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Abstract1 
 

The term “functional BIST” describes a test method to 
control functional modules so that they generate a deter-
ministic test set, which targets structural faults within 
other parts of the system. It is a promising solution for 
self-testing complex digital systems at reduced costs in 
terms of area overhead and performance degradation. 
While previous work mainly investigated the use of func-
tional modules for generating pseudo-random and 
pseudo-exhaustive test patterns, the present paper shows 
that a variety of modules can also be used as a 
deterministic test pattern generator via an appropriate 
reseeding strategy. This method enables a BIST technique 
that does not introduce additional hardware like test 
points and test registers into combinational and pipelined 
modules under test. The experimental results prove that 
the reseeding method works for accumulator based 
structures, multipliers, or encryption modules as 
efficiently as for the classic linear feedback shift registers, 
and some times even better.  

1. Introduction 
Embedded Test is today widely recognized as an effec-

tive approach to Systems-on-Chip (SoC) testing, while 
traditional methods based solely on an external automatic 
test equipment (ATE) become more and more expensive 
or even unfeasible. Built-in Self-Test (BIST) strategies 
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embed the functions needed for testing a given Unit Un-
der Test (UUT) into the chip itself. These functions con-
sist of a Test Pattern Generator (TPG) and a Test Re-
sponse Compactor (TRC) at least, and until now, they 
have been performed by specialized dedicated hardware 
mainly based on Linear Feedback Shift Register (LFSRs) 
or cellular automata. 

Traditionally, the TPG generates pseudo-random or 
pseudo-exhaustive patterns [1][2], and test points may be 
required either for circuit segmentation or for increasing 
controllability and observability in order to obtain suffi-
cient fault coverage [3][4][5]. Test points do not only in-
crease the hardware overhead but they may also put addi-
tional delays on critical paths and slow down the system 
performance. 

An alternative to test point insertion is not modifying 
the UUT but the pattern generators. For this purpose, test 
methods based on weighted random patterns [6][7][8] and, 
more recently, based on deterministic test patterns have 
been developed [9][10][11][12]. The reseeding technique 
presented in [9][13] computes initial values of an LFSR so 
that the output sequence includes pre-computed determi-
nistic test patterns. 

Recently an innovative BIST technique has been pro-
posed which exploits the system functionalities for test 
generation and is less intrusive than using test registers. 
The main idea of the Arithmetic BIST (ABIST) methodol-
ogy is to perform test pattern generation by exploiting the 
available system structure, which consists of both the 
modules present in the system and the available connec-
tions between the modules [14]. 

In Figure 1, the modules Mi and Mj are part of the sys-
tem mission logic; they are functionally connected in such 



 

 

a way that the Mi outputs are the input signals of Mj. In the 
ABIST approach, Mi is controlled appropriately in order 
to generate output values that are suitable test patterns for 
Mj. 

Typically, Mi is a sequential circuit used as TPG for a 
given Unit Under Test (UUT), in our case Mj. The addi-
tional test hardware mainly consists in the control logic: 
the multiplexer (MUX) must be controlled so that the best 
candidate for pattern generation is selected from the con-
nected components (in our case Mi instead of Mk or Mt), 
and Mi has to run autonomously.  

Also the test responses may be observed and com-
pacted by modules already available in the system. This 
has already been dealt with in [15][16] and is not part of 
the present paper. 

Selection

Mt

MUX

MkMi as TPG

Mj as UUT

 
Figure 1: The ABIST approach 

The most relevant advantage of the ABIST approach is 
the avoidance of dedicated test hardware, since now sys-
tem modules are used for pattern generation, and neither 
additional hardware nor additional delays are introduced 
into the data path. 

The ABIST technique is comprehensively described in 
textbooks [17]. The technique addresses general purpose 
computing structures based on data-path architectures, as 
well as specialized digital signal processing circuits, per-
forming arithmetic operations, which can be exploited for 
test pattern generation. Typically, ABIST-based ap-
proaches use accumulator-based structures for generating 
pseudo-random and pseudo-exhaustive patterns 
[14][18][19][20]. Modules containing hard-to-detect faults 
still require extra test hardware either by inserting test 
points into the mission logic or by storing additional de-
terministic test patterns. 

The goal of the present paper is to combine the advan-
tages of the ABIST approach and the reseeding method 
for deterministic pattern generation, which was restricted 
to linear feedback shift registers until now. A method is 
presented to compute initial values for general functional 
modules so that they are able to produce deterministic test 
patterns with complete fault coverage. The method is 

based on Genetic Algorithms and can handle arbitrary 
sequential modules as pattern generators. Since it is not 
restricted to arithmetic modules but can work of any type 
of functions, we call the resulting test method Functional 
BIST. 

Moreover, the paper describes the implementation of a 
tool, which supports the selection of the best candidate of 
the functional modules for deterministic pattern genera-
tion. An example of a commercial SoC is analyzed, and it 
is shown that the functional modules available there can 
be used for reseeding. Finally some additional, more com-
plex, modules are analyzed as well. 

The rest of the paper is organized in the following way: 
the next section describes the state of the art in functional 
BIST and introduces some basic concepts. Section 3 de-
scribes the trade-off in functional BIST pattern genera-
tion; Section 4 maps the reseeding problem for general 
functional modules to a genetic algorithm and gives an 
overview of the resulting tool. In Section 5, the experi-
mental results focus on units that are most commonly 
available in SoCs. Results are presented for several stan-
dard accumulator-based arithmetic modules (i.e., adder, 
multiplier, subtracter), that are usually embedded in the 
systems either as single modules or integrated in an arith-
metic logic unit (ALU) or a multiply accumulator block 
(MAC). Moreover, as an example of non-arithmetic cir-
cuits, an encryption unit [21] and an LFSR are investi-
gated. 

2. State of the Art 
As functional BIST is a rather new technique, only a 

few papers focus on covering not random testable faults 
via deterministic test patterns generated by system mod-
ules during BIST. 

[22] proposes two computation methods for the initial 
values (a simulation-based and an analytic one) using an 
adder as arithmetic unit, both methods do not mainly tar-
get complete fault coverage but test length minimization. 

The method presented in [23] also applies to adder-
based accumulator structures, and is able to compute 
seeds so that the resulting test sequences obtain complete 
fault coverage for all the ISCA85 circuits and the combi-
national parts of the ISCAS89 circuits [24][25]. The per-
formance of this method is in general better in terms of 
test length and number of seeds than the LFSR-based re-
seedings. The serious drawback of this technique is the 
restriction to adder-based structures. It is not expected that 
this limitation will generally be overcome in the future as 
the method models the function of the TPG by binary de-
cision diagrams (BDDs) symbolically. An extension al-
ready fails if the pattern generator is a multiplier-based 
accumulator structure, and the solution presented there is 
optimized especially and applicable only for adders. 

In [26], the authors proposed a universal algorithm to 
control and initialize sequential structures so that they 
work as a deterministic test pattern generator for a given 



 

 

UUT. An algorithm called GATSBY (Genetic Algorithm 
based Test Synthesis tool for BIST applications) as im-
plemented, and experiments were performed considering 
adder-based structures. This method does not depend on 
the function of the pattern generating module and was 
applied to both adder based structures and LFSRs. The 
results presented there reached the same efficiency as the 
specialized methods presented in [13][23], and often out-
performed them in terms of test size and test time.  

The present paper intends to exploit the flexibility of 
the method [26] to investigate the usability of the func-
tional BIST approach for testing SoCs. Actual SoCs in-
clude a variety of functional units, library modules (e.g., 
ALU, MAC, LFSR, etc.), as well as custom blocks. 
Moreover, these modules usually form a strongly con-
nected network, in which each unit is functionally linked 
to many other system modules either by bus-oriented or 
by multiplexer-oriented interconnections. In the present 
paper, for several UUTs, we analyze candidate TPGs, 
taking into account the parameters test length, area over-
head, and fault coverage. The trade-off of each functional 
unit when exploited as TPG is determined. According to 
the design requirements the ”best“ functional unit to be 
used as TPG can be identified, among the ones function-
ally connected to the UUT itself. 

3. Functional BIST Pattern Generation 
The Test Pattern Generator (TPG) is generally consid-

ered as an accumulator-based unit with an input register 
and a state register, which are assumed to be partially or 
fully accessible, either via parallel load or in full-scan 
mode. The test sets generated by the TPG depend on the 
functionality of the TPG itself, on the initial content of the 
TPG registers, and on the number of clock cycles the TPG 
is let evolve. 

The test pattern generation mechanism consists of two 
main phases. First, the TPG state register is set to an ini-
tial value (δ) and its inputs register is fixed at a constant 
value (σ). The pair of values (δ, σ) is often referred to as 
the Seed of the TPG. Then, the TPG runs autonomously 
for τ clock cycles. A new pattern pj appears on the TPG 
outputs at each clock cycle tj, 0 ≤ j < τ, and is applied to 
the Unit Under Test (UUT). The resulting test set (TS) is 
therefore a function f of the triplet (δ, σ, τ) and of the 
functionality ϕTPG of the TPG itself: 

TS = { pj  0 ≤ j < τ} = f (ϕTPG, triplet (δ, σ, τ)). 
Figure 2 sketches the test pattern generation mecha-

nism in the functional BIST approach. This is similar to 
the classical LFSR reseeding where either the seeds [27], 
or both the seeds and the feedback function have to be 
stored [9]. 

The fault coverage (FC%) and the test length (τ) define 
the quality of the test set. In the functional BIST approach, 
the test set effectiveness is correlated to the percentage of 
patterns that really contribute to increase the fault cover-

age. Since the test set TS is obtained by the autonomous 
evolution of the TPG after initial seeding, not all the gen-
erated patterns may be useful for testing the UUT. A pat-
tern pj is a dummy pattern if it just covers faults already 
detected by at least one of the patterns pk, generated in a 
previous instant of time (0≤ k <j). High percentages of 
dummy patterns affect the TS effectiveness, since most of 
the testing time is lost in applying useless patterns to the 
UUT. In Figure 2, only the patterns p0, p2, pj and pτ-1 (col-
ored in gray) are useful for the testing purpose. 
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TS = {pj  0 ≤ j < τ} = 
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Figure 2: The Test Pattern Generation 

The computation of an optimal solution consists in 
finding a suitable triplet such that the target fault coverage 
is achieved, while both the test length (τ) and the number 
of dummy patterns inside the test set are minimized.  

A test set provided by a single triplet does not always 
guarantee to fulfill all the goals at the same time. Experi-
ment showed that random testable faults are detectable in 
relatively few clock cycles, with an acceptable percentage 
of dummy patterns inside the test set. On the other hand, a 
higher number of clock cycles may be required to gener-
ate patterns testing not random testable faults. In addition, 
the TPG functionality may prevent the generation of cer-
tain patterns when the TPG is seed by (δ, σ); due, for in-
stance, to states not reachable by the TPG starting from (δ, 
σ).  

In order to reduce the test length or to reach a target 
fault coverage, the TPG evolution can be periodically 
stopped and restarted with a new triplet (δ, σ, τ)i, until the 
target fault coverage is reached. Such a re-initialization 
process is called TPG reseeding. Figure 3 shows the quali-



 

 

tative behavior of the reseeding process. Here, reseeding 
occur after ti and tj clock cycles. Reseeding increases the 
fault coverage obtained within a fixed number of clock 
cycles and/or reduce the test length required to get a given 
fault coverage. 
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Figure 3: Qualitative behavior 

In the case of reseeding, the solution is a set of N trip-
lets ∪0 ≤j < i(δ, σ, τ)i, which are sequentially applied to 
drive the TPG evolution. The overall test set TS is there-
fore the union of the test sets TSi generated by each single 
triplet (δ, σ, τ)i: TS= TS0 ∪ TS1 ∪ TS2 ∪ ... TSN-1. The test 
set TS is characterized by a global test length T=Σ 0 ≤ i < N 

τi, and fault coverage FC%=Σ 0 ≤ i < N i. The value 
i is the percentage of faults detected by TSi and not 

covered by the test set TS0 ∪ TS1 È...TSi-1, generated by 
the subset ∪0 ≤j < i(δ, σ, τ)j. The number N of seeds directly 
corresponds to the storage effort. 

According to the design specification, an optimal re-
seeding solution can be computed by trading-off the num-
ber of reseedings vs. area overhead and test length. In par-
ticular, 

• A low number of reseedings allows minimizing the 
extra area needed to store the triplets (e.g., in a ROM), 
but usually a larger test length is necessary and the 100% 
of testable fault coverage is not always guaranteed 

• A large number of reseedings implies more area 
overhead, but a shorter test length. The reseeding can be 
repeated until all the target faults have been detected. 

4. The Test Synthesis Tool 
The Optimization Parameters of GATSBY to be speci-

fied drive the computation process; they include the target 
fault coverage value (FC%), and specify if the solution 
must minimize either the global test length (T) or the 
number of reseedings (N). 

As a result of the computation, GATSBY provides a 
set of N triplets, ∪0 ≤i < N(δ, σ, τ)i, tuned towards the Opti-
mization Parameters; in particular, it guarantees the target 
coverage of non-redundant faults in the UUT. The algo-

rithm is not customized towards a specific functional TPG 
unit and absolutely general. 

Inputs of the program are a behavioral description of 
the functional TPG module that can easily be extracted if 
only the structure is known, and the gate-level description 
of the UUT. At the current state of research only combina-
tional test pattern generation is considered, and the UUT 
has to be combinational, pipelined or equipped with a 
scan-path. In order to be compatible with commercial 
ATPG tools the single stuck-at fault model is targeted, 
extensions to any other combinational fault models are 
straight-forward. 

The kernel of GATSBY is the Triplets Generator, 
which is implemented by using Genetic Algorithms based 
procedure and sketched in Figure 4. Genetic Algorithms 
(GAs) [28] aim at evolving a population of individuals in 
order to increase their quality (fitness). The population 
evolves through generations, based on a mechanism that 
mimics nature. In each generation, the reproduction is 
performed by the exchange of genetic material (crossover, 
mutation), and the new individuals must compete with 
their parents for survival: only individuals having higher 
fitness values will appear in the next generation.  

In our case, an individual encodes a single triplet (δ, σ, 
τ)i; the population is thus a set of K candidate triplets (∪0 

≤i < K (δ, σ, τ)i) and the evolution process aims at improving 
the quality of all of them with respect to the Optimization 
Parameters specified by the user. The provided optimal 
reseeding is a minimal subset of N triplets ((∪0 ≤ i < N (δ, σ, 
τ)i), extracted from the last population of K individuals, 
N≤ K. It has the fault coverage FC%=Σ 0 ≤ i < N ∆FC%i, 
which has to reach the target value, and the global test 
length T=Σ 0 ≤ i < N τi. The value ∆FC%i is the percentage of 
faults detected by (δ, σ, τ)i and not covered by the subset 
of triplets ∪0 ≤ j < i(δ, σ, τ)j. 

The implemented GA-based procedure traces a quite 
typical GA structure. At each generation a set of new in-
dividuals (triplets) is created, starting from the existing 
ones, through the Genetic Operators. Standard operators, 
such as the horizontal two-cut crossover and bit-flip based 
mutation operators are adopted. Then the quality of the 
individuals is assessed and the Fitness Function values are 
used to rank the population. The fitness value for each 
triplet (δ, σ, τ)i is expressed as quality of the test set ob-
tained by processing the TPG with this triplet. As shown 
in Figure 4, the Triplet Simulator computes the test set by 
seeding the TPG with (δ, σ)i and running it for τi clock 
cycles. A standard gate-level event-driven Fault Simulator 
applies the test set to the UUT and investigates a target 
fault list. Three different evaluation parameters contribute 
in measuring the fitness of an individual: 

• The percentage of detected faults of the target fault list 
(∆FC%i) 



 

 

• The circuit sensitization parameter, to estimate how 
close the test set is in incrementing its actual fault cov-
erage. In the presence of a target fault not detected by 
the test set, the circuit sensitization counts the number 
of logic differences between the good and faulty ma-
chine injected by a pattern of the test set. For a test set, 
the value is obtained summing up the maximum circuit 
sensitization values of its test patterns. 

• The number of dummy patterns. 
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Figure 4: The Triplets Generator 

The fitness function uses a multiple reordering proce-
dure, where individuals are ordered mainly based on their 
contribution to the fault coverage of the whole population. 
First, tripleti, with highest fault coverage, is stored into the 
next population. Among the remaining individuals, tri-
pletj, covering the largest subset of faults not detected by 
tripleti, is then selected. The following choice, tripletk, is 
done to guarantee the coverage of faults undetected by 
tripleti and tripletj. The circuit sensitization and the num-
ber of dummy patterns are used to distinguish among in-
dividuals having the same fault coverage.  

To further increase the efficiency of GATSBY, pre-
processing and post-processing phases support the compu-
tations by the Triplets Generator and optimize the reseed-
ing solution further, respectively. 

The pre-processing phase deals with the fault list and 
the deterministic test set generated by a gate-level ATPG. 

The test set is instrumented with the additional infor-
mation obtained by fault simulation, which evaluates the 
detection capability of each pattern with respect to the 
whole fault list. During the GA evolution, some new indi-
viduals are set up using patterns extracted from the in-
strumented test set: in particular, at each time patterns 
covering faults not detected yet by the actual population 
are selected. 

Moreover, the faults are ranked according to their hard-
ness to be tested (sorted fault list), and an “incremental” 
fault list strategy is applied. The GA population is first 
customized towards a small subset of very hard-to-detect 
faults, and it is progressively slightly modified to cover 
easier ones as well, until the whole target fault list is taken 
into account. 

Finally, in the post-processing phase the Triplets 
Optimizer performs fault-simulation with each triplet of 
the reseeding solution in reverse order, to reduce the 
global test length. 

5. Experimental Results 
The methodology presented so far was evaluated by us-

ing the embedded cores of a commercially distributed 
system-on-a-chip and some behavioral descriptions of 
even more complex cores. 

The next subsection presents the cores used as TPGs 
and the test method in some detail. In the actual imple-
mentation, the TPG functionality is described at the be-
havioral level in C++. Section 5.2 describes the experi-
mental setup, and section 5.3 compares the results ob-
tained from the different cores and evaluates the trade off 
in terms of test length, fault coverage and number of seeds 
to be stored. 

The goal of the present paper was to exploit the flexi-
bility of the method presented in [26] to consider different 
functional blocks as possible TPGs. For a detailed analy-
sis of the proposed approach w.r.t. the state-of-the-art ap-
proaches refer to [26]. 

5.1. Test pattern generating cores 
As a demonstrator we use the OAK+ DSP Core by 

VLSI Technology2. This is a widely used commercial 
digital signal processor core for communication applica-
tions, and includes a variety of modules: operational 
blocks (e.g., ALU, multiplier, barrel shifter, etc., a Pro-
gram Control Unit, and memory). A block diagram is 
shown in Figure 5.  

In the next subsection we investigate the ability of the 
embedded functions, such as the ALU or the multiplier to 
test external units under test, which are connected to one 
of the buses. 

As UUTs, a subset of the ISCAS’85 [24] and IS-
CAS’89 [25] (full scan version) benchmarks circuits that 
are not randomly testable by 10K patterns has been con-
sidered. 

A programmable, bus organized system as shown in 
Figure 9 has the advantage that memory is available and 
randomly accessible for storing the triplets for reseeding. 
If the external memory is not available, also the internal 
one (Status Registers) can be used. Moreover, for this type 
of systems an external BIST controller is not mandatory, 
as the Program Control Unit may be available for control-
ling the test. 

Systems which are not as flexible as this test vehicle 
may require addition memory space for storing the seeds 
in a ROM, e.g., and may need modifications of the control 
logic. 
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Group. 



 

 

Besides the multiplier, the adder and the subtractor 
from the system describes above, we investigated a linear-
feedback shift register (LFSR), and an encryption unit. 
Modules for data encryption are today common in a vari-
ety of digital systems, developed for different applica-
tions. 

In our experiments, we use the ANSI C procedure 
available in the Sun Solaris vers. 2.6 [21] as behavioral 
description of the unit. Such a function encodes an input 
string, based on a one-way encryption algorithm, and is 
primarily used by the Operating System for user’s pass-
word encryption. 

Figure 5: The OAK + block diagram3 

5.2. Experimental Setup 
The employed test synthesis tool GATSBY is imple-

mented in ANSI C and counts up to 3,500 lines of code. 
Results were obtained by running GATSBY on a 

Sparc-Station 5/110 with 64Megabytes of RAM, and lim-
iting the computation time to 24 hours.  

The optimal reseeding solution is computed by using 
an optimization parameter, which minimizes of the num-
ber of triplets. This value defines the storage requirements 
for the testing purpose, but it also contributes in increasing 
the global test time. 

The gate-level ATPG Sunrise [29] is used to compute 
the fault list and the deterministic test set exploited in the 
computation process. Moreover, Sunrise provides the tar-
get fault coverage to be reached by the reseeding solution. 
                                                           
3 The scheme is reproduced in the present paper with the authorization 
of Philips Semiconductor [30] 

 

The value of the genetic parameters has been experi-
mentally tuned: they must drive the GATSBY computa-
tion in order to provide an optimal reseeding achieving the 
target fault coverage. Genetic parameters consist of a 
population of 16 individuals, let evolving for about 100 
generations; at each new evolution process, 20 new indi-
viduals are created. Finally, in performing the experiments 
we assumed that the TPG primary outputs always corre-
spond to the content of the TPG state register. 

5.3. Test efficiency 
The performed experiments show that a variety of dif-

ferent functional blocks are effi-
cient test pattern generators.  

Reseeding results are collected 
in Table 1 and Table 2. To a better 
understanding of the results and to 
allow a comparison among the dif-
ferent TPGs, Table 1 reports the 
number of triplets for optimal re-
seedings (N) and Table 2 the corre-
sponding global test length (T). 
The test length of each triplet τ is 
not directly taken into account 
since it is kept constant for all the 
triplets of the population. 

For sake of completeness, Table 
1 also reports the target fault cov-
erage computed running Sunrise, 
achieved by all the reseeding solu-
tions presented below, and Table 2 
includes the test lengths of the de-
terministic test sets pro-vided by 
Sunrise. 

Performed experiments show 
that in general LFSRs are not supe-

rior to any of the other modules investigated, neither in 
terms of number of reseedings nor with respect to the test 
length. Therefore, there is no need to include additional 
LFSRs only for testing purposes. 

Focusing first on TPGs including arithmetic functions, 
most of the ISCAS’85 circuits (c432, c499, c880, c1355, 
c1908, c3540, c6288) are tested with a single triplet (Ta-
ble 1). On the remaining examples (excepted c2670), the 
adder-based TPGs outperform the other arithmetic-based 
units, requiring the lowest number of triplets. Moreover, 
depending on the circuits, the multiplier-based TPG some-
times implies less reseedings then the subtracter-based 
one (s641, s713, s953, s1238), or vice versa (c2670, s838, 
s1196), while on two circuits the two TPGs are equivalent 
(s420, s820). 

In terms of test length (Table 2), the minimum values 
are provided by both the adder- (9 cases out of 17) and 
multiplier-based TPGs (5 cases out of 17), while on three 
circuits (s641, s713, s1196) the subtracter-based ones give 
the optimal solutions. Making a comparison normalized 



 

 

on the number of reseedings, instead, the multiplier-based 
TPG usually requires the lowest test lengths, with respect 
to the other arithmetic units (c499, c880, c1908, s641, 
s713). 

LFSR-based TPGs provide test lengths lower than the 
ones required by arithmetic units in 8 cases out of 17 
(c432, c880, c6288, s641, s713, s820, s953, s1423). In 
terms of number of triplets, instead, LFSRs are worse than 
the arithmetic units in 4 cases out of 17 (s713, s820, s953, 
s1423), while they provide solutions equivalent to their 
highest reseeding numbers for two circuits (s420, s641). 
In the remaining 11 cases, the reseeding number is in be-
tween the optimal and the worst solutions by the arithme-
tic units. 

Finally, using the encryption unit, the results obtained 
with some circuits are comparable with both arithmetic 
units and the LFSR but, generally, do not outperform 
those solutions. 

Figure 6 analyses the effectiveness of the test set in 
terms of number of dummy patterns; the case of s1423 as 
UUT has been considered. Many vectors of the test set are 
dummy patterns; however, for all the TPGs, the number of 
useful patterns included into the test set is comparable 
with the Sunrise test length. This behavior has been ex-
perimentally validated with almost all the considered cir-
cuits. 

Since the functional BIST approach is an at-speed test, 
reducing the number of dummy patterns and reducing the 
overall test length compared to an external scan based test 
was not a target. Allowing a larger number of dummy 
patterns and increasing the test length may even improve 
the defect coverage, and reduce the memory requirements 
for the seeds while the test application time will still be 
shorter than the time for external testing. 

6. Conclusions 
The present paper works inside the context of the func-

tional BIST strategy and investigates different functional 
units as possible deterministic test generators. 

Experiments proved that accumulator-based units in-
cluding various arithmetic functions, as well as user-
defined modules, can be efficiently employed for test pat-
tern generation. According to each context the designer 
can therefore select the “best” candidate test generator 
among the units functionally connected to the module 
under test. 

The functional BIST approach is less intrusive then 
traditional BIST techniques, since no test points and no 
additional registers are introduced into the modules to be 
tested. The efficiency of all the functional units investi-
gated so far is as least as high as efficiency of the classical 
LFSR reseeding technique, and in many cases it is higher. 

 

  GATSBY 
 # Triplets (N) 
 Arithmetic units  

Cir-
cuit 

Target 

Adder Mul-
tiplier 

Sub-
tractor 

LFSR Encr

c432 99.12 1 1 1 1 1 
c499 98.84 1 1 1 1 1 
c880 100 1 1 1 1 1 

c1355 99.47 1 1 1 1 1 
c1908 99.61 1 1 1 1 1 
c2670 95.64 33 36 30 34 43 
c3540 96.05 1 1 1 1 2 
c6288 99.56 1 1 1 1 1 
S420 100 7 10 10 10 13 
S641 100 5 6 7 7 7 
S713 93.46 5 5 7 8 6 
S820 100 3 3 3 35 3 
S838 100 11 92 30 44 89 
S953 100 3 3 4 5 4 
s1196 100 4 6 5 5 6 
s1238 94.74 4 6 7 6 7 
s1423 98.99 3 4 3 5 3 

Table 1: Comparison among TPGs in terms of Reseedings 

 

 Test length (T) 
 GATSBY 
 Arithmetic Units 

Circuit 
Sun-
rise Adder Multi-

plier 
Sub-

tractor 
LFSR En-

cryptor 

c432 81 243 260 273 210 316 
c499 74 368 354 420 417 472 
c880 91 2,104 1,966 2,123 1,829 2,737 
c1355 118 1,151 1,241 1,177 1,334 1,314 
c1908 184 3,773 3,348 3,641 3,759 3,245 
c2670 163 10,179 8,310 10,401 10,206 6,090 
c3540 210 3,467 6,106 4,568 4,505 6,078 
c6288 57 56 59 56 23 54 
s420 110 5,510 9,711 8,851 10,843 9,735 
s641 92 4,475 2,730 2,665 2,430 3,179 
s713 94 9,082 3,588 3,091 2,759 3,518 
s820 176 5,311 5,401 7,485 527 4,785 
s838 215 6,694 10,988 17,192 9,273 17,098 
s953 114 7,871 5,803 6,572 4,834 8,043 
s1196 232 10,000 7,025 6,920 18,776 6,408 
s1238 236 7,356 9,071 8,533 7,713 8,183 
s1423 93 3,100 4,474 3,439 1,308 3,461 

Table 2: Comparison among TPGs in terms of Test 
Length 
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Figure 6: Dummy patterns inside the test set 
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