. IEEE International Test Conference, ITC 2000,
Atlantic City, NJ, October 3 - 5, 2000

18 B. Koenemann: LFSR-Coded Test Patterns for Scan De-
signs; Proc. Eur. Test Conf., Munich 1991, pp. 237-242

19 E. J. McCluskey: Verification Testing - A Pseudoexhaustive
Test Technique; IEEE Transactions on Computers, Vol. C-
33, No.6, June 1984, pp. 541–546

20 Y. Savaria, M. Yousef, B. Kaminska, M. Koudil: Automatic
Test Point Insertion for Pseudo-Random Testing; Proceed-
ings International Symposium on Circuits and Systems,
1991, pp. 1960-1963

21 N. A. Touba and E. J. McCluskey: Altering a Pseudo-Ran-
dom Bit Sequence for Scan-Based BIST; Proc. IEEE Inter-
national Test Conference, Washington, DC, 1996, pp. 167-
175

22 M. J. Y. Williams, J. B. Angell: Enhancing Testability of
Large-Scale Integrated Circuits via Test Points and Addi-
tional Logic; IEEE Transactions on Computers, Vol. C-22,
No. 1, January 1973, pp. 46-60

23 H.-J. Wunderlich, G. Kiefer: Bit-Flipping BIST; Proc.
ACM/IEEE Int. Conf. on CAD-96 (ICCAD96), San Jose,
CA, November 1996, pp. 337-343

