

Non-Intrusive BIST for Systems-on-a-Chip

Silvia CHIUSANO*, PAOLO PRINETTO*, HANS-JOACHIM WUNDERLICH +

(*) Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso duca degli Abruzzi 24 - I-10129, Torino, Italy
Email: {chiusano, prinetto}@polito.it

http://www.testgroup.polito.it

(+) University of Stuttgart
Computer Architecture Lab,

Stuttgart, Germany
Email: wu@informatik.uni-stuttgart.de

http://www.ra.informatik.uni-stuttgart.de

Abstract1

The term “functional BIST” describes a test method to
control functional modules so that they generate a deter-
ministic test set, which targets structural faults within
other parts of the system. It is a promising solution for
self-testing complex digital systems at reduced costs in
terms of area overhead and performance degradation.
While previous work mainly investigated the use of func-
tional modules for generating pseudo-random and
pseudo-exhaustive test patterns, the present paper shows
that a variety of modules can also be used as a
deterministic test pattern generator via an appropriate
reseeding strategy. This method enables a BIST technique
that does not introduce additional hardware like test
points and test registers into combinational and pipelined
modules under test. The experimental results prove that
the reseeding method works for accumulator based
structures, multipliers, or encryption modules as
efficiently as for the classic linear feedback shift registers,
and some times even better.

1. Introduction
Embedded Test is today widely recognized as an effec-

tive approach to Systems-on-Chip (SoC) testing, while
traditional methods based solely on an external automatic
test equipment (ATE) become more and more expensive
or even unfeasible. Built-in Self-Test (BIST) strategies

1 This work was supported in part by the Deutscher Akademischer

Austauschdienst (DAAD), in part by the Conferenza dei Rettori delle
Università Italiane (CRUI), under the Vigoni Project 1999-2000 and by
DFG Wu 245/1-3

embed the functions needed for testing a given Unit Un-
der Test (UUT) into the chip itself. These functions con-
sist of a Test Pattern Generator (TPG) and a Test Re-
sponse Compactor (TRC) at least, and until now, they
have been performed by specialized dedicated hardware
mainly based on Linear Feedback Shift Register (LFSRs)
or cellular automata.

Traditionally, the TPG generates pseudo-random or
pseudo-exhaustive patterns [1][2], and test points may be
required either for circuit segmentation or for increasing
controllability and observability in order to obtain suffi-
cient fault coverage [3][4][5]. Test points do not only in-
crease the hardware overhead but they may also put addi-
tional delays on critical paths and slow down the system
performance.

An alternative to test point insertion is not modifying
the UUT but the pattern generators. For this purpose, test
methods based on weighted random patterns [6][7][8] and,
more recently, based on deterministic test patterns have
been developed [9][10][11][12]. The reseeding technique
presented in [9][13] computes initial values of an LFSR so
that the output sequence includes pre-computed determi-
nistic test patterns.

Recently an innovative BIST technique has been pro-
posed which exploits the system functionalities for test
generation and is less intrusive than using test registers.
The main idea of the Arithmetic BIST (ABIST) methodol-
ogy is to perform test pattern generation by exploiting the
available system structure, which consists of both the
modules present in the system and the available connec-
tions between the modules [14].

In Figure 1, the modules Mi and Mj are part of the sys-
tem mission logic; they are functionally connected in such

a way that the Mi outputs are the input signals of Mj. In the
ABIST approach, Mi is controlled appropriately in order
to generate output values that are suitable test patterns for
Mj.

Typically, Mi is a sequential circuit used as TPG for a
given Unit Under Test (UUT), in our case Mj. The addi-
tional test hardware mainly consists in the control logic:
the multiplexer (MUX) must be controlled so that the best
candidate for pattern generation is selected from the con-
nected components (in our case Mi instead of Mk or Mt),
and Mi has to run autonomously.

Also the test responses may be observed and com-
pacted by modules already available in the system. This
has already been dealt with in [15][16] and is not part of
the present paper.

Selection

Mt

MUX

MkMi as TPG

Mj as UUT

Figure 1: The ABIST approach

The most relevant advantage of the ABIST approach is
the avoidance of dedicated test hardware, since now sys-
tem modules are used for pattern generation, and neither
additional hardware nor additional delays are introduced
into the data path.

The ABIST technique is comprehensively described in
textbooks [17]. The technique addresses general purpose
computing structures based on data-path architectures, as
well as specialized digital signal processing circuits, per-
forming arithmetic operations, which can be exploited for
test pattern generation. Typically, ABIST-based ap-
proaches use accumulator-based structures for generating
pseudo-random and pseudo-exhaustive patterns
[14][18][19][20]. Modules containing hard-to-detect faults
still require extra test hardware either by inserting test
points into the mission logic or by storing additional de-
terministic test patterns.

The goal of the present paper is to combine the advan-
tages of the ABIST approach and the reseeding method
for deterministic pattern generation, which was restricted
to linear feedback shift registers until now. A method is
presented to compute initial values for general functional
modules so that they are able to produce deterministic test
patterns with complete fault coverage. The method is

based on Genetic Algorithms and can handle arbitrary
sequential modules as pattern generators. Since it is not
restricted to arithmetic modules but can work of any type
of functions, we call the resulting test method Functional
BIST.

Moreover, the paper describes the implementation of a
tool, which supports the selection of the best candidate of
the functional modules for deterministic pattern genera-
tion. An example of a commercial SoC is analyzed, and it
is shown that the functional modules available there can
be used for reseeding. Finally some additional, more com-
plex, modules are analyzed as well.

The rest of the paper is organized in the following way:
the next section describes the state of the art in functional
BIST and introduces some basic concepts. Section 3 de-
scribes the trade-off in functional BIST pattern genera-
tion; Section 4 maps the reseeding problem for general
functional modules to a genetic algorithm and gives an
overview of the resulting tool. In Section 5, the experi-
mental results focus on units that are most commonly
available in SoCs. Results are presented for several stan-
dard accumulator-based arithmetic modules (i.e., adder,
multiplier, subtracter), that are usually embedded in the
systems either as single modules or integrated in an arith-
metic logic unit (ALU) or a multiply accumulator block
(MAC). Moreover, as an example of non-arithmetic cir-
cuits, an encryption unit [21] and an LFSR are investi-
gated.

2. State of the Art
As functional BIST is a rather new technique, only a

few papers focus on covering not random testable faults
via deterministic test patterns generated by system mod-
ules during BIST.

[22] proposes two computation methods for the initial
values (a simulation-based and an analytic one) using an
adder as arithmetic unit, both methods do not mainly tar-
get complete fault coverage but test length minimization.

The method presented in [23] also applies to adder-
based accumulator structures, and is able to compute
seeds so that the resulting test sequences obtain complete
fault coverage for all the ISCA85 circuits and the combi-
national parts of the ISCAS89 circuits [24][25]. The per-
formance of this method is in general better in terms of
test length and number of seeds than the LFSR-based re-
seedings. The serious drawback of this technique is the
restriction to adder-based structures. It is not expected that
this limitation will generally be overcome in the future as
the method models the function of the TPG by binary de-
cision diagrams (BDDs) symbolically. An extension al-
ready fails if the pattern generator is a multiplier-based
accumulator structure, and the solution presented there is
optimized especially and applicable only for adders.

In [26], the authors proposed a universal algorithm to
control and initialize sequential structures so that they
work as a deterministic test pattern generator for a given

UUT. An algorithm called GATSBY (Genetic Algorithm
based Test Synthesis tool for BIST applications) as im-
plemented, and experiments were performed considering
adder-based structures. This method does not depend on
the function of the pattern generating module and was
applied to both adder based structures and LFSRs. The
results presented there reached the same efficiency as the
specialized methods presented in [13][23], and often out-
performed them in terms of test size and test time.

The present paper intends to exploit the flexibility of
the method [26] to investigate the usability of the func-
tional BIST approach for testing SoCs. Actual SoCs in-
clude a variety of functional units, library modules (e.g.,
ALU, MAC, LFSR, etc.), as well as custom blocks.
Moreover, these modules usually form a strongly con-
nected network, in which each unit is functionally linked
to many other system modules either by bus-oriented or
by multiplexer-oriented interconnections. In the present
paper, for several UUTs, we analyze candidate TPGs,
taking into account the parameters test length, area over-
head, and fault coverage. The trade-off of each functional
unit when exploited as TPG is determined. According to
the design requirements the ”best“ functional unit to be
used as TPG can be identified, among the ones function-
ally connected to the UUT itself.

3. Functional BIST Pattern Generation
The Test Pattern Generator (TPG) is generally consid-

ered as an accumulator-based unit with an input register
and a state register, which are assumed to be partially or
fully accessible, either via parallel load or in full-scan
mode. The test sets generated by the TPG depend on the
functionality of the TPG itself, on the initial content of the
TPG registers, and on the number of clock cycles the TPG
is let evolve.

The test pattern generation mechanism consists of two
main phases. First, the TPG state register is set to an ini-
tial value (δ) and its inputs register is fixed at a constant
value (σ). The pair of values (δ, σ) is often referred to as
the Seed of the TPG. Then, the TPG runs autonomously
for τ clock cycles. A new pattern pj appears on the TPG
outputs at each clock cycle tj, 0 ≤ j < τ, and is applied to
the Unit Under Test (UUT). The resulting test set (TS) is
therefore a function f of the triplet (δ, σ, τ) and of the
functionality ϕTPG of the TPG itself:

TS = { pj  0 ≤ j < τ} = f (ϕTPG, triplet (δ, σ, τ)).
Figure 2 sketches the test pattern generation mecha-

nism in the functional BIST approach. This is similar to
the classical LFSR reseeding where either the seeds [27],
or both the seeds and the feedback function have to be
stored [9].

The fault coverage (FC%) and the test length (τ) define
the quality of the test set. In the functional BIST approach,
the test set effectiveness is correlated to the percentage of
patterns that really contribute to increase the fault cover-

age. Since the test set TS is obtained by the autonomous
evolution of the TPG after initial seeding, not all the gen-
erated patterns may be useful for testing the UUT. A pat-
tern pj is a dummy pattern if it just covers faults already
detected by at least one of the patterns pk, generated in a
previous instant of time (0≤ k <j). High percentages of
dummy patterns affect the TS effectiveness, since most of
the testing time is lost in applying useless patterns to the
UUT. In Figure 2, only the patterns p0, p2, pj and pτ-1 (col-
ored in gray) are useful for the testing purpose.

ϕ

p0

p1
p2

p3
p5

…...
pj
….
p τ-1

σ

δ

TS = {pj  0 ≤ j < τ} =
function (ϕTPG, triplet (σ, δ, τ))

TS = {pj  0 ≤ j < τ} =
function (ϕTPG, triplet (σ, δ, τ))

TPG

Figure 2: The Test Pattern Generation

The computation of an optimal solution consists in
finding a suitable triplet such that the target fault coverage
is achieved, while both the test length (τ) and the number
of dummy patterns inside the test set are minimized.

A test set provided by a single triplet does not always
guarantee to fulfill all the goals at the same time. Experi-
ment showed that random testable faults are detectable in
relatively few clock cycles, with an acceptable percentage
of dummy patterns inside the test set. On the other hand, a
higher number of clock cycles may be required to gener-
ate patterns testing not random testable faults. In addition,
the TPG functionality may prevent the generation of cer-
tain patterns when the TPG is seed by (δ, σ); due, for in-
stance, to states not reachable by the TPG starting from (δ,
σ).

In order to reduce the test length or to reach a target
fault coverage, the TPG evolution can be periodically
stopped and restarted with a new triplet (δ, σ, τ)i, until the
target fault coverage is reached. Such a re-initialization
process is called TPG reseeding. Figure 3 shows the quali-

tative behavior of the reseeding process. Here, reseeding
occur after ti and tj clock cycles. Reseeding increases the
fault coverage obtained within a fixed number of clock
cycles and/or reduce the test length required to get a given
fault coverage.

HardHard--toto--detect detect
faultsfaults

Target Target
FC%FC%

100%100%

clock cycles# clock cycles

ReseedingReseeding
ttii ttjj

ReRe--seedingseedingReseedingsReseedings

Figure 3: Qualitative behavior

In the case of reseeding, the solution is a set of N trip-
lets ∪0 ≤j < i(δ, σ, τ)i, which are sequentially applied to
drive the TPG evolution. The overall test set TS is there-
fore the union of the test sets TSi generated by each single
triplet (δ, σ, τ)i: TS= TS0 ∪ TS1 ∪ TS2 ∪ ... TSN-1. The test
set TS is characterized by a global test length T=Σ 0 ≤ i < N

τi, and fault coverage FC%=Σ 0 ≤ i < N i. The value
i is the percentage of faults detected by TSi and not

covered by the test set TS0 ∪ TS1 È...TSi-1, generated by
the subset ∪0 ≤j < i(δ, σ, τ)j. The number N of seeds directly
corresponds to the storage effort.

According to the design specification, an optimal re-
seeding solution can be computed by trading-off the num-
ber of reseedings vs. area overhead and test length. In par-
ticular,

• A low number of reseedings allows minimizing the
extra area needed to store the triplets (e.g., in a ROM),
but usually a larger test length is necessary and the 100%
of testable fault coverage is not always guaranteed

• A large number of reseedings implies more area
overhead, but a shorter test length. The reseeding can be
repeated until all the target faults have been detected.

4. The Test Synthesis Tool
The Optimization Parameters of GATSBY to be speci-

fied drive the computation process; they include the target
fault coverage value (FC%), and specify if the solution
must minimize either the global test length (T) or the
number of reseedings (N).

As a result of the computation, GATSBY provides a
set of N triplets, ∪0 ≤i < N(δ, σ, τ)i, tuned towards the Opti-
mization Parameters; in particular, it guarantees the target
coverage of non-redundant faults in the UUT. The algo-

rithm is not customized towards a specific functional TPG
unit and absolutely general.

Inputs of the program are a behavioral description of
the functional TPG module that can easily be extracted if
only the structure is known, and the gate-level description
of the UUT. At the current state of research only combina-
tional test pattern generation is considered, and the UUT
has to be combinational, pipelined or equipped with a
scan-path. In order to be compatible with commercial
ATPG tools the single stuck-at fault model is targeted,
extensions to any other combinational fault models are
straight-forward.

The kernel of GATSBY is the Triplets Generator,
which is implemented by using Genetic Algorithms based
procedure and sketched in Figure 4. Genetic Algorithms
(GAs) [28] aim at evolving a population of individuals in
order to increase their quality (fitness). The population
evolves through generations, based on a mechanism that
mimics nature. In each generation, the reproduction is
performed by the exchange of genetic material (crossover,
mutation), and the new individuals must compete with
their parents for survival: only individuals having higher
fitness values will appear in the next generation.

In our case, an individual encodes a single triplet (δ, σ,
τ)i; the population is thus a set of K candidate triplets (∪0

≤i < K (δ, σ, τ)i) and the evolution process aims at improving
the quality of all of them with respect to the Optimization
Parameters specified by the user. The provided optimal
reseeding is a minimal subset of N triplets ((∪0 ≤ i < N (δ, σ,
τ)i), extracted from the last population of K individuals,
N≤ K. It has the fault coverage FC%=Σ 0 ≤ i < N ∆FC%i,
which has to reach the target value, and the global test
length T=Σ 0 ≤ i < N τi. The value ∆FC%i is the percentage of
faults detected by (δ, σ, τ)i and not covered by the subset
of triplets ∪0 ≤ j < i(δ, σ, τ)j.

The implemented GA-based procedure traces a quite
typical GA structure. At each generation a set of new in-
dividuals (triplets) is created, starting from the existing
ones, through the Genetic Operators. Standard operators,
such as the horizontal two-cut crossover and bit-flip based
mutation operators are adopted. Then the quality of the
individuals is assessed and the Fitness Function values are
used to rank the population. The fitness value for each
triplet (δ, σ, τ)i is expressed as quality of the test set ob-
tained by processing the TPG with this triplet. As shown
in Figure 4, the Triplet Simulator computes the test set by
seeding the TPG with (δ, σ)i and running it for τi clock
cycles. A standard gate-level event-driven Fault Simulator
applies the test set to the UUT and investigates a target
fault list. Three different evaluation parameters contribute
in measuring the fitness of an individual:

• The percentage of detected faults of the target fault list
(∆FC%i)

• The circuit sensitization parameter, to estimate how
close the test set is in incrementing its actual fault cov-
erage. In the presence of a target fault not detected by
the test set, the circuit sensitization counts the number
of logic differences between the good and faulty ma-
chine injected by a pattern of the test set. For a test set,
the value is obtained summing up the maximum circuit
sensitization values of its test patterns.

• The number of dummy patterns.

Fitness ValueFitness Value

Fault ListFault List

Fault Fault
simulator simulator

UUT UUT
netlistnetlist

Genetic Genetic
OperatorsOperators

Triplet Triplet
Simulator Simulator

Test SetTest Set

TPG TPG
functionalityfunctionality

GAGA--based based
tool tool

Triplet Triplet
as Individualas Individual

Optimization Optimization
ParametersParameters

Figure 4: The Triplets Generator

The fitness function uses a multiple reordering proce-
dure, where individuals are ordered mainly based on their
contribution to the fault coverage of the whole population.
First, tripleti, with highest fault coverage, is stored into the
next population. Among the remaining individuals, tri-
pletj, covering the largest subset of faults not detected by
tripleti, is then selected. The following choice, tripletk, is
done to guarantee the coverage of faults undetected by
tripleti and tripletj. The circuit sensitization and the num-
ber of dummy patterns are used to distinguish among in-
dividuals having the same fault coverage.

To further increase the efficiency of GATSBY, pre-
processing and post-processing phases support the compu-
tations by the Triplets Generator and optimize the reseed-
ing solution further, respectively.

The pre-processing phase deals with the fault list and
the deterministic test set generated by a gate-level ATPG.

The test set is instrumented with the additional infor-
mation obtained by fault simulation, which evaluates the
detection capability of each pattern with respect to the
whole fault list. During the GA evolution, some new indi-
viduals are set up using patterns extracted from the in-
strumented test set: in particular, at each time patterns
covering faults not detected yet by the actual population
are selected.

Moreover, the faults are ranked according to their hard-
ness to be tested (sorted fault list), and an “incremental”
fault list strategy is applied. The GA population is first
customized towards a small subset of very hard-to-detect
faults, and it is progressively slightly modified to cover
easier ones as well, until the whole target fault list is taken
into account.

Finally, in the post-processing phase the Triplets
Optimizer performs fault-simulation with each triplet of
the reseeding solution in reverse order, to reduce the
global test length.

5. Experimental Results
The methodology presented so far was evaluated by us-

ing the embedded cores of a commercially distributed
system-on-a-chip and some behavioral descriptions of
even more complex cores.

The next subsection presents the cores used as TPGs
and the test method in some detail. In the actual imple-
mentation, the TPG functionality is described at the be-
havioral level in C++. Section 5.2 describes the experi-
mental setup, and section 5.3 compares the results ob-
tained from the different cores and evaluates the trade off
in terms of test length, fault coverage and number of seeds
to be stored.

The goal of the present paper was to exploit the flexi-
bility of the method presented in [26] to consider different
functional blocks as possible TPGs. For a detailed analy-
sis of the proposed approach w.r.t. the state-of-the-art ap-
proaches refer to [26].

5.1. Test pattern generating cores
As a demonstrator we use the OAK+ DSP Core by

VLSI Technology2. This is a widely used commercial
digital signal processor core for communication applica-
tions, and includes a variety of modules: operational
blocks (e.g., ALU, multiplier, barrel shifter, etc., a Pro-
gram Control Unit, and memory). A block diagram is
shown in Figure 5.

In the next subsection we investigate the ability of the
embedded functions, such as the ALU or the multiplier to
test external units under test, which are connected to one
of the buses.

As UUTs, a subset of the ISCAS’85 [24] and IS-
CAS’89 [25] (full scan version) benchmarks circuits that
are not randomly testable by 10K patterns has been con-
sidered.

A programmable, bus organized system as shown in
Figure 9 has the advantage that memory is available and
randomly accessible for storing the triplets for reseeding.
If the external memory is not available, also the internal
one (Status Registers) can be used. Moreover, for this type
of systems an external BIST controller is not mandatory,
as the Program Control Unit may be available for control-
ling the test.

Systems which are not as flexible as this test vehicle
may require addition memory space for storing the seeds
in a ROM, e.g., and may need modifications of the control
logic.

2 OAK+ DSP Core, by VLSI Technology, is a trademark of DSP

Group.

Besides the multiplier, the adder and the subtractor
from the system describes above, we investigated a linear-
feedback shift register (LFSR), and an encryption unit.
Modules for data encryption are today common in a vari-
ety of digital systems, developed for different applica-
tions.

In our experiments, we use the ANSI C procedure
available in the Sun Solaris vers. 2.6 [21] as behavioral
description of the unit. Such a function encodes an input
string, based on a one-way encryption algorithm, and is
primarily used by the Operating System for user’s pass-
word encryption.

Figure 5: The OAK + block diagram3

5.2. Experimental Setup
The employed test synthesis tool GATSBY is imple-

mented in ANSI C and counts up to 3,500 lines of code.
Results were obtained by running GATSBY on a

Sparc-Station 5/110 with 64Megabytes of RAM, and lim-
iting the computation time to 24 hours.

The optimal reseeding solution is computed by using
an optimization parameter, which minimizes of the num-
ber of triplets. This value defines the storage requirements
for the testing purpose, but it also contributes in increasing
the global test time.

The gate-level ATPG Sunrise [29] is used to compute
the fault list and the deterministic test set exploited in the
computation process. Moreover, Sunrise provides the tar-
get fault coverage to be reached by the reseeding solution.

3 The scheme is reproduced in the present paper with the authorization
of Philips Semiconductor [30]

The value of the genetic parameters has been experi-
mentally tuned: they must drive the GATSBY computa-
tion in order to provide an optimal reseeding achieving the
target fault coverage. Genetic parameters consist of a
population of 16 individuals, let evolving for about 100
generations; at each new evolution process, 20 new indi-
viduals are created. Finally, in performing the experiments
we assumed that the TPG primary outputs always corre-
spond to the content of the TPG state register.

5.3. Test efficiency
The performed experiments show that a variety of dif-

ferent functional blocks are effi-
cient test pattern generators.

Reseeding results are collected
in Table 1 and Table 2. To a better
understanding of the results and to
allow a comparison among the dif-
ferent TPGs, Table 1 reports the
number of triplets for optimal re-
seedings (N) and Table 2 the corre-
sponding global test length (T).
The test length of each triplet τ is
not directly taken into account
since it is kept constant for all the
triplets of the population.

For sake of completeness, Table
1 also reports the target fault cov-
erage computed running Sunrise,
achieved by all the reseeding solu-
tions presented below, and Table 2
includes the test lengths of the de-
terministic test sets pro-vided by
Sunrise.

Performed experiments show
that in general LFSRs are not supe-

rior to any of the other modules investigated, neither in
terms of number of reseedings nor with respect to the test
length. Therefore, there is no need to include additional
LFSRs only for testing purposes.

Focusing first on TPGs including arithmetic functions,
most of the ISCAS’85 circuits (c432, c499, c880, c1355,
c1908, c3540, c6288) are tested with a single triplet (Ta-
ble 1). On the remaining examples (excepted c2670), the
adder-based TPGs outperform the other arithmetic-based
units, requiring the lowest number of triplets. Moreover,
depending on the circuits, the multiplier-based TPG some-
times implies less reseedings then the subtracter-based
one (s641, s713, s953, s1238), or vice versa (c2670, s838,
s1196), while on two circuits the two TPGs are equivalent
(s420, s820).

In terms of test length (Table 2), the minimum values
are provided by both the adder- (9 cases out of 17) and
multiplier-based TPGs (5 cases out of 17), while on three
circuits (s641, s713, s1196) the subtracter-based ones give
the optimal solutions. Making a comparison normalized

on the number of reseedings, instead, the multiplier-based
TPG usually requires the lowest test lengths, with respect
to the other arithmetic units (c499, c880, c1908, s641,
s713).

LFSR-based TPGs provide test lengths lower than the
ones required by arithmetic units in 8 cases out of 17
(c432, c880, c6288, s641, s713, s820, s953, s1423). In
terms of number of triplets, instead, LFSRs are worse than
the arithmetic units in 4 cases out of 17 (s713, s820, s953,
s1423), while they provide solutions equivalent to their
highest reseeding numbers for two circuits (s420, s641).
In the remaining 11 cases, the reseeding number is in be-
tween the optimal and the worst solutions by the arithme-
tic units.

Finally, using the encryption unit, the results obtained
with some circuits are comparable with both arithmetic
units and the LFSR but, generally, do not outperform
those solutions.

Figure 6 analyses the effectiveness of the test set in
terms of number of dummy patterns; the case of s1423 as
UUT has been considered. Many vectors of the test set are
dummy patterns; however, for all the TPGs, the number of
useful patterns included into the test set is comparable
with the Sunrise test length. This behavior has been ex-
perimentally validated with almost all the considered cir-
cuits.

Since the functional BIST approach is an at-speed test,
reducing the number of dummy patterns and reducing the
overall test length compared to an external scan based test
was not a target. Allowing a larger number of dummy
patterns and increasing the test length may even improve
the defect coverage, and reduce the memory requirements
for the seeds while the test application time will still be
shorter than the time for external testing.

6. Conclusions
The present paper works inside the context of the func-

tional BIST strategy and investigates different functional
units as possible deterministic test generators.

Experiments proved that accumulator-based units in-
cluding various arithmetic functions, as well as user-
defined modules, can be efficiently employed for test pat-
tern generation. According to each context the designer
can therefore select the “best” candidate test generator
among the units functionally connected to the module
under test.

The functional BIST approach is less intrusive then
traditional BIST techniques, since no test points and no
additional registers are introduced into the modules to be
tested. The efficiency of all the functional units investi-
gated so far is as least as high as efficiency of the classical
LFSR reseeding technique, and in many cases it is higher.

 GATSBY
 # Triplets (N)
 Arithmetic units

Cir-
cuit

Target

Adder Mul-
tiplier

Sub-
tractor

LFSR Encr

c432 99.12 1 1 1 1 1
c499 98.84 1 1 1 1 1
c880 100 1 1 1 1 1

c1355 99.47 1 1 1 1 1
c1908 99.61 1 1 1 1 1
c2670 95.64 33 36 30 34 43
c3540 96.05 1 1 1 1 2
c6288 99.56 1 1 1 1 1
S420 100 7 10 10 10 13
S641 100 5 6 7 7 7
S713 93.46 5 5 7 8 6
S820 100 3 3 3 35 3
S838 100 11 92 30 44 89
S953 100 3 3 4 5 4
s1196 100 4 6 5 5 6
s1238 94.74 4 6 7 6 7
s1423 98.99 3 4 3 5 3

Table 1: Comparison among TPGs in terms of Reseedings

 Test length (T)
 GATSBY
 Arithmetic Units

Circuit
Sun-
rise Adder Multi-

plier
Sub-

tractor
LFSR En-

cryptor

c432 81 243 260 273 210 316
c499 74 368 354 420 417 472
c880 91 2,104 1,966 2,123 1,829 2,737
c1355 118 1,151 1,241 1,177 1,334 1,314
c1908 184 3,773 3,348 3,641 3,759 3,245
c2670 163 10,179 8,310 10,401 10,206 6,090
c3540 210 3,467 6,106 4,568 4,505 6,078
c6288 57 56 59 56 23 54
s420 110 5,510 9,711 8,851 10,843 9,735
s641 92 4,475 2,730 2,665 2,430 3,179
s713 94 9,082 3,588 3,091 2,759 3,518
s820 176 5,311 5,401 7,485 527 4,785
s838 215 6,694 10,988 17,192 9,273 17,098
s953 114 7,871 5,803 6,572 4,834 8,043
s1196 232 10,000 7,025 6,920 18,776 6,408
s1238 236 7,356 9,071 8,533 7,713 8,183
s1423 93 3,100 4,474 3,439 1,308 3,461

Table 2: Comparison among TPGs in terms of Test
Length

1

10

100

1000

10000

Sunrise Adder Multiplier Subtracter LFSR Encryptor

Dummy Patterns
Useful Patterns

Test
Length

s1423 as UUT
Figure 6: Dummy patterns inside the test set

7. References
[1] B. Koenemann, J. Mucha, G. Zwiehoff, Built-in

Logic Block Observation Techniques, IEEE Interna-
tional Test Conference, Cherry Hill, NJ, 1979, pp.
37– 41

[2] L. T. Wang, E. J. McCluskey, Circuits for Pseudo-
Exhaustive Test Pattern Generation, IEEE Interna-
tional Test Conference, Washington, DC, 1986, pp.
25-37

[3] K.-T. Chen, C.-J. Lin, Timing Driven Test Point
Insertion for Full-Scan and Partial-Scan BIST,
IEEE International Test Conference, Washington,
DC, 1995, pp. 506-514

[4] J.P. Hayes, A.D. Friedman, Test Point Placement to
Simplify Fault Detection, IEEE Transactions on
Computers, Vol. C-33, July 1974, pp. 727-735

[5] B.H. Seiss, P.M. Trousborst, M.H. Schulz, Test
Point Insertion for Scan-Based BIST, IEEE Euro-
pean Test Conference, 1991, pp. 253-262

[6] H.-J. Wunderlich, PROTEST: A Tool for Probabil-
istic Testability Analysis, IEEE/ACM 22nd Design
Automation Conference, Las Vegas, 1985, pp. 204-
211

[7] J. A. Waicukauski, E. Lindbloom et al., WRP: A
Method for Generating Weighted Random Patterns,
IBM Journal of Research and Development, Vol.
33, No. 2, March 1989, pp. 149-161

[8] F. Brglez et al., Hardware-Based Weighted Random
Pattern Generation for Boundary-Scan, IEEE Inter-
national Test Conference, Washington, DC, 1989,
pp. 264-274

[9] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois,
Generation of Vector Patterns Through Reseeding
of Multiple-Polynomial Linear Feedback Shift Reg-
isters, IEEE International Test Conference, Balti-
more, MD, September 1992, pp. 120-129

[10] N. A. Touba and E. J. McCluskey, Altering a
Pseudo-Random Bit Sequence for Scan-Based BIST,
IEEE International Test Conference, Washington,
DC, 1996, pp. 167-175

[11] H.J Wunderlich, G. Kiefer, Bit-flipping BIST, IEEE
International Conference on Computer-Aided De-
sign, 1996, pp. 337-343

[12] S. Chiusano, F. Corno, P. Prinetto, M. Sonza Re-
orda, Cellular Automata for Deterministic Sequen-
tial Test Pattern Generation, IEEE VLSI Test Sym-
posium, 1997, pp.60-65

[13] S. Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunder-
lich, Pattern Generation for a Deterministic BIST
Scheme, IEEE/ACM International Conference on
CAD-95, San Jose, CA, November 1995, pp. 88-94

[14] S. Gupta, J.Rajski, J. Tyszer, Test Pattern Genera-
tion Based on Arithmetic Operations, IEEE Interna-
tional Conference on Computer-Aided Design 1994

[15] J. Rajski, J. Tyszer, Accumulator-Based Compac-
tion of Test Responses, IEEE Transactions on Com-
puters, vol. 42, no. 6, pp. 643-650, June 1993

[16] A. P. Stroele, Test Response Compaction Using
Arithmetic Functions, VLSI Test Symposium, 1996,
pp. 380-386

[17] J. Rajski, J. Tyszer, Arithmetic Built-In Self-Test for
Embedded Systems, Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 1998

[18] S. Gupta, J. Rajski, J. Tyszer, Arithmetic Adaptive
Generators of Pseudo-Exhaustive Test Patterns,
IEEE Transactions on Computers, 8(45): 939-949,
August, 1996

[19] J.Rajski, J.Tyszer, Multiplicative Window Genera-
tors of Pseudo Random Test Vectors, IEEE Euro-
pean Design & Test Conference, 1996

[20] A. P. Stroele, Arithmetic Pattern Generation for
Built-In Self Test, IEEE International Conference
Computer Design, 1996

[21] Sun Solaris vers. 2.6, User Reference Manual, 1997
[22] A. P. Stroele, F. Mayer, Methods to reduce Test

Application Time for Accumulator-Based Self –Test,
IEEE VLSI Test Symposium, 1997, pp. 48-53

[23] R. Dorsch, H.-J. Wunderlich, Accumulator Based
Deterministic BIST, IEEE International Test Con-
ference, 1999

[24] F. Brglez and H. Fujiwara, A Neutral Netlist of 10
Combinatorial Benchmark Circuits, in Proceedings
of the IEEE International Symposium on Circuits
and Systems, 1985

[25] F. Brglez, D. Bryan, K. Kozminski, Combinatorial
Profiles of Sequential Benchmark Circuits, IEEE In-
ternational Symposium on Circuits and Systems,
1989, pp.1129-1234

[26] S. Cataldo, S. Chiusano, P. Prinetto, H-J. Wunder-
lich, Optimal Hardware Pattern Generation for
Functional BIST, IEEE Design Automation and
Test in Europe (DATE), 2000, pp.292-297

[27] B. Koenemann, LFSR-Coded Test Patterns for Scan
Designs, IEEE European Test Conference, Munich
(1991) pp. 237-242

[28] D.E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-
Wesley, 1989

[29] Sunrise Reference Manual, Sunrise Test Systems,
1995

[30] http://www.semiconductors.com/acrobat/other/
 technology/embedtech/ oakplus.pdf

