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Abstract

The paper introduces the new concept of symmetric
transparent BIST for RAMs. This concept allows to skip
the signature prediction phase of conventional trans-
parent BIST approaches and therefore yields a significant
reduction of test time. The hardware cost and the fault
coverage of the new scheme remain comparable to that of
a traditional transparent BIST scheme. In many cases,
experimental studies even show a higher fault coverage
obtained in shorter test time.

1 Introduction

Modern computer systems typically contain a variety of
embedded memory arrays like caches, branch prediction
tables or priority queues for instruction execution [4, 14].
Fault free memory operations are crucial for the correct
behavior of the complete system, and thus, efficient tech-
niques for production testing as well as for periodic
maintenance testing are mandatory to guarantee the re-
quired quality standards. However, advances in memory
technology and in system design turn memory testing into
a more and more challenging problem. Due to the limited
accessibility of embedded memories conventional
methods for external testing can no longer provide satis-
factory solutions. A number of theoretical and practical
built-in self-test (BIST) approaches, which have been
proposed in the past, offer the basis to overcome this
problem in present-day systems-on-a-chip [1 - 3, 5 - 8, 12,
13, 17 - 20, 22]. These approaches range from on-chip
random pattern generation and efficient mechanisms for
repeated consistency checking to deterministic test
schemes targeting specific fault models. With increasing
memory densities the relative area overhead for the BIST
implementation becomes negligible.
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For deterministic memory BIST march tests have been
widely accepted, because they combine a high fault
coverage with a test time of order n, where n denotes the
size of the memory [9 - 11, 15, 16, 21]. Furthermore,
classical march tests can easily be extended to transparent
tests which leave the memory contents unchanged and
therefore are especially suitable for periodic maintenance
testing [17]. However, since march tests scan the complete
memory several times, test time becomes an issue of
growing importance with increasing memory densities. In
particular, transparent BIST for maintenance purposes
may become infeasible, because it requires a considerable
amount of extra time to compute a reference result each
time before it is applied. Figure 1 illustrates this for a
small example memory and a transparent version of the
MATS+ algorithm [16].
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Figure 1: Example for transparent BIST.

Following the notations defined in Table 1 the original
MATS+ algorithm can be written as {c(w0); ⇑(r0, w1);
⇓(r1, w0)}. It is transformed into a transparent test by
deleting the initialization phase and replacing read and
write operations with fixed „0“ or „1“ values by read and
write operations with the appropriate variable values [17].
For the transparent version {⇑(ra, wac); ⇓(rac, wa)} a
BIST session proceeds in two phases changing from in-
creasing to decreasing address order. After each read
operation the obtained data are fed into the signature ana-
lyzer, and at the end of the second phase the final signa-
ture σ has to be compared to a reference signature σREF.
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This reference signature, however, depends on the
memory contents and must be computed in an extra
„signature prediction“ phase before the test can be started.
In general, the signature prediction phase basically con-
sists of all read-operations of the complete test. For the
transparent MATS+ algorithm it is described by {⇑(ra);
⇓((ra)c)} and requires an extra time of 2n. The time for a
complete maintenance test based on MATS+ is 6n, which
implies that one third of the test time is required for sig-
nature prediction. This ratio is similar for any of the
known transparent BIST algorithms.

Symbol Meaning

ac complementary value of a ∈ {0, 1}

⇑ increasing addressing order

⇓ decreasing addressing order

c don’t care addressing order

w0, w1 write 0, 1 into memory cell

r0, r1 read memory cell, expected value is 0, 1

wa, wac write a, ac into memory cell

ra, rac read memory cell and feed result into
signature analyzer, expected value is a, ac

(ra)c read memory cell with expected value a
and feed ac into signature analyzer

Table 1: Basic definitions and notations.

To avoid this inefficiency while retaining the benefits
of transparent BIST, this paper introduces the concept of
symmetric transparent BIST. This new approach will
allow to completely omit the overhead for signature pre-
diction. Concerning the overall hardware cost and the
achievable fault coverage we will show that it is compa-
rable to conventional transparent BIST approaches. Ex-
perimental data will demonstrate that, in many cases, the
fault coverage is even increased.

The rest of the paper is organized as follows: The basic
principles and ideas for the proposed symmetric trans-
parent BIST are explained in Section 2. Section 3 demon-
strates the general applicability of the new approach, and
finally Section 4 analyzes the fault coverage properties.

2 Exploiting symmetries for signature prediction

Most of the march test algorithms used for transparent
RAM BIST produce test data with a high degree of sym-
metry. In the sequel, the classical MATS+ algorithm will
again serve as an example to illustrate this statement and
also to show how certain symmetries can be exploited for
an efficient BIST implementation. Having a closer look at

the example of Figure 1 reveals the following symmetric
behavior:

During the first phase the data sequence d = (1, 1, 0, 1)
is read from the memory and fed to the signature analyzer.
During the second phase we obtain d’ = (0, 1, 0, 0) which
can be produced from d by reversing the component order
and complementing the entries.

Combining such kind of symmetry with a carefully
chosen scheme for output data compression allows to
completely omit the signature prediction phase of con-
ventional transparent BIST approaches. More precisely,
we will show that switching between the regular feedback
polynomial and its reciprocal polynomial during signature
analysis results in a precomputable signature. For a more
detailed explanation some formal definitions have to be
introduced first.

Definition 1: The signature obtained for a test data
string d ∈ {0, 1}n using a serial signature analyzer with
feedback polynomial h(X) ∈ GF(2)[X] and initial state s
∈ {0, 1}k is denoted by sig(d, s, h).

Definition 2: Let h(X) = hkXk + hk-1Xk-1 + … + h1X + h0
be a polynomial of degree k. Then h*(X) := Xk · h(X-1) =
hk + hk-1X + … + h1Xk-1 + h0Xk denotes the reciprocal
polynomial.

Definition 3: Let d = (d0, …, dn-1) ∈ {0, 1}n be a data
string, then d* := (dn-1, …, d0) ∈ {0, 1}n denotes the data
stream with components in reverse order, and dc :=
(do

c, …, dn-1
c) ∈ {0, 1}n denotes the data stream with in-

verted components.
As shown in Figure 2 the reciprocal polynomial corre-

sponds to a signature register with feedback taps in re-
verse order. Using it for signature analysis reverts the data
compression by a signature analyzer based on the original
polynomial in the sense of the following Theorem.

test
data

a) …

s0

h0h1

s1…sk-1

hk-1hk

test
data

b) …

s0s1…sk-1

hkhk-1h1h0

Figure 2: Serial signature analyzers with original (a) and
reciprocal (b) feedback polynomial.

Theorem 1: Consider a serial signature analyzer with
initial state s ∈ {0, 1}k and feedback  polynomial h(X) ∈
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GF(2)[X]. Furthermore let d ∈  {0, 1}n be a test data
stream with corresponding signature σ = sig(d, s, h). Then

sig( d*, sig(d, s, h)*, h*) = s*,

i.e. signature analysis using h*(X) as feedback polynomial
and the reversed signature σ* as initial state provides the
reversed original state s* as signature for the reverse data
stream d*.

Figure 3 illustrates the proposition of Theorem 1 for a
small example. The general proof follows from elemen-
tary LFSR theory as sketched below.

s

1 1 0

b) h*(X) = X3 + X2 + 1

state of signature register

0 1 1 1
0 0 1 1
1 0 0 1
1 0 0 0

d*

σ*
a) h(X) = X3 + X + 1

0 0 0

d

state of signature register

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

σ

Figure 3: Signature analysis using the original and the
reciprocal feedback polynomial.

Proof of Theorem 1: Without loss of generality we
consider a test data stream consisting of just one bit d (the
result for a data stream of length n follows by induction).
In this case a signature analyzer with feedback polynomial
h(X) = hkXk + hk-1Xk-1 + … + h1X + h0 and initial state s =
(sk-1, …, so) provides the signature
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and d* = d. Since for a polynomial of degree k the highest
coefficient hk is 1, signature analysis based on h*(X) thus
results in
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Theorem 1 is the key to construct efficient implementa-
tions for transparent RAM BIST. Figure 4 details the
example of Figure 3 to show a BIST procedure for a test
sequence of the type {⇑(ra, …); ⇓(ra, …)}.

0 0 0
data

test data during 1st phase state of signature register

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

1 1 0

test data during 2nd phase state of signature register

0 1 1 1
0 0 1 1
1 0 0 1
1 0 0 0

final signature
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address
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Figure 4: BIST for the test sequence {⇑(ra, …); ⇓(ra, …)}.

The feedback polynomial h(X) = X3 + X + 1 is used to
compact the test responses produced during the first phase
⇑(ra, …) of the test. During the second phase ⇓(ra, …) the
memory is read in reverse addressing order, and the test
data stream appears in reverse order. If the feedback poly-
nomial is changed to h*(X) = X3 + X2 + 1 and the contents
of the signature analyzer is reloaded in reverse component
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order, then the final signature will be zero according to
Theorem 1 independent of the memory contents.

To be able to deal with the MATS+ algorithm Theorem
1 is extended as described by Theorem 2.

Theorem 2: Consider a serial signature analyzer with
initial state s ∈ {0, 1}k and feedback  polynomial h(X) ∈
GF(2)[X]. Furthermore let d ∈  {0, 1}n be a test data
stream with corresponding signature σ = sig(d, s, h). Then
signature analysis using h*(X) as feedback polynomial
and the reversed signature σ* as initial state provides

sig(d*c, sig(d, s, h)*, h*) =

s* + sig((1, …, 1), (0, …, 0), h*)

as signature for the complemented reverse data stream
d*c.

Proof: By definition d*c = (dn-1
c, …, d0

c) = (dn-1 + 1, …,
d0 + 1) = d* + (1, …, 1). According to the principle of
superposition this yields:

sig(d*c, sig(d, s, h)*, h*) =

sig(d* + (1, …, 1), sig(d, s, h)* + (0, …, 0), h*) =

sig(d*, sig(d, s, h)*, h*) + sig( (1, …, 1), (0, …, 0), h*).

By Theorem 1 sig(d*, sig(d, s, h)*, h*) = s*, which com-
pletes the proof. q.e.d.

If we implement a transparent BIST based on the
MATS+ algorithm analogously to the procedure described
above for the test sequence {⇑(ra, …); ⇓(ra, …)}, then we
can precompute the reference signature with the help of
Theorem 2 independently of the memory contents. The
signature prediction phase of conventional transparent
BIST schemes becomes completely superfluous, and the
test time is reduced from 6n to 4n. As discussed in section
4 the fault coverage achievable with the new scheme is in
many cases even higher than that guaranteed by the con-
ventional approach.  The additional hardware effort can be
kept low, when the signature analyzer is implemented
with flip-flops allowing both left and right shift (see
Figure 5).

In this case, simply changing the direction of shifting
corresponds to reloading the signature register with its
reversed contents and to switching between the original
and the reciprocal feedback polynomial. Test control has
to incorporate this, but on the other hand the test control
unit will be simplified, since it no longer has to handle an
additional signature prediction phase. So the hardware
overhead for the proposed technique mainly reduces to the
extra cost for a bidirectional shift register and to an extra
EXOR-gate ensuring that test data can be fed to the com-
pactor from both directions.

a) h(X) = X3 + X + 1

b) h*(X) = X3 + X2 + 1

=~

c) h(X) = X3 + X + 1 combined with h*(X) = X3 + X2 + 1

0 1 1

0 1 1

110

1 1 0

Figure 5: Combining original and reciprocal feedback
polynomials.

3 Transforming transparent into symmetric
algorithms

The proposed BIST schemes for the MATS+ algorithm
and the test sequence {⇑(ra, …); ⇓(ra, …)} can be applied
to any transparent march test which is symmetric in the
following sense.

Definition 4: Let D ∈ {0, 1}2n be a data string. D is
called symmetric, if there exists a data string d ∈ {0, 1}n

with D = (d, d*) or D = (d, d*c). A transparent march test
is called symmetric, if it produces a symmetric test data
string D.

In general, it cannot be expected, that an arbitrary
transparent march test is symmetric. However, typical
transparent test algorithms contain symmetric subse-
quences and can be easily extended to fully symmetric
versions. Consider the March C- algorithm as an example
[10]. It is originally defined as
{c(w0); ⇑(r0, w1); ⇑(r1, w0); ⇓(r0, w1); ⇓(r1, w0); c(r0)}

leading to the transparent version
{⇑(ra, wac); ⇑(rac, wa); ⇓(ra, wac); ⇓(rac, wa); c(ra)}.

The test data stream fed to the signature analyzer is not
symmetric in the sense of Definition 4. The 4-bit memory
of Figure 1 for example provides the sequence (1101,
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0010, 1011, 0100, 1011) with a decreasing addressing
order in the last phase. If this sequence is extended to
(0010, 1101, 0010, 1011, 0100, 1011)), then it can be
written as (d, d*c) with the symmetry axis after the first 12
bits. Such an extended symmetric sequence is for example
produced by the extended test

{⇑((ra)c); ⇑(ra, wac); ⇑(rac, wa);
⇓(ra, wac); ⇓(rac, wa); ⇓(ra)},

which guarantees at least the same fault coverage as the
original test, but is suitable for an implementation as pro-
posed in section 2. Although the extension will increase
the test time from 9n to 10n, there is still a considerable
gain in efficiency compared to the conventional 14n
approach with signature prediction.

Similarly, for any of the known transparent algorithms
it is possible to identify a potential symmetry axis and to
add some additional read sequences to obtain symmetric
versions of the algorithms. Table 2 shows the resulting
test lengths for some commonly used transparent march
tests [10].

Algorithm

Transparent BIST Symmetric
Transparent

BIST

Signature
Prediction

Test Total
Time

Total
Time

MATS+ 2n 4n 6n 4n

March C- 5n 9n 14n 10n

March A 4n 14n 18n 16n

March B 6n 16n 22n 18n

March X 3n 5n 8n 6n

March Y 5n 7n 12n 8n

Table 2: Comparison of test times for transparent and
symmetric transparent BIST.

It can be observed that in all cases the symmetric ver-
sions of the considered transparent algorithms require a
considerably shorter test time than the original versions.

4 Fault coverage issues

The properties of the proposed BIST technique with re-
spect to error masking and fault coverage are summarized
in the following observations

Observation 1:  Faults which manifest themselves only
in a subsequence of the test data stream which is com-
pacted without changing the feedback polynomial have

the same probability of fault masking as with conventional
signature analysis.

To clarify Observation 1 assume a (d, d*c)-type sym-
metric transparent test based on a primitive feedback
polynomial h(X) and an initial state s. Assume that faults
lead to erroneous bits in the first part of the test data
stream (d, d*c) only. Then the erroneous data stream can
be written as (d+e, d*c) for some error vector e. By the
principle of superposition, the signature after the first
phase is sig(d, s, h) + sig(e, 0, h). This yields the final
signature sig(d*c, sig(d, s, h)*, h*) + sig(0, sig(e, 0, h)*,
h*). Because of the constant zero input data stream, sig(0,
sig(e, 0, h)*, h*) is obtained as the final state of an
autonomous LFSR with initial state sig(e, 0, h)*. Error
masking can only occur, if sig(e, 0, h)* already provides
the expected value sig(0, 0, h)* = 0. Consequently, in the
situation of Observation 1, the probability of error mask-
ing for a test data sequence of length 2n and a signature
analyzer of degree k is the same as the probability of error
masking for test data sequence of length n using conven-
tional signature analysis.

For example all single stuck-at faults only change one
of the data streams d or d*c in a (d, d*c)-type symmetry
and can therefore be detected without any additional risk
of fault masking. Thus, problems can only arise with
faults leading to erroneous data both in d and d*c.

Observation 2: Faults which manifest themselves in
multiple errors, such that the symmetry of the test data
stream is preserved cannot be detected by the proposed
scheme.

In practice, faults preserving the symmetry of the test
data stream are very rare. Table 3 shows some experi-
mental data for a 32 Kbit memory and several symmetric
transparent tests.

Fault Model

Algorithm SAF TF CFid CFin

March C
Transparent 99.992 99.991 99.995 99.996
Symmetric 100 100 100 100

March C-
Transparent 99.992 99.991 99.996 99.997
Symmetric 100 100 100 100

March X
Transparent 100 100 49.993 99.992
Symmetric 100 100 49.996 99.997

Table 3: Simulation results (fault coverage in % for
single faults) for a 32 Kbit memory.
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For a discussion of the investigated fault models (SAF:
stuck-at faults, TF: transition faults, CFid: idempotent
coupling faults, CFin: inversion coupling faults) see for
example [10] or [11].

As a matter of fact it can be observed that in all cases
the new symmetric approach achieves a slightly higher
fault coverage than a conventional transparent BIST.

5 Conclusions

A new approach for transparent RAM BIST has been
proposed which exploits symmetries in the test algorithms
to implement schemes for output data compression with
precomputable signatures. Compared to traditional trans-
parent BIST schemes this new approach significantly
reduces the test time while preserving the benefits of
previous approaches with respect to hardware overhead
and fault coverage. Experimental studies even show an
increase in fault coverage in many cases.
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