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Abstract

This paper presents a new technique for on-line con-
sistency checking of embedded DRAMs. The basic idea is
to use the periodic refresh operation for concurrently
computing a test characteristic of the memory contents
and compare it to a precomputed reference characteristic.
Experiments show that the proposed technique signifi-
cantly reduces the time between the occurrence of an
error and its detection (error detection latency). It also
achieves a very high error coverage at low hardware
costs. Therefore it perfectly complements standard on-line
checking approaches relying on error detecting codes,
where the detection of certain types of errors is guaran-
teed, but only during READ operations accessing the
erroneous data.

1 Introduction

Present day systems-on-a-chip typically integrate a va-
riety of different components like processor cores,
SRAMs, ROMs and user defined logic on a single chip.
Growing integration densities have made it feasible to
embed dynamic RAM cores of considerable sizes, too
[22]. Embedded DRAMs offer a large degree of architec-
tural freedom concerning the memory size and organiza-
tion. Therefore they are of particular interest for applica-
tions where high interface bandwidths have to be
achieved, as for example in network switching. On the
other hand, due the limited external access, testing em-
bedded DRAMs is an even more challenging problem
than testing monolithic DRAM chips.  Here, a number of
built-in self-test approaches which have been proposed in
the literature can help to develop solutions [1, 2, 4 - 8, 10,
12 - 14, 16, 17, 19, 21, 24]. With increasing memory
densities the relative area for the BIST resources becomes
negligible.
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To deal with soft errors during system operation,
adding standard on-line checking capabilities based on
error detecting codes is the first step also for embedded
DRAMs [20]. Depending on the type of code, the detec-
tion of certain types of errors can be guaranteed. But since
error detection is only possible during READ operations,
the time between the occurrence of an error and its detec-
tion, referred to as error detection latency, may be very
high. For some applications with high reliability require-
ments, e.g. in telecommunication switching, it is not ac-
ceptable to detect erroneous data only at the moment
when the data are explicitly needed [3]. In contrast, here
errors should be detected as early as possible to allow for
recovery before the data are requested by the system. In
this case, periodic transparent tests or consistency checks
during idle times of the memory offer a solution, but the
intervals between test phases may still be too long [3, 17,
18, 23].

In this paper it will be shown that the necessary BIST
equipment can be efficiently re-used for implementing an
on-line test method which complements or partly replaces
conventional on-line checking strategies, such that low
error detection latencies are guaranteed. The basic idea of
the proposed approach is to use the periodic refresh
operation for concurrently computing a memory charac-
teristic CTEST and compare it to a precomputed reference
characteristic CREF. Conflicts between CTEST and CREF
then indicate a soft error. In the following Section 2 the
requirements such a characteristic has to meet will be
explained in detail. In Section 3, useful concepts of earlier
work will be briefly reviewed, and the proposed memory
architecture with error detecting refreshment will be pre-
sented in Section 4. To evaluate the new architecture
experiments have been performed relying both on random
simulations and on the simulation of real program data.
The results documented in Section 5 will show that the
proposed approach in fact combines a high error detection
rate with a low error detection latency.
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2 Using the Periodic Refresh Operation for
Consistency Checking

Recently, techniques for periodic consistency checking
of embedded memories have been proposed which re-use
the resources common to most BIST approaches for
memories (see Figure 1) [18, 23].
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Figure 1: Typical BIST architecture for memories.

The test pattern generator produces a predetermined
sequence of memory addresses, and the corresponding
sequence of data is fed into the data compressor, the final
state of which represents a characteristic of the memory
contents. For the initial correct memory contents a refer-
ence characteristic CREF is „learned“ this way (or pre-
computed, if the memory contents is known after a reset)
and saved in a specific location on chip. The same proce-
dure is repeated periodically, and the respective charac-
teristics CTEST  are compared to CREF to reveal inconsis-
tencies. These techniques were proposed as off-line BIST
techniques to be applied during idle times of the memory.
In this section we will discuss the ideal features of a
technique for consistency checking to be used on-line
during memory operation.

To overcome the problem of data retention dynamic
RAMs refresh data during READ/WRITE operations and
during periodic refresh operations. In a typical memory
organization as shown in Figure 2, the address is split into
a row and a column address, and READ/WRITE opera-
tions first transfer the complete memory row indicated by
the row address to the refreshment register (activated by
the row access strobe RAS).

The actual READ/WRITE operations are then per-
formed on the refreshment register (activated by the
column access strobe CAS) before its contents is written
back to memory. The periodic refresh operations consist
of transferring all memory rows to the refreshment
register and loading them back to memory.

Since the complete memory is scanned during a peri-
odic refresh operation, this phase naturally offers itself for
concurrently computing the test characteristic CTEST in-
troduced above. However, in contrast to an off-line BIST
implementation, it must be guaranteed, that the computa-
tion can be completed within the time slot available for
the periodic refresh operation. Furthermore the algorithms
for refreshment and for consistency checking should have
a high degree of similarity to simplify control. As a con-

sequence the characteristic has to meet the following two
requirements:
• There must be a simple and fast mechanism to update

the reference characteristic concurrently with changes
in the memory contents, such that the periodic checks
can be performed without repeating the initial learning
phase.

• It should be possible to build the characteristic itera-
tively from „row characteristics“. The time to compute
a row characteristic must not exceed the time to refresh
a row.
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Figure 2: Typical organization of a dynamic RAM.

Consistency checking based on signature analysis as
described in [18] does not fulfill these constraints, because
changes in memory require to completely recompute CREF
before the checking can be started. Also, signature com-
putation is done bit by bit (word by word), which implies
that for each row n clock cycles are necessary, when n
denotes the number of columns in the memory array. The
„modulo-2 address characteristic“ introduced in [23] is
self-adjusting, i.e. after WRITE operations CREF can be
adjusted in one step. As shown in the next section, it can
be implemented in such a way, that the second require-
ment is met, too.

3 Self-Adjusting Data Compression

In this section the basic principles and properties of the
modulo-2 address characteristic are briefly reviewed. In
particular, it will be demonstrated that the corresponding
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data compressor can be generalized in such a way, that the
partial characteristic associated with each row in the
memory array can be computed in one clock cycle.

As shown in Figure 3, the modulo-2 address charac-
teristic compresses the memory contents to a characteris-
tic C  obtained as the bitwise modulo-2 sum of all
addresses pointing to „1“. It allows to implement periodic
consistency checking in an efficient way, because it can
be easily adjusted concurrently with changes in the
memory contents. In case of a WRITE operation at a
specific address a*, the old reference characteristic CREF

old

is updated to

C C a M a M aREF
new

REF
old new old= ⊕ ⋅ [ ] ⊕ [ ]( )* * * ,

where M[a*] denotes the memory contents at address a*.
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Figure 3: Modulo-2 address characteristic for bit-oriented
RAMs.

For computing the complete characteristic, as well as
for updating it concurrently with WRITE operations, the
simple compressor circuit of Figure 4 can be used which
performs bitwise EXOR operations on the address lines
controlled by the data input.

data / 
old data  ⊕ new data

CREF/TEST

address lines

clock

FFFF FF

=1 =1 =1 &

Figure 4: Data compressor based on the modulo-2
address characteristic.

To calculate the initial characteristic CREF or the test
characteristic CTEST a counter or an LFSR has to generate

all memory addresses. If the memory operation starts after
a reset to zero, CREF is known to be zero, and the initiali-
zation can be skipped.

In [23] it has been shown that the modulo-2 address
characteristic provides the same quality as characterizing
the memory by conventional signature analysis:
1) All single errors are detectable and diagnosable. The

expression C CREF TEST⊕  provides the address of the
faulty memory cell in this case.

2) All double errors are detectable, since in this case
C CREF TEST⊕  corresponds to the sum of two addresses
ar and as, and ar ≠ as implies C CREF TEST⊕ ≠ 0 .

3) Data compression based on the modulo-2 address char-
acteristic is equivalent to serial signature analysis, and
the probability of aliasing errors is thus estimated by
2−k , where k denotes the length of the characteristic.
In contrast to conventional signature analysis, however,

changes in memory do not require the time-consuming
recomputation of CREF. Adjusting the characteristic re-
quires to compare the old and the new contents, and an
efficient implementation strongly depends on the memory
organization. In the case of dynamic RAMs the old mem-
ory contents is usually transferred to the refreshment
register before it is overwritten. Therefore the difference
M a M anew old* *[ ] ⊕ [ ]  can be calculated without extra
READ operations or performance losses [23].

However, the basic technique described so far is not
efficient enough to be applied during a periodic refresh
operation, because it steps through the memory bit by bit.
The data compressor of Figure 4 must be generalized to
compute the partial characteristic corresponding to one
row in one step (see Figure 5).
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Figure 5: Row-wise computation of the modulo-2 address
characteristic.
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If memory addresses are split into row and column
addresses a  = (ar, ac) and A1(r) := {ac  | M[ar, ac] =1}
denotes the set of all column addresses pointing to a „1“
in row r, then the compressor must be able to determine

C a ar
a A r

r c
c

= ( )
∈ ( )
⊕

1

,

in one step. The complete characteristic is then iteratively
obtained as

C C a aTEST
a m

r
a m a A r

r c
r r c

= = ( )
≤ < − ≤ < − ∈ ( )
⊕ ⊕ ⊕

0 1 0 1 1

, ,

where m denotes the number of rows.
The basic principle of such a generalized compressor is

shown in Figure 6.
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Figure 6: Data compressor for the fast computation of
row characteristics.
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has either ar or 0 as its first component, depending on
the parity of the memory row. For n columns the second
component is represented by a binary l-bit vector,
l n=  log2 . It is obtained by bitwise EXOR-operations
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with ac  denoting the i-th component of ac, 0 ≤ i < l. As
only bit-addresses with ac = 1 can contribute to the i-th
sum, it is sufficient to implement functions Fi which count
(modulo 2) the number of ones at all the addresses with
this property. The second component of Cr is then derived
as

  a A r
c l

c

a F F
∈ ( )

−⊕ = ( )
1

0 1, ,K .

It can be easily verified that the EXOR tree for imple-
menting the parity check and the functions F0, …, Fl-1
requires at most

2 1 2 2 2 2
1

1j

j l

l l n l−( ) = − − = − −
≤ ≤

+∑

EXOR-gates. Overall, the output data compressor of
Figure 6 can be implemented using log2 m l  +  flip-
flops, log log2 22 2 2 2m l n l m n  + + − − =   + −  EXOR
gates, and 1 AND-gate.

The time required to compute a row characteristic Cr is
mainly determined by the depth of the AND/EXOR net-
work between the refreshment register and the register
containing the address characteristic. With l - 2 levels in
the EXOR tree for the parity check and the functions F0,
…, Fl-1, the depth of this network is l - 1.

Assuming a 1024 × 1024 bit dynamic memory, the data
compressor can for example be implemented with 20 flip-
flops, 2056 EXOR gates, and one AND gate. The delay
through the AND/EXOR network corresponds to 9 · d,
where d is the delay of one EXOR gate. If, furthermore, a
row access time of 100 ns is assumed, then a gate delay d
< 100/9 ≈ 11 ns is sufficient to compute the row charac-
teristic concurrently with the refreshment of the row and
the complete characteristic CTEST within the time slot for
a periodic refresh operation [15].

4 The Complete Memory Architecture

This section briefly sketches the complete architecture
of an embedded DRAM with error detecting refreshment.
Its core is the generalized data compressor described in
Section 3, which can of course also be used to speed up
the computation of the initial characteristic CREF (if
necessary) and to adjust CREF during normal memory
operation. As explained in Section 3, in case of a WRITE
operation CREF has to be updated when the old and new
memory contents differ. Rewriting the corresponding
formula

C C a M a M aREF
new

REF
old new old= ⊕ ⋅ [ ] ⊕ [ ]( )* * *

to

C C a M a a M aREF
new

REF
old old new= ⊕ ⋅ [ ] ⊕ ⋅ [ ]* * * * (*)
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provides a very simple and efficient architecture for
DRAMs with error detecting refreshment (see Figure 7).
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Figure 7: Complete architecture for a DRAM with error
detecting refreshment.

If the memory operation does not start with a reset
(CREF = 0), a row counter which cycles through all states
is sufficient to determine the initial characteristic. CREF
can be computed from the row characteristics as described
above. During normal memory operation WRITE requests
initiate a concurrent update of CREF. In the first phase the
memory row with its old contents is transferred to the
refreshment register and fed into the data compressor. In
the second phase the actual WRITE operation is per-
formed on the refreshment register which is again fed into
the data compressor, thus adjusting CREF according to (*).
Finally, during periodic refresh operations the row counter
enumerates all row addresses. Each row is transferred to
the refreshment register and fed into the data compressor,
which computes CTEST as described in detail above. If a
WRITE occurs at address a* = (ar*, ac*) during the peri-
odic refresh operation, then CREF must be updated as
described above. Concerning CTEST the control unit has to
distinguish between two cases:
• If the refresh procedure is interrupted at a row-address

ar > ar*, then CTEST has to be adjusted, too, because the

row characteristic for ar* has already been added to
CTEST before the WRITE operation at a* = (ar*, ac*).

• If the refresh procedure is interrupted at a row-address
ar < ar*, then the row characteristic for ar* has not yet
been added to CTEST, and there is no need to adjust
CTEST.
Since the row counter is required anyway to implement

the periodic refreshment, the hardware overhead is mainly
determined by the data compressor, the registers for CTEST
and CREF, and the comparator (shaded blocks in Figure 7).
With the figures given above, this is negligible compared
to the overall area of the memory. Consequently, the cost
for an embedded DRAM with error detecting refreshment
is much lower than the cost for implementing error de-
tecting codes. The expected fault coverage is similar, but
obtained with a reduced latency.

5 Experimental Evaluation

To evaluate the proposed scheme it was compared to a
standard on-line checking approach relying on parity
codes. As pointed out earlier, in the standard approach
errors can only be detected during READ operations. But
on the other hand, even for simple parity checking,
reading an erroneous cell is equivalent to detecting single
errors. For the new scheme a lower detection latency is
expected on average, however, erroneous data may be re-
used before the error is detected. To characterize both
methods more precisely random simulations have been
performed, as well as simulations of the memory traffic
for a set of benchmark programs. In all experiments the
following technology features were assumed for the
DRAM [15]:
• Average access time for READ/WRITE operations:

200 ns
• Refresh Period (time between two periodic refresh

operations): 16 ms
• Refresh time: m  · 100 ns (m denotes the number of

rows in the memory array, and 100 ns is the row access
time).
Concerning the error model, it was assumed that hard

errors were detected during production test, and that only
soft errors had to be considered. The investigations
focused on „single event upsets“ (SEUs) [9].

The first series of experiments was dedicated to random
simulations according to the following setup:
• Sequences of 1 M to 5 M  random operations at random

addresses were simulated. The probability for both
READ and WRITE operations was set to 0.5, and
addresses were assumed to be uniformly distributed,
too.

• DRAMs with a capacity from 1 Mbit to 4 Mbit were
considered. For all experiments a square organization
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of the DRAM was assumed, i. e. the number of rows
varied from 1 K to 2 K.

• Single errors were injected at random time steps and at
random addresses according to the uniform distri-
bution.
For each combination of the parameters (length of the

sequence, capacity of the memory) 100 simulations were
performed with varying seeds for the random processes.
The results showed the same basic trends for all memory
sizes. Therefore only the average detection latency and the
fault detection probability for the 4 Mbit DRAM are
reported in Figure 8 and Figure 9.
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Figure 8: Average error detection latency for a 4 Mbit
DRAM.
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Figure 9: Average detection probability for a 4 Mbit DRAM.

Concerning the detection latency the following trends
could be be observed:
• The average error detection latency for the proposed

technique is around 8 ms in all experiments, which is
approximately 50% of a refresh period.

• The error detection latency for the standard approach is
considerably higher and increases with the length of the
random sequences. In the best case it is about 6 times
higher than for error detecting refreshment, and in the
worst case about 40 times.
With respect to the fault coverage the proposed

technique achieved a fault coverage close to 100% in all
experiments. Only in rare cases errors were masked by
WRITE operations before the next periodic refresh
operation. In contrast, the fault coverage for the standard
approach increases with the length of the random
sequences, but never exceeds 60%. In the worst case, it is
even below 10%. However, it should be noted that here
errors remained undetected, only because the corre-
sponding data were not requested by the random se-
quence, and that all test sequences still provided the cor-
rect results.

Since for real application programs a uniform distribu-
tion of READ/WRITE accesses cannot be expected, a
second series of experiments was carried out for the
benchmark programs SPICE, TeX, and the GNU C-com-
piler GCC. The memory traces were produced by the
cache simulator DINERO for the DLX processor [11].
The mechanism for fault injection was the same as for the
random simulations. The results with respect to error
detection latency and fault coverage are presented in
Table 1 and Table 2.

Benchmark Error Detecting
Refreshment

Standard

SPICE 8.06 ms 1061.0 ms

TeX 8.16 ms 240.4 ms

GCC 8.16 ms 921.0 ms

Table 1: Error detection latency for the benchmark
programs SPICE, TeX, and GCC.

Benchmark Error Detecting
Refreshment

Standard

SPICE 100 % 1 %

TeX 100 % 0.5 %

GCC 100 % 2 %

Table 2: Error coverage for the benchmark programs
SPICE, TeX, and GCC.

For error detecting refreshment similar results are ob-
served as described above. For the standard approach,
however, considerably higher latencies and lower fault
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coverages are obtained. This is due to the reduced number
of READ operations in the benchmark programs.

These results clearly show that error detecting refresh-
ment complements standard on-line checking in an ideal
way. On average, the detection latency is very low, and
only a few errors escape. For those errors on-line checking
still guarantees detection, although only during READ
operations.

6 Conclusions

A new technique for on-line consistency checking of
embedded DRAMs, error detecting refreshment, has been
presented. It is based on the modulo-2 address charac-
teristic, which can be computed efficiently within the time
slots reserved for periodic refresh operations. At little
extra hardware cost the technique guarantees low error
detection latencies and high error coverages. Depending
on the reliability standards to be achieved, it can comple-
ment or even partly replace conventional on-line checking
schemes based on error detecting codes, where the detec-
tion of certain types of errors is guaranteed, but high de-
tection latencies must be expected.
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