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Abstract
A fast fault-tolerant controller structure is presented,

which is capable of recovering from transient faults by per-
forming a rollback operation in hardware.

The proposed fault-tolerant controller structure uti-
lizes the rollback hardware also for system mode and this
way achieves performance improvements of more than
50% compared to controller structures made fault tolerant
by conventional techniques, while the hardware overhead
is often negligible. The proposed approach is compatible
with state-of-the-art methods for FSM decomposition, state
encoding and logic synthesis.
Keywords: FSM synthesis, fault-tolerance,checkpointing,

performance-driven synthesis

1 Introduction
The widespread use of microelectronics for safety

critical applications leads to an increasing interest in syn-
thesis techniques for reliable systems. But with the
advances in circuit miniaturization coupling problems,
increasing current densities, and ionizing radiation become
important issues and make the circuits more susceptible to
transient faults [2,8]. Since transient faults are hard to
detect by periodical tests, microelectronics in safety critical
applications have to implement an on-line test accompa-
nied by fault isolation or recovery mechanisms. The target
structure presented in this paper provides a hardware-based
recovery mechanism in the controller part of controller/
datapath-systems in the presence of transient faults.

In complex systems, the controller is usually part of
the critical path and any additional delay introduced by
fault-tolerance techniques further decreases the system
performance. But as the integrity of the system strongly
depends on the controller, on-line test and fault-tolerance
techniques are indispensable for reliable systems
[6,7,12,13,14,16].

In contrast to conventional techniques, which insert
checkers and isolation circuits in the communication paths
between different modules, the presented target structure

allows to perform checks in parallel with intermodule com-
munication, and thus avoids severe performance degrada-
tions. More precisely, the signals at the module inputs are
processed immediately when they become available, the
checker operates in parallel and errors are indicated with a
latency of one clock cycle only. Changes to the state of the
system due to erroneous information are corrected by roll-
ing back the system to the state that existed before the error
first occurred.

The hardware resources (storage elements, multiplex-
ers) for the rollback mechanism are utilized also for system
functions, which provides performance improvements,
comparable with those obtained by controller decomposi-
tion used to implement high-speed controllers [1,3,10]. But
while controller networks made fault-tolerant by conven-
tional techniques lead to a tremendous hardware overhead,
as each submachine has to implement its own fault-toler-
ance mechanism, the proposed target structure keeps the
hardware overhead very low.

The rest of this paper is organized as follows. Section
2 reviews the basic recovery concept and extends it to clas-
sical finite state machines. Section 3 presents the fault-tol-
erant target structure for high-speed applications, and a
tailored state assignment is given in section 4. Section 5
describes the synthesis flow for the proposed fault-tolerant
controllers, and experimental results in section 6 conclude
this paper.

2 Basic concept
A rollback restores a state of a system, which had been

reached before. This requires to store the state of the sys-
tem at some cycle boundaries. The stored state, often called
checkpoint, is used to overwrite the state of the system
when a rollback is performed. It is determined by the con-
tents of all storage elements which carry useful information
across cycle boundaries. This simple rollback concept has
been applied successfully in transaction systems for many
years [9].

Figure 1 shows an example for a rollback operation.
An error occurs during cycle 3 which is detected one cycle
later. After detecting the error, the rollback mechanismThis work was supported by the DFG under grant Wu 245/1-1
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restores the state of the system that had been reached at the
end of cycle 2. This is done by overwriting the current state
with the checkpoint, stored at the end of cycle 2. In the next
clock cycle the operation originally performed during cycle
3 is performed again.

To reload a register with a state, that had been reached
a few cycles before, a hardware rollback mechanism as
sketched in figure 2 can be used as a straightforward imple-
mentation. The lower part shows the components for a con-
ventional controller, and the upper part shows the
extension to implement the rollback mechanism. In normal
operation the logic block computes the output and next
state function of the controller and the register R0 stores the
state of the system. The additional registers R1 and R2 on
the top are configured as first-in-first-out storage (FIFO),
storing checkpoints, and the checker initiates rollbacks.
The flipflop connected to the checker output removes the
checker from the critical path, and this way prevents per-
formance degradations. The register R2 is necessary to
compensate the additional error-detection latency intro-
duced this way.

Figure 3 shows the timing diagram for an example.
The state register stores the state sequence S0, S1, S2, S3.
The active error signal indicates that the previous state was
erroneous and has to be computed again. The controller
must rollback to the predecessor state S2, which is stored in
the FIFO storage. This is done by the multiplexer feeding

the logic block, which switches the checkpoint register to
the logic inputs in the case of an error.

The rollback of the controller part must be accompa-
nied by a rollback of the datapath, which has to restart its
operation and recompute its status signals for the control-
ler. The compatible hardware-based recovery scheme for
datapaths, proposed by Tamir et al. [18,19], triggers on the
error signal, too. Similar as proposed for the controller part
Tamir suggest FIFO-like storage elements, called delayed
write back buffers (DWB) for rollback purposes. The
length of the FIFO depends in both cases on the worst case
error detection latency. Other rollback schemes for data-
paths are proposed by Karri and Orailoglu [7].

The straightforward implementation, sketched in fig-
ure 2, meets the functional requirements, but chip area and
propagation delay increase because of the additional roll-
back circuitry. The additional delay is crucial, as the con-
troller is usually part of the critical path and any additional
delay slows down the entire system. The rollback circuitry
is not profitably used for system functions by the straight
forward implementation, whereas the target structure pre-
sented in the next section exploits the rollback hardware
also for the system function and increases the controller
performance distinctly by this way. The performance is
comparable with that of controller networks [1,3,10].

3 Target structure
In a rollback scheme for controllers, the need for

checkpoint registers may be supported by synthesis tech-
niques for high-speed controllers relying on decomposition
and pipeline techniques. For the bypass pipeline proposed
in [6], the set of states is partitioned, such that state transi-
tions occur only between, but not within different partition
blocks. This way the state transitions can be implemented
by different logic blocks, each one implementing only a
subset of the state transitions. Thus, a simpler function and
a shorter critical path can be expected.

Figure 1: Rollback of a module

Figure 2: FSM with extension for rollback
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Furthermore, the single state register in a conventional
controller structure is replaced by a set of registers, such
that at each time only one of the registers represents the
current state of the controller. The remaining registers can
therefore be used as checkpoint registers. Figure 4 shows
the resulting controller structure when the set of states is
partitioned into three groups.

As at each time step only one of the registers repre-
sents the state of the controller and the state transition dia-
gram is free of self-loops, one register never represents the
state of the controller for two consecutive clock cycles.
Thus, the register containing the state information of the
controller during the present clock cycle can store rollback
information during the next clock cycle, because it is not
used to encode the state of the system then. To store a
checkpoint the register storing the state of the controller
reloads its own contents during the following clock cycle
again. This way at each time one checkpoint is available.

Figure 5 shows the course of events within the target struc-
ture, and illustrates that at each time one register contains
the state the controller had reached one cycle before. The

signal denoted token determines the register which holds
the state information during the present clock cycle. E.g.,
during clock cycle 1 register R1 contains the state informa-
tion. Since register R0 contained the state information one
cycle before, register R0 stores the checkpoint during cycle
R1. In the case that an error were detected during cycle 1,
the checkpoint register R0 would remain unchanged during
cycle 2 and would represent the state of the controller.

At each clock cycle only one of the registers is respon-
sible for the state of the controller and must be monitored
together with the primary outputs at the checker. The mul-
tiplexers determine the path to that register which will store
the next state. To control the multiplexers a mechanism is
needed to identify the registers representing the state of the
controller and the check point, respectively. For this pur-
pose, one bit ti is reserved in each register and the remain-

Figure 4: Target structure
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Figure 5: Timing diagram for normal operation
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ing bits can be used for an arbitrary strategy of error-
detecting state encoding. This bit is called token bit and
controls the multiplexers in the target structure as shown in
figure 6.

Figure 7 shows a single stage of the target structure in
detail. The token bit t0 is stored in a single flipflop imple-
mented in a master-slave style for timing issues [6],
whereas the register R0 contains single-edge-triggered flip-
flops only. The logic block implements three functions, the
output function λ, the next state function δ and the token
function τ, which evaluates the state and input signals to
compute the stage which will receive the token bit during
the next clock cycle. The signals ti,j connect the token out-
put of the i-th stage with the token input of the j-th stage.
The AND-gates connected to the outputs of the token func-
tion τ abort the regular token distribution in the case of an
error, signalized by an active input cpi (check point i).

The signals cp0 (check point 0) through cp2 (check
point 2) also indicate which of the registers contains the
checkpoint to be reloaded in the case of an error indication.
The easiest way to generate these signals is to store the
token for an additional clock cycle as shown in figure 8.
When the checker detects an error, the check point signal
corresponding to the previously active register is set to one
and reactivates the token bit in this register.

The timing diagram in figure 9 illustrates the sequence
of events in the case of a rollback. During each clock cycle
a different register represents the state of the controller,
determined by the token. As depicted in the timing diagram
the relevant register becomes the checkpoint register in the
next clock cycle and remains unchanged. An error, in the
example state 3f is erroneous, is detected with a latency of
one clock cycle and is indicated by the checkpoint signals.
As a result the token is distributed to the checkpoint regis-
ter and the former erroneous operation is performed again.
The error signal indicates that the datapath must perform a
rollback as described in [19].

In the case of a permanent fault the rollback operation
is carried out in an endless loop. A simple automaton can
be used to distinguish permanent and transient faults. Fig-
ure 10 shows the state transition graph for a permanent
fault detector, which identifies a fault as permanent, if the
same logic block computes erroneous outputs in two con-
secutive cycles or if the contents of the checkpoint register
becomes erroneous.

Figure 7: Token bit distribution

Figure 8: Checkpoint identification
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Figure 10: State transition diagram for permanent fault
detector
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4 State and output encoding
As explained in the previous sections a checker is

used to initiate a rollback operation. Hence, state and out-
put signals must be encoded with error-detecting codes,
e.g. parity codes, hamming codes, berger codes, m-out-of-
n codes, etc..

The target structure is compatible with all common
error-detecting codes, but as the encoding has strong
impact on the performance of the controller, not all codes
fit for high-speed applications. Separable codes, e.g. parity
codes, are most appropriate for the bypass pipeline. Parity
codes are widely used in digital systems, because of their
low impact on area and performance. But a single parity bit
does not always guarantee the required fault coverage,
since single faults within the circuit often lead to multiple
errors at the outputs. For a higher fault coverage a cross-
parity sec/ded code with the minimum number of parity
bits is used in the experiments reported in section 6 [15].

To guarantee sufficiently high error detection capabil-
ities for the target structure, it must be ensured that errors
in the multiplexer which feeds the checker are detected,
too. This can be achieved by a checking scheme assigning
code words to “valid” states only. In this case, the checker
will also detect all errors in the multiplexer which result in
passing a wrong input to the output. The token bits in the
checker structure, depicted in figure 7, indicate the validity
of the register contents.

Figure 11 shows an example for a checking scheme to
detect errors in the multiplexer which result in passing a
wrong input to the output. The scheme is based on a parity
code, and the prediction logic only takes the state bits as
inputs. The token bit is not considered for this computation.
The multiplexer feeding the parity checker switches the
state signals, the parity bit and the token bit. Since the
token bit is one for each valid code word and the token is
taken into account by the checker, the checker and the pre-
diction logic compute the complementary parity bits for
valid states and the identical parity bits for invalid states.

Moreover, the correct configurations of token bits
form a one-out-of-three code, and the checking scheme of
figure 11 can easily be extended to check these configura-
tions, too.

5 Synthesis procedure
To implement the target structure it is necessary to

partition the states of the controller into three groups, such
that state transitions occur only between, but not within
groups. This state partitioning is equivalent to coloring the
state transition graph with three colors. But obviously not
all state transition graphs are three-colorable, so that a
series of equivalent graph transformations are necessary to
guarantee an admissible coloring. An appropriate coloring
algorithm is proposed in [6] for data dominated applica-
tions. This algorithm leads to colorable transition graphs,
which are only slightly larger than the original transition
graphs.

After partitioning the set of states the symbolic truth
tables for the different logic blocks are derived from the
colored state transition graph. All state transitions starting
in nodes with the same color form the truth table for a sin-
gle logic block. Partitioning the set of state transitions facil-
itates state encoding and logic synthesis significantly, as
each combinational block is dealt with independently. The
well known encoding techniques are applied directly with
small modifications which ensure that states of a certain
color are assigned only to one register. Results reported in
the next section are based on the encoding strategies of
NOVA with additional check bits [17].

6 Experimental results
The proposed target structure has been implemented

and compared to the straightforward implementation. The
checkpoint register of the target structure remains
unchanged when a transient fault occurs for several consec-
utive clock cycles. Also the straightforward structure can
implement this feature if the FIFO reloads the checkpoint
register in the case of an error. Figure 12 shows the inves-
tigated implementation.

The results presented in this section have been
achieved for the benchmark set distributed for the work-
shop on Logic Synthesis 1993 [13]. In contrast to all the
other performance-driven synthesis methods, the algorithm
has its best results for the largest circuits which cannot be
dealt with by the known methods. For small controllers the
constant hardware overhead for the token control logic is
dominating. As 3 flipflops are already needed for the token
control we only investigated FSMs which have at least 33
states and require more than 5 flipflops.Figure 11: Detecting non-valid code words
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Table 1 shows the characteristics of the investigated
benchmark circuits. The columns two through four report
the number of states | S |, inputs | I | and outputs | O | of the
original specification. To implement the bypass pipeline
usually equivalent graph transformations are necessary,
resulting in additional states. The column | Stotal | shows the
number of states after the graph transformation and the
three rightmost columns show the number of states in each
register of the target structure.

It is interesting that in most cases only a few transfor-
mations of the state transition graphs are sufficient, to
implement the target structure. It should be noted that the
total number of states has increased distinctly after graph
transformation only for controller s510. This controller is
not part of a data dominated application, and as shown in
[6] the algorithm is not expected to provide the best results
here.

The first experiment investigates the quality of the
proposed fault-tolerance strategy. For both structures, the
straightforward and the target structure, a parity code and a
cross-parity single error correcting/double error detecting
(sec/ded) code have been used to encode the state and out-
put signals [15]. Not all faults are detected by the checkers,
since some faults lead to multiple errors at the outputs. The
percentage of undetected non-redundant faults in the next

state and the output logic of the controllers is used as a met-
ric for the quality of the encoding scheme. For all experi-
ments the single stuck-at fault model has been assumed.

Table 2 shows in the left part the results for the
straightforward implementation and in the right part the
corresponding results for the bypass pipeline. An encoding
with one parity bit often leads to better results for the target
structure than for the straightforward implementation. This
is explained by the smaller logic blocks in the target struc-
ture. Smaller circuits are usually less densely meshed than
lager ones, so that less faults lead to multiple errors at the
outputs.

As expected, a single parity checker cannot provide
the required fault coverage. A cross-parity sec/ded code
was applied to achieve high encoding qualities. The results
are reported in table 2. In all cases less than one third per-
cent of the non-redundant faults in the combinational part
are masked by the checker, independent of the investigated
structure.

The fault-tolerance capabilities of both structures are
comparable, but there are major differences with respect to
the operation frequency. Table 3 shows the propagation
delays for all investigated self-recovering controller struc-
tures, mapped to a 0.7 µm CMOS process. The speed of the
bypass-pipeline is determined by the delay of the slowest
logic block plus the delay of the additional multiplexers
and registers. It is shown that the total delay of the bypass-
pipeline is significantly less than the delay of the standard
solutions. Mainly we have operation frequencies for the
target structure which are 50% higher than for the standard
structure.

The prediction logic and the logic for the next state/
output function are implemented in two disjoint logic
blocks and the next state/output function is the same for
both encoding schemes. Hence the propagation delay of the
parity code and the sec/ded code is the same, if the next
state/output function is part of the critical path.

Figure 12: Investigated standard structure

Circuit | S | | I | | O | |Stotal| | S0 | | S1 | | S2|
planet 48 7 19 49 15 18 16

planet1 48 7 19 49 15 18 16
s1488 48 8 19 49 14 17 18
s1494 48 8 19 49 18 17 14

scf 121 27 56 122 36 48 38
s298 218 3 6 219 64 83 72
s510 47 19 7 71 24 24 23

Table 1: Characteristics of investigated benchmarks
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planet 10.5 % 0.0 % (10) 10.5 % 0.0 % (10)
planet1 10.5 % 0.0 % (10) 10.5 % 0.0 % (10)

s1488 15.4 % 0.0 % (10) 8.9 % 0.0 % (10)
s1494 16.1 % 0.2 % (10) 11.3 % 0.1 % (10)

scf 19.6 % 0.0 % (16) 14.4 % 0.0 % (16)
s298 10.8 % 0.1 % ( 8 ) 11.3 % 0.0 % ( 8 )
s510 15.8 % 0.0 % ( 8 ) 14.2 % 0.1 % ( 8 )

Table 2: Undetected non-redundant faults in the
combinational part of the controller
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Both self-recovering structures use one checker, one
comparator, three registers and multiplexers to implement
the rollback mechanism. Since the target structure shares
the check circuitry among all units and utilizes the register
and multiplexer also for the system function, the hardware
overhead remains very low for most of the investigated cir-
cuits. Table 4 shows the transistor count for the investi-
gated implementations.

7 Conclusion
A novel approach for fast self-recovery controllers

has been presented which utilizes the rollback hardware
also for the system function to increase the operation fre-
quency. By sharing the check circuitry among different
units the proposed target structure minimizes the hardware
overhead.
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Circuit Standard
structure with

parity bit

Standard
structure with
sec/ded code

Target struc-
ture with par-

ity code

Target struc-
ture with sec/

ded code
planet  8.10  8.10 5.18 5.18

planet1  8.10  8.10 5.18 5.18
s1488 7.23 8.58 4.78 4.78
s1494 7.25 7.26 5.18 5.18

scf 11.17 11.17 6.50 7.40
s298 13.47 14.32 9.63 9.63
s510 4.48 5.36 5.06 5.06

Table 3: Propagation delays for fault tolerant structures

Circuit Standard
structure with

parity bit

Standard
structure with
sec/ded code

Target struc-
ture with par-

ity code

Target struc-
ture with sec/

ded code
planet 6100 9496 6442 10154

planet1 6100 9496 6442 10154
s1488 7796 12626 8258 12038
s1494 7808 12510 8838 13182

scf 8334 9694 11162 17686
s298 23110 35868 31340 42092
s510 2844 3940 6002 9150

Table 4: Transistor counts for fault tolerant structures


