
0-7803-7169-0/01 $10.00 © 2001 IEEE 461

ITC INTERNATIONAL TEST CONFERENCE Paper 16.3

Using a Hierarchical DfT Methodology in High Frequency Processor Designs
for Improved Delay Fault Testability

Michael Kessler1, Gundolf Kiefer2, Jens Leenstra1, Knut Schünemann1,

Thomas Schwarz2, Hans-Joachim Wunderlich2

1IBM Deutschland Entwicklung GmbH
Schönaicherstr. 220, 71032 Böblingen

Germany

2University of Stuttgart
Breitwiesenstr. 20/22, 70567 Stuttgart

Germany

Abstract

In this paper a novel hierarchical DfT
methodology is presented which is targeted to improve
the delay fault testability for external testing and scan-
based BIST. After the partitioning of the design into
high frequency macros, the analysis for delay fault
testability already starts in parallel with the
implementation at the macro level. A specification is
generated for each macro that defines the delay fault
testing characteristics at the macro boundaries. This
specification is used to analyse and improve the delay
fault testability by improving the scan chain ordering at
macro-level before the macros are connected together
into the total chip network. The hierarchical
methodology has been evaluated with the instruction
window buffer core of an out-of-order processor. It was
shown that for this design practically no extra
hardware is required.

1. Introduction
The increasing speed and complexity of modern

VLSI circuits emerge a need for very high fault
coverage for both stuck-at and delay faults. Deep-
submicron technologies introduce new performance-
related defect types, and the increasing clock
frequencies in high-speed designs impose aggressive
timing margins. While the internal clock frequencies
have risen by 30% per year, the accuracy of external
test equipment has improved at a rate of only 12% per
year [1]. Hence, it is becoming increasingly difficult to
do performance-related testing using external test
equipment. The test for delay faults becomes of
practical importance especially for high frequency
processors, since many paths are critical.

Proper implementations of existing design-for-test
methodologies like scan design [2] and Built-In Self-
Test (BIST) may achieve high coverage for static faults

(e. g. stuck-at faults) [3, 4], and in general, any
improvement for the stuck-at fault coverage also
improves the delay fault coverage. In addition, the
circuit can be clocked at system speed enabling to test
for delay or transition faults as described in [5, 6].

For BIST, the STUMPS architecture based on
pseudo-random pattern generation [7] is widely used.
Pseudo-random patterns can efficiently be generated
on-chip using linear feedback shift registers (LFSRs),
eventually combined with phase shifters for reducing
pattern correlations [8]. However, pseudo-random
patterns cannot guarantee complete or sufficient fault
coverage, therefore a number of techniques for
improving the fault coverage have been published. On
the one hand the circuit under test may be modified,
e. g. by test point insertion [9-12]. On the other hand, a
more sophisticated test pattern generator for weighted
random patterns [13-15], pseudo-exhaustive patterns
[16-18] or deterministic patterns [19-22] can be used.

Most of these schemes can be used or extended in
order to target delay faults. However, testing for delay
faults requires two patterns, an initialisation pattern,
which sets the circuit to a predefined state, and an
activation pattern, which triggers a transition. In a
standard test-per-scan scheme, many delay faults may
be untestable because of latch-adjacency problems,
which do not allow to apply the needed pair of test
patterns to test the given delay fault. This problem can
be addressed by using an enhanced scan chain in which
additional scan latches are inserted or in which the
individual scan elements are enhanced such that they
can store two independent values [31, 32]. Besides the
additional hardware overhead for the scan cells such a
scheme may require additional clock and control
signals.

Two main techniques are known to apply pattern
pairs to a standard scan design. When using scan
shifting [23], the scan path is operated in shift mode,
and the second pattern is generated out of the first one

462

Paper 16.3

by this single bit shift. When using functional
justification the circuit is operated in system mode for
two clock cycles, so that the second pattern is
calculated out of the first one by the circuit itself.

In this work, we concentrate on the scan shifting
approach using standard scan design. While for
functional justification the dependencies are mainly
determined by the system functionality of the design,
the delay fault testability with scan shifting can be
improved by reordering the scan chain.

Several algorithms have been described in the
literature that all try to improve the delay fault coverage
by scan chain reordering [24-26]. By adding a minimal
number of additional latches afterwards [24, 27] the
delay fault coverage can be increased even further at
the cost of chip area. In [10] it is proposed to insert
observation points in order to increase the path delay
fault testability.

In general, these techniques operate on the
complete design, so that the complexity may increase
considerably for large designs. Furthermore, the scan
chain reordering/latch insertion can only be performed
after the complete design is available and completed.

In this paper, a hierarchical design-for-test method
is presented where the scan modifications are applied
locally at macro level. Directly after the design has
been partitioned into macros, conflict matrices defining
constraints on scan chains outside a given macro are
added to the macro interface description. After the
macros have been designed individually, the scan
ordering of each macro, as required for improved delay
fault testability for the chip, is determined using the
interface conflict matrices of the adjacent macros.

In Section 2 the design method will be discussed
as it is in use for the design of high frequency processor
systems. In Section 3, the new hierarchical DfT method
and its integration into the design flow is described. In
Section 4, the instruction window buffer will be
introduced as a case study to which the hierarchical
method was successfully applied. Experimental results
presented in Section 5 will show that the delay fault
testability, but also the random pattern fault coverage
increases considerably for the critical parts of the
instruction window buffer. Finally, Section 6 concludes
the paper.

2. High frequency processor design and test
Currently almost all design methods for high

performance processors are optimised to reach a high
processor frequency. Increasing the frequency of the
processor has been found to be more effective than

designing for a reduced CPI at a lower frequency to
meet the performance goals.

One of the techniques applied to increase
frequency is to add additional pipeline stages. In other
words, the depth of the combinational logic, which can
be measured by the number of fanout-4, balanced
(FO4) inverters that fit in a cycle decreases for each
generation of processor designs [28]. This eases the
testing of the combinational logic but it increases the
number of latches. Furthermore, to meet a high
frequency target all kinds of physical aspects have to be
taken into account from the beginning. For example,
wiring delays can no longer be neglected and can take
up a substantial part of the cycle. Hence, processor
architects, circuit designers as well as the physical
designers play an equally important role from the start.
The high frequency design method in use by IBM
therefore consists of a top-down definition phase
followed by a bottom-up implementation phase.

The first phase of the high frequency process is the
partitioning of the design into units followed by the
partitioning of the design into macros. A floorplan is
developed concurrently with the partitioning of the
design into units/macros, and the location of the pins of
the macros and their timing specification is defined.
Furthermore, so-called cross sections are developed at
the circuit level that implement the critical paths of the
critical macros. This is done to investigate if the timing
specification can be met. So at the end of the first phase
a validated floorplan results in which the design has
been partitioned into units/macros. Each macro has a
so-called "contract" in which the size, pin
location, power consumption, test strategy, custom or
synthesis implementation method etc. has been
specified. In this way, it is possible to design each
macro to a large extent in isolation (and in parallel)
with respect to all other macros.

After the definition phase the implementation of
the macro starts by writing a VHDL (or Verilog)
description for the macro. In parallel, the custom
macros are implemented on the transistor level. Since
each macro has a contract, it is possible to verify if each
macro meets the specification of its contract
independent of the rest of the processor. Hence, all
requirements are verified for the macro individually
including the testability of each macro.

Once that the implementation of all macros has
been completed, the same process continues at the unit
level/chip level. Furthermore, several iterations are
introduced in which the macro contracts can be
modified to optimise the overall processor frequency

463

Paper 16.3

and to get a balanced design in which all macros are
equally critical.

In such a design method it is important that the
testing for all stuck-at faults as well as delay faults can
be addressed first at the macro level instead of at the
unit/chip level only. Once the chip level
implementation becomes available, mostly the timing
becomes predominant and less time is left to address
testing problems. Addressing the stuck-at faults at the
macro level is relatively easy since in high frequency
designs the logic cone depth is limited and the test for
the stuck-at faults can be applied through the macros'
scan latches that are either at their inputs or outputs. In
other words, running test generation for the macro in
isolation gives a good indication for the stuck-at fault
detection for the macro at the unit/chip level. However,
for delay faults this characteristic is no longer valid
since a two pattern test is required and it depends on the
scan path ordering of other macros driving the macro
inputs if such a two pattern test can be applied.

The design methodology described above was for
example used to design a high frequency instruction
window buffer (IWB) core for an out-of-order
processor. This IWB processor core will be discussed in
more detail in Section 4.

3. Incorporating DfT for delay faults into
the design method

3.1. Overview
Figure 1 shows a part of the design and DfT flow,

the bold lines identify the additional DfT steps. The
first new step in the hierarchical approach is a

testability analysis and test pattern generation for each
macro in isolation. This gives the delay fault coverage
for the macro if there are no external constraints so that
all two pattern tests can be applied. The next step is the
composition of a so-called interface conflict matrix
(ICM) which specifies constraints on the scan path
order(s) of neighbouring macros. The ICMs are added
to the macro contracts and are thus made available to
the designers of other macros. In the next iteration, for
each macro the ICMs of its neighbours are combined to
a combined conflict matrix (CCM), based on which the
scan elements are reordered locally at macro level. The
following sections describe the additional DfT steps.
For the time being two levels of hierarchy (macro level
and design level) are assumed. The approach can be
extended to more levels, but this is not covered in detail
in this paper.

3.2. Properties of the macros
The design flow as described in Section 2 implies

the following properties of the design:
1. The design is partitioned into macros.
2. Each macro contains latches at all outputs (see

Figure 2).
3. All latches are lined up to a scan chain.

The hierarchical reordering method makes use of
these properties in order to improve the delay fault
testability when using scan shifting. No restrictions are
imposed on internal latches, which are not connected to
an output. Their ordering within a scan chain can be
determined while designing the macro itself, they do
not depend on any other macro.

Design
partitioning

Testability

analysis

Macro
implementation

Pool of
macro

contracts
Design

assembly

Generating the
interface conflict

matrix (ICM)

Scan chain
reordering

optimization, refinement of
the macro contract

Generating the
combined conflict

matrix (CCM)

Figure 1: Integration of the DfT steps into the macro design flow

464

Paper 16.3

Logic

Macro

Logic

Internal latches
(can be reordered independent

needed to
determine the

Output latches
(no succeeding logic)

ICM

Internal
logic

of the neighbouring macros)

Figure 2: Structure of a macro

The partitioning of the circuit in this way enables
the ordering of latches early in the design process. For
the inputs of each macro, the interface conflict matrix
(ICM) is computed as described in the next section. It
summarizes the restrictions that this macro imposes on
the scan chain of any preceding macro in order to be
completely delay fault testable. The ICM is added to the
interface description of the macro, which may
additionally contain layout information, timing
specifications, pin placement information etc. (see
Figure 3).

Pins

BusesTiming
t

Geometry

Placement
Logic

New:
Interface Conflict

Output

Matrix (ICM)
latches

Figure 3: Elements of a macro contract

3.3. Computing the interface conflict matrix
Ideally, two consecutive latches do not feed the

same logic making them independent of each other. We
use a conflict matrix [24, 26, 27, 29] to model the
dependencies between scan path latches. Each row and
each column of the matrix refers to one latch of the
scan path. If the value of the entry at row X and column
Y of the matrix is larger than zero then problems are
expected if we put latch Y after latch X into the scan
chain, i.e. there are some faults, which cannot be

detected. The higher the value the more faults are
expected to be not detectable. Figure 4 shows an
example of a conflict matrix and the estimated number
of conflicts for two scan path orderings.

P
re

de
ce

ss
or

 la
tc

h

Successor latch
Arrangement

0+0+2+5 = 7 conflicts

0

0 0

0 0

–

A
1

A
2

A
3

A
1

A
4

A
5

A
2

A
3

A
4

A
5

–

–

–

–

0

2

1

5

32

42

31

9 24

1 9
Arrangement

1+1+0+0 = 2 conflicts

“A
1
-A

2
-A

3
-A

4
-A

5
”:

“A
5
-A

4
-A

1
-A

3
-A

2
”:

Figure 4: Example for the evaluation of a latch order

The quality of any given latch arrangement can be
approximated and efficient latch arrangements can be
calculated with a conflict matrix. It can be constructed
in several ways, which are more or less precise. Firstly
logic cones [27, 29], which consist of all paths from a
certain starting or ending point, can be intersected, and
latches whose intersection of output cones is nonempty
are considered to cause a conflict. Another option is to
calculate a correlation measure of each pair of latches
[26]. This takes into account at which position in the
circuit different paths meet and how many other paths
are involved there.

We used test patterns [24] to construct an interface
conflict matrix. Given a pattern set targeting delay
faults, for each pair of latches the number of test pattern
pairs is counted which cannot be generated in the
circuit by scan shifting at the given ordering of the latch
pair. A pattern pair cannot be generated if the value of
some latch in the initialisation pattern and the value of
its successor latch in the activation pattern are
incompatible, i.e. ’0’ and ’1’ or vice versa.

Several different kinds of test patterns can be used
to construct a conflict matrix. The most precise results
are achieved if a dedicated test pattern is generated for
every single fault modelled in the circuit.

Generating test patterns for every fault however
takes a long time, even if faults are dropped that are
detected by a pattern, which has already been generated
for another fault. One approach for reducing the size of
the pattern set is to generate deterministic patterns for
hard-to-detect faults first. Those faults may require
pattern pairs with many specified bits, which in turn
may detect many other faults that can be excluded from
pattern generation. The hard-to-detect faults are
determined by computing signal probabilities. Our
experiments have shown that the gain in speed is small

465

Paper 16.3

and the calculated scan orderings sometimes leads to
worse results than the ones calculated on the basis of
test patterns for every single fault.

A faster way is to use compacted test patterns that
detect several faults at once. They are constructed by
merging as many test patterns for single faults as
possible into one pattern and by filling up the remaining
"don’t care" positions with random values. However, a
lot of non-existing conflicts are counted in the conflict
matrix due to the pattern compaction and the
replacements of don’t cares.

We have used both compacted and single test
patterns in our experiments.

3.4. Local combination of multiple conflict
matrices
After the interface conflict matrices of all macros

have been calculated, for each macro the combined
conflict matrix (CCM) is computed based on the ICMs
of the succeeding macros, and an optimal ordering of
the output latches is calculated using this combined
conflict matrix (see Figure 5). The initial combined
conflict matrix is set to all zeros. Then parts of the
interface conflict matrix of each succeeding macro are
added to the combined conflict matrix according to the
connections between both macros.

Logic

ICM determines
conflicts

ICM

ICM

Succeeding

Succeeding

CCM combine

determines
orderingimposes

restrictions

Macro being worked on
macro

macro

Preceding

Preceding

macro

macro

Figure 5: Relationships between the conflict matrices

Assume the current macro has n outputs labelled
O1, ..., On, and the inputs of a succeeding macro are
labelled I1, ..., Im, where m can be different for each
succeeding macro. The combined conflict matrix CCM
is an n×n matrix and an interface conflict matrix ICM is
a m×m matrix. The rows and columns are marked with
the names of the inputs or outputs they belong to. Each
interface matrix ICM is converted into an n×n addition
matrix ICM' depending on the connections between the
current macro and the succeeding macro:

otherwise

 and if

0

],[
],[' ljki IOIOlkICM

jiICM
==

=

The addition matrices of all succeeding macros are
added to the combined conflict matrix. Figures 6 and 7
sketch an example for a macro with two succeeding
macros.

Current macro X

Logic

Logic

Successor A

Successor B

Logic

determines
order of...

Combined
Conflict Matrix

(CCM)

O
1

O
6

I
1

I
5

I
5

I
1

Figure 6: Example for a macro connected to two

successors

3.5. Calculating a scan path ordering
The problem of finding an optimal scan path

ordering for a given conflict matrix is equivalent to a
travelling salesman problem and is thus NP-complete
[25]. In our experiments we used three different
heuristics.

The "greedy serial" algorithm [24] constructs the
scan chain incrementally by starting with the first latch
and subsequently appending new latches to the current
chain which show the smallest number of conflicts with
the current tail latch of the chain.

The "greedy hardest first" algorithm iteratively
selects a previously unprocessed latch with a maximum
sum of conflicts (row or column). This latch is
considered to be "hard" and is connected to another
latch with the least number of conflicts as long as no
cycle in the scan chain is introduced.

The "greedy least conflicts" algorithm sorts all
entries of the conflict matrix and incrementally
connects latches with the smallest number of conflicts
as long as no cycles in the scan chain are introduced.

The above methods can be extended such that
additional latches are inserted if the number of conflicts
cannot be reduced sufficiently by reordering only.
However, additional scan latches increase the chip area
and were not necessary in our case.

466

Paper 16.3

- 11 12 13 14

15 - 17 18 19

20 21 - 2 3

22 23 4 - 6

24 25 7 8 -

-

I
1

I
2

I
3

I
4

I
5

I
1

I
2

I
3

I
4

I
5

10 - 12

13 14 15 -

17

18

19

20 21

- 2 3

22 -

4

5 -

24

25

7 8

9

I
1

I
2

I
3

I
4

I
5

I
1

I
2

I
3

I
4

I
5

- 2 3

4 - 6

7 8 -

O
1

O
2

O
3

O
4

O
5

O
1

O
2

O
3

O
4

O
5

O
6

O
6

0

0

0-00

0

0

0

0

0

0 0 0

0

0

0

0

0 -

0 0 0 0

0

0 -

ICM(A)

O
1

O
2

O
3

O
4

O
5

O
1

O
2

O
3

O
4

O
5

O
6

O
6

0

-

00

0

0

- 0

0 0

0

0

0

0

0 0

0

0

0

0

10 - 12

13 14 15 -

- 2 3 4

5 - 7 8

9

- 2 3

4

7

O
1

O
2

O
3

O
4

O
5

O
1

O
2

O
3

O
4

O
5

O
6

O
6

0

0

0-00

0

0

0

0 0

0

0

0 0

6+2

8+5 -

3 4

- 12

15 -

7 8

10

1413

9

+

ICM(B)

CCM(X)

ICM’(B)ICM’(A)

Figure 7: Determining a combined conflict matrix
based on the interface matrices of succeeding macros

4. Case study: instruction window buffer
The instruction window buffer (IWB) [30] is

shown in Figure 8. It was partitioned into 9 full-custom
macros. Each cycle, up to 4 dispatched instructions are
renamed and allocated in consecutive order (with wrap-
around) in the 64 entry IWB. The rename process is
done for each of the three source operands of an
instruction. After renaming, the dispatch process stores
two of the three sources in the "RS src data" macro at
the allocated entries. These two sources each contain 64
data and 8 parity bits. The third source operand ("src")
is stored in the "RS condition code" (cc) macro
containing a 2 bit condition code field and a parity bit.
Up to 4 instructions can be issued in each cycle to the

instruction execution units (IEUs). The issue process is
controlled by the "RS select" macro containing a
window manager and priority filter functionality that
selects the oldest instructions for which all sources are
available out of the active IWB entries. For load
instructions the address is calculated by one of the 3
fixed point IEUs. Data returned from the data cache
("D$") or the load store unit (LSU) is aligned by one of
the 4 storage execution units (SEUs). Up to 8 results
(64 bit data, 2 bit condition code) are returned in each
cycle. The writing of result data into the "RS/ROB
data" macros is controlled in a data flow approach by
comparing the result tag with the tag of each "ROB
result"/"RS operand" field. Finally, the renaming state
is check pointed for a partial removal of the instructions
for miss-predicted branches.

Figure 8: Structure of the instruction window buffer
(IWB)

The macros making up the critical path are the "RS
src data", "RS tag compare" ("RS tag =") and the "RS
select" macro that consists of 4 issue filters and the
window manager. These macros have been fabricated
on a test chip [30].

5. Experiments
When applying our hierarchical DfT method on

the instruction window buffer we concentrated on the
timing-critical macros which were "RS src data", "RS
tag compare", "RS issue filter" and "RS window
manager" (see above). All those macros are completely
testable with respect to stuck-at faults.

In a first series of experiments we investigated the
scan chain reordering technique described in Sections
3.3 and 3.5. The results are shown in Table 1. For each
macro we determined the achievable gate delay fault
coverages using the original, unmodified scan chain
ordering (column "Unmodified scan path"), the fault
coverages for the macro in isolation assuming
unconstrained access to the macro inputs

467

Paper 16.3

("Unconstrained access") and the fault coverages after
applying our scan chain reordering technique. For all
these cases we used TestBench1 to generate three types
of test patterns. Pseudo-random and weighted random
patterns can be generated on-chip when using BIST, but
these types of patterns cannot guarantee the detection of
all faults. Deterministic patterns are precomputed
patterns for all faults, so fault coverage numbers below
100% indicate the presence of untestable faults due to
circuit redundancies or scan dependencies.

Macro Patterns Org.
Unconstr.

access
After

reordering
pseudo-
random

98,00% 99,92% 99,52%

weighted
random

98,00% 99,92% 99,61%

RS
window

mgr.
det. 98,50% 100,00% 99,61%

pseudo-
random

10,75% 11,90% 15,87%

weighted
random

73,81% 100,00% 100,00%

RS
issue
filter

det. 75,10% 100,00% 100,00%
pseudo-
random

38,93% 39,04% 39,45%

weighted
random

98,84% 99,02% 99,03%
RS tag
comp.

det. 99,39% 99,62% 99,62%
pseudo-
random

82,05% 82,41% 82,66%

weighted
random

99,89% 99,93% 99,93%
RS src
data

det. 99,97% 100,00% 100,00%

Table 1: Delay fault coverage for the critical macros

For deterministic patterns, the "unconstrained
access" numbers represent upper bounds for the
achievable fault coverage, and in three of the four
macros this upper bound has been achieved after the
reordering. For the "RS window manager", our
heuristics failed to calculate an optimal ordering due to
a small number of inputs (only 13). For the "RS tag
compare" macro, even independent inputs do not
achieve complete fault coverage because of the

1 TestBench is a UNIX2-based set of test design
automation tools developed by IBM for internal use. It
was made commercially available in 1994 by the IBM
Microelectronics Division.

2 Trademark or registered trademark of the Open
Group or X/Open Company Ltd.

ordering of an internal scan chain, which has not been
changed in our experiments.

It is noticeable that by the scan chain reordering
also the random pattern fault coverage has been
increased. By using weighted random patterns all
macros are almost completely testable.

The complexity of the procedure for computing
the interface conflict matrices depends on the way the
test patterns are generated that are used to determine
possible conflicts. Computing a compact test is less
time consuming but also less exact than generating
single patterns for every fault (see Section 3.3). Table 2
shows a comparison between these two approaches
when generating deterministic patterns. For each case
we tried the heuristics "greedy serial", "greedy hardest
first", and "greedy least conflicts" for computing a scan
path ordering out of a conflict matrix (see Section 3.5),
and the best result together with the corresponding
heuristic are listed in the table.

In all cases with single patterns per fault better
results are obtained than by using compact test sets.
This is due to the don't care bits which have been
replaced by random values in the compact test set and
from which non-existing conflicts are derived.

Macro
Single

pattern
Compact
test set

RS window
manager

99,62%
(hardest first)

98,31%
(least conflicts)

RS issue filter
100,00%

(serial)
97,30%

(least conflicts)

RS tag compare
99,63%

(hardest first)
99,58%

(least conflicts)

RS src data
100,00%

(serial)
99,99%

(hardest first)

Table 2: Impact of the ICM computation on the delay
fault coverage

A comparison between the three ordering
heuristics has shown that the "greedy serial" and the
"greedy hardest first" algorithms produce equally good
results with test patterns for every single fault. If
compacted test patterns are used for calculating a
conflict matrix then the "greedy least conflicts"
algorithm is the best choice.

Figure 9 sketches the connections between some
of the macros. In order to calculate the fault coverage
for the Issue Filter 3 the scan paths in the preceding
macros, which are the "RS window manager" and the
"RS tag compare", have to be reordered. For reordering
these scan paths the interface conflict matrices (ICMs)

468

Paper 16.3

of their successor macros, which are the "issue filters" 0
through 3, the "RS src data" 0 and 1 and another macro,
have to be combined using the method described in
Section 3.

RS
window

RS tag
compare

Issue filter 0

Issue filter 1

Issue filter 2

Issue
filter 3

RS src
data 0

RS src
data 1

...

for this macro the
fault coverage
has to be improved

scan paths to be reordered

manager

Figure 9: Connections between the example macros

Table 3 shows the results for the "Issue filter 3"
with different scan path orderings in its preceding
macros. Similar to Table 1, the column "Unmodified
scan path" shows the original fault coverage, the next
column shows the achievable fault coverage of the
macro with unrestricted access, and the last column
shows the results after applying the hierarchical
reordering technique. Again, we determined the fault
coverage achievable by pseudo-random, weighted
random and deterministic patterns for each case.

Patterns Unmodified
scan path

Unconstr.
access

After
reordering

pseudo-
random

3,30% 3,36% 3,15%

weighted
random

52,43% 70,33% 80,83%

deterministic 68,84% 100,00% 99,88%

Table 3: Delay fault coverages in "Issue filter 3" after
reordering the scan chains in its preceding macros

With the reordered scan path almost the best
possible fault coverage is achieved which is far better
than the initial fault coverage before reordering the scan
path. In this example, the fault coverage achieved by
weighted random patterns is even better for the
reordered scan path than for unconstrained inputs.

6. Conclusion
In this paper we presented a new design-for-test

method that hierarchically reorders the scan path
latches for improving the delay fault testability by using
scan shifting. An arrangement of the latches in the scan

path is calculated by first constructing an interface
conflict matrix (ICM) as part of each macro contract.
Next a hierarchical approach is used whereby the scan
chain order of a macro is calculated by combining the
ICM’s of all macros connected to the outputs of the
macro. Ordering the scan path with this approach has
the advantage that the delay fault testability can be
addressed for each macro individually and that
therefore the complexity of the NP-complete scan chain
reordering problem remains limited. Furthermore, it can
be applied during the design phase before the complete
chip netlist becomes available.

The IWB case study showed that the reordering of
scan chains using the proposed approach is very
efficient. The delay fault coverage was improved
significantly and was close or even equal to the upper
bounds obtained for the unconstrained scan path case
assuming that any generated two pattern test can be
applied. The method was described for a two level
hierarchy, however it can be extended to a multi level
hierarchy as well.

The main restriction of the proposed approach is
that the design has to be partitioned into macros of
which all macro outputs are directly latch outputs
(buffers/inverters between latches and outputs are
allowed). Our experience is that high frequency
processor designs are often partitioned in such macros.
However, further research will concentrate on how
macros without an output latch boundary can be
handled as well and how the ICM calculation method
can be further refined by taking into account the macro
connections as available after the initial top down
design phase.

References
[1] Semiconductor Industry Association (SIA), International

Technology Roadmap for Semiconductors (ITRS), 1999
edition.

[2] E.B. Eichelberger, T.W. Williams: "A Logic Design
Structure for LSI Testability", Proc. 14th Design
Automation Conference, 1977, pp. 462-468

[3] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A.
Hassan, J. Rajski: "Logic BIST for Large Industrial
Designs: Real Issues and Case Studies", Proceedings of the
International Test Conference, pp. 358-367, 1999

[4] G. Kiefer, H. Vranken, E. J. Marinissen, H.-J. Wunderlich:
"Application of Deterministic Logic BIST on Industrial
Circuits", Proceedings of the IEEE International Test
Conference, 2000, pp. 105-114

[5] Z. Barzilai, B. Rosen: "Comparison of AC Self-Testing
Procedures", Proceedings of the International Test
Conference, pp. 89-94, 1983

[6] G.L. Smith: "Model for Delay Faults Based Upon Paths",
Proc. International Test Conference, 1985, pp. 342-349

469

Paper 16.3

[7] P.H. Bardell, W.H. McAnney: "Parallel Pseudo-random
Sequences for Built-In Test", Proceedings International
Test Conference, IEEE, 1984, pp. 302-308

[8] J. Rajski, N. Tamarapalli, J. Tyszer: "Automated Synthesis
of Large Phase Shifters for Built-In Self-Test", Proceedings
of the International Test Conference (ITC) 1998, pp. 1047-
1056

[9] J.P. Hayes, A.D. Friedman: "Test Point Placement to
Simplify Fault Detection", IEEE Transactions on
Computers, Vol. C-33, July 1974, pp. 727-735

[10] N. Mukherjee, T. Chakraborty, S. Bhawmik: "A BIST
Scheme for the Detection of Path-Delay Faults",
Proceedings of the International Test Conference, 1998, pp.
422-431

[11] B.H. Seiss, P.M. Trousborst, M.H. Schulz: "Test Point
Insertion for Scan-Based BIST", Proceedings of the
European Test Conference, IEEE, 1991, pp. 253-262

[12] N. Tamarapalli and J. Rajski, "Constructive Multi-Phase
Test Point Insertion for Scan-Based BIST," Proceedings
International Test Conference, IEEE, 1996, pp. 649-658

[13] F. Muradali, V.K. Agarwal, B. Nadeau-Dostie: "A New
Procedure for Weighted Random Built-In Self-Test",
Proceedings of the International Test Conference, pp. 660-
669, 1990

[14] J.A. Waicukauski, E. Lindbloom, E.B. Eichelberger, O.P.
Forlenza: "A Method for Generating Weighted Random
Test Patterns", IBM Journal of Research & Development,
Vol. 33 (2), pp. 149-161, 1989

[15] H.-J. Wunderlich: "Self Test Using Unequiprobable
Random Patterns", Proceedings of the 17th International
Symposium on Fault-Tolerant Computing, pp. 258-263,
1987

[16] S. B. Akers: "On the use of Linear Sums in Exhaustive
Testing", Proc. Of the 15th Int. Symp. On Fault-Tolerant
Computing (FTCS), 1985, pp. 148-153

[17] S. Hellebrand, H.-J. Wunderlich, O. F. Haberl:
"Generating Pseudo-Exhaustive Vectors for External
Testing", Proc. IEEE Int. Test Conf. (ITC), 1990, pp. 670-
679

[18] L.T. Wang, E.J. McCluskey: "Circuits for Pseudo-
Exhaustive Test Pattern Generation", Proceedings of the
International Test Conference, 1986

[19] S. Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunderlich:
"Pattern Generation for a Deterministic BIST Scheme",
Proceedings International Conference on Computer-Aided
Design, IEEE, 1995, pp. 88-94

[20] G. Kiefer, H.-J. Wunderlich: "Deterministic BIST with
Multiple Scan Chains", Proceedings International Test
Conference, IEEE, 1998, pp. 1057-1064

[21] N.A. Touba, E.J. McCluskey: "Altering a pseudo-random
bit sequence for scan-based BIST", Proceedings
International Test Conference, IEEE, 1996, pp.167-175

[22] H.-J. Wunderlich, G. Kiefer: "Bit-Flipping BIST",
Proceedings International Conference on Computer-Aided
Design, IEEE, 1996, pp. 337-343

[23] J.A. Waicukauski, E. Lindbloom, B. Rosen, V. Iyengar:
"Transition Fault Simulation", IEEE Design and Test, April
1987, pp. 32-38

[24] K.-T. Cheng, S. Devadas, K.Keutzer: "A Partial
Enhanced-Scan Approach to Robust Delay-Fault Test
Generation for Sequential Circuits", Proceedings of the
International Test Conference, pp. 403-410, 1991

[25] W. Mao, M.D. Ciletti: "Arrangement of Latches in Scan-
Path Design to Improve Delay Fault Coverage",
Proceedings of the International Test Conference, pp. 387-
393, 1990

[26] W. Mao, M. D Ciletti: "Correlation-Reduced Scan-path
Design to improve Delay Fault Coverage", 28th
ACM/IEEE Design Automation Conference, pp. 73-79,
1991

[27] J. Leenstra, M. Koch, T. Schwederski: "On Scan Path
Design for Stuck-Open and Delay Fault Detection", IEEE
European Test Conference, pp. 201-210, 1993

[28] D. H. Allen et al.: "Custom Circuit Design as a Driver of
Microprocessor Performance", IBM Journal of Research
and Development, Vol. 44, No. 6, Nov. 2000, pp. 799-822

[29] J. Savir, R. Berry: "At-Speed Test is not necessarily an
AC Test", Proceedings of the International Test
Conference, pp. 722-728, 1991

[30] J. Leenstra et al.: "A 1.8GHz Instruction Window
Buffer", IEEE International Solid-State Circuits
Conference (ISSCC), 2001, pp. 314-315

[31] S. DasGupta, R. G. Walther, T. W. Wiliams, E. B.
Eichelberger: "An Enhancement to LSSD and some
Applications of LSSD in Reliability, Availability and
Serviceability", Dig. 11th Annual Int. Symp. on Fault-
Tolerant Computing, pp. 32-34, 1981

[32] B. I. Dervisoglu, G. E. Strong: "Design for Testability:
Using Scanpath Techniques for Path-Delay Test and
Measurement", Proceedings of the International Test
Conference, pp. 365-374, 1991

	ITC01
	Table of Contents
	Author Index

