
Deterministic BIST with Multiple Scan Chains

Gundolf Kiefer Hans-Joachim Wunderlich

Computer Architecture Lab
University of Stuttgart

Abstract
A deterministic BIST scheme for circuits with

multiple scan paths is presented. A procedure is
described for synthesizing a pattern generator which
stimulates all scan chains simultaneously and
guarantees complete fault coverage.

The new scheme may require less chip area than a
classical LFSR-based approach while better or even
complete fault coverage is obtained at the same time.

Keywords: deterministic scan-based BIST, multiple
scan paths, parallel scan

1. Introduction
Built-in self-test (BIST) is one of the most

important techniques for testing large and complex
circuits. The efficiency of a BIST implementation is
characterized by the test application time and the
hardware overhead required to achieve complete or
sufficiently high fault coverage.

In a "test-per-scan" scheme, the storage elements
of the circuit under test (CUT) are enhanced to a scan
path [EiLi83]. A pattern generator produces one or
several bit sequences that are shifted into the scan
path(s) and a signature register compacts the responses
of the circuit.

The test application time depends on both the
number of test patterns and the number of clock cycles
required to shift in a single pattern. If all flipflops of
the CUT are assigned to a single scan path, the test
application time may become too long. This problem
can be solved by either using a partial scan path so that
only a small subset of flipflops is connected to a scan
chain, or by using several parallel scan chains
[FSSG85, Derv89, NGB93]. If the CUT contains
multiple parallel scan chains, a parallel pattern

Part of this work has been supported by the DFG under grant
Wu 245/1-1.

generator and a multiple input signature register
(MISR) are required. Figure 1 shows the STUMPS
architecture [BaMc84, BaMc86, BMS87] which is
based on a pseudo-random pattern generator (PRPG).

Figure 1: The STUMPS architecture

If the pattern generator is implemented by an
LFSR, the bit sequences shifted into different scan
chains may only differ by a small phase shift (see
figure 2).

Figure 2: LFSR generating multiple bit sequences

Often, these correlations reduce the fault coverage
considerably compared to an architecture with a single
scan path [BMS87, Bard92]. So the PRPG of figure 1
is usually implemented by the combination of an LFSR
and a phase shifting logic that transforms the LFSR
outputs into several uncorrelated signals [BaMc86,
Bard90, RaTy98] (see figure 3).

However, even uncorrelated random patterns
cannot guarantee complete fault coverage if a circuit
contains random-pattern-resistant faults. Several
schemes have been proposed for detecting these faults
by applying weighted random patterns [BRGL89b,
Wu87, StWu91], pseudo-exhaustive patterns [Akers85,

HWH90] or deterministic patterns [Koen91, HELL92,
HELL95, ToMc96, WuKi96, ZRTW96, KiWu97].
Most of the deterministic schemes are designed for
single scan path architectures. Multiple scan chains are
addressed in the schemes of [Koen91] and [ZRTW96]
which are based on encoding deterministic patterns by
seeds for an LFSR. In this paper it is shown that a
pattern generator for multiple scan paths can be
synthesized with a distinctly smaller hardware
overhead.

Figure 3: Generation of uncorrelated signals for multiple scan
chains by phase shifting

In section 2 we introduce the structure of a pattern
generator for multiple scan chains that can guarantee
complete fault coverage. In section 3 an automatic
procedure for synthesizing the pattern generator for a
given CUT is described. Finally, results of this
procedure are presented in section 4.

2. Target Structure
The construction of the pattern generator is based

on the following observations:
1. Given a set of pseudo-random patterns,

deterministic patterns can easily be embedded by
modifying just a very small number of bits. A
probabilistic analysis is given in [WuKi96].

2. In a pseudo-random test set only a very small
number of patterns contribute to the fault coverage,
and within these patterns only a few bits need to be
specified.

3. Very often, deterministic test patterns can be
clustered into a few sets such that all the patterns of
a set look very similar [PaRa91].

4. Every autonomous BIST scheme must contain a
test control unit containing a bit counter and a
pattern counter for generating the shift/capture
signal and the "testend" signal. This has been
exploited in a BIST scheme for single scan chains
in [KiWu97].

The target structure is shown in figure 4. It consists
of an LFSR and a combinational function, the
Sequence-Generating Logic (SGL). The SGL passes
the bit sequences generated by the LFSR to the scan
paths, and modifies these sequences at certain bit
positions which are selected by both the state of the
test control unit and the state of the LFSR.

Figure 4: Target Structure

The structure of the SGL is shown in figure 5. It
consists of some XOR gates and the Sequence-
Modifying Logic SML. The current state of the LFSR
and the bit counter and the pattern counter of the test
control unit serve as inputs for the SML.

a)

b)

Figure 5: Examples of the Sequence-Generating Logic

As in a pseudo-random test set only a few bits are
really necessary for detecting faults and as
deterministic patterns can easily be embedded by
modifying just a very small number of bits
(observations 1 and 2), the SML can be minimized
very efficiently. Furthermore, since the outputs of the
pattern generator also depend on the current state of
the test control unit, the LFSR may be very small. This
does not only reduce the chip area of the LFSR, but
also the SML will be smaller, since some LFSR
patterns are repeated several time during the test, and
autocorrelated deterministic patterns (observation 3)
can be embedded efficiently.

As the SML can overcome dependencies between
different LFSR outputs, no phase shifting is required
and the same pseudo-random sequence (generated by a
single output of the LFSR) can be used for all the scan
chains (see figure 5b). In some cases, using a single
pseudo-random sequence reduces the random pattern
fault coverage so that a large SML is required. In that
case different LFSR outputs and - if necessary - linear
combinations of them are used to generate the basic
pseudo-random sequences for different scan chains (see
figure 5a and figure 6).

Figure 6: Generating multiple pseudo-random sequences

The signals are selected as follows: It is required
that the LFSR is implemented in a modular way, so
that its XOR gates are inserted between the flipflops.
Then among the flipflop outputs a set of primary
signals is selected, so that there is always at least one
XOR gate between two primary signals. These signals
are connected to scan paths. If there are more scan
chains than primary signals, the other scan chains are
fed with linear combinations of primary signals. The
linear combinations are chosen in a way that the
required number of additional XOR gates is
minimized.

3. Synthesizing the Sequence-Modifying
Logic
The Sequence-Modifying Logic SML is

constructed iteratively. The main loop of the algorithm
is sketched in figure 7. The algorithm starts with an
empty SML and terminates when sufficient fault
coverage is achieved. In each iteration, the SML is

enhanced, so that new deterministic patterns are
produced while certain essential bits remain
unchanged. In order to achieve an efficient
implementation of the SML, the ESPRESSO-like logic
minimization procedures "Expand" and "Reduce"
[BRAY84] are integrated into the main loop of the
algorithm.

The following subsections describe the main steps
of the algorithm in detail.

Sufficient
fault coverage?

Compute bits to be fixed

Reduce (SML)

Embed deterministic
patterns, enhance SML

Expand (SML)

no
yes

End

SML :=∅

Figure 7: Synthesis of an SML

3.1. Computing bits to be fixed
In order to improve the SML, it is necessary to

protect patterns which detected some hard-to-detect
faults in former iteration steps. These patterns are
called essential, and their number is minimized by fault
simulation in several permuted orders. Using three-
valued simulation, it is possible to decide which bits of
the essential patterns have to be specified.

For each output bit of the pattern generator, there
is a corresponding state of the LFSR and the test
control unit. Let n be the number of scan chains. For
every chain i, 1 ≤ i ≤ n, the set of states corresponding
to the essential bits of the i-th scan chain is called the i-
th fix-set FIXi.

For example, figure 8 illustrates how a
deterministic pattern is shifted into 4 parallel scan
chains by a 3-bit-LFSR. Each output bit is tagged with
the corresponding state of the LFSR and the test
control unit. For the sake of simplicity, the test control
bits are omitted in figure 8.

Figure 8: Pattern bits and corresponding states

Now assume the marked bits in figure 8 are
essential. Then the fix-sets are:

FIX1 = { 011, 101 }
FIX2 = { 110 }
FIX3 = { }
FIX4 = { 011 }

3.2. Embedding deterministic patterns
An automatic test pattern generator (ATPG) is

used to generate deterministic patterns for all the
currently undetected faults, and one or several of these
patterns are selected for embedding. In order to obtain
small on- and off-sets, the ATPG tool should minimize
the number of specified bits [HELL95].

Let n be the number of scan chains, and let m be
the length of the longest scan chain. A mapping of a
deterministic pattern d ∈ ({0,1,-}m)n to a pseudo-
random pattern r ∈ ({0,1}m)n is characterized by 2n
state sets. For each 1 ≤ i ≤ n, the set ONi(d, r)
corresponds to the bits of scan chain i that have to be
changed, and OFFi(d, r) corresponds to the bits that
must not be changed. For example, figure 9 shows a
pseudo-random pattern, a deterministic pattern and the
resulting on- and off-sets.

Figure 9: Embedding a deterministic pattern

Deterministic patterns with only a few specified
bits correspond to faults that are comparably "easy to
detect". Due to the integrated logic minimization they
might be detected by random patterns in some later
iteration of the algorithm. So a deterministic pattern d
with a maximum number of specified bits is selected
for embedding.

Given a deterministic pattern d, a currently
generated pattern r is selected, such that the fix-sets
and the on-sets are disjoint for each 1 ≤ i ≤ n and the
expected increase of hardware overhead is minimized.
The increase of hardware overhead can be
approximated by the total number of states in all on-
sets. Better results are obtained if a more accurate cost
function is used which tries to predict the effectiveness
of the integrated logic minimization procedures (see
section 3.3).

Finally, the SML is modified, so that its function
changes for the inputs represented by the on-sets, and
for each scan path i, the i-th on-set and the i-th off-set
are added to the i-th fix-set.

3.3. Logic minimization
In order to achieve an efficient implementation of

the SML, the ESPRESSO-like procedures "Reduce"
and "Expand" [BRAY84] are integrated into the
algorithm (see figure 7). Given a set of product terms
representing a single-output function F and a fix-set
FIX, "Reduce" removes as many don’t cares as possible
in each of the product terms of F. Furthermore, terms
that do not cover any element of the fix-set are
removed completely.

"Expand" adds as many don’t cares as possible so
that FIX is still retained. The positions of the don’t
cares are selected so that terms are merged if this is
possible, e. g. Expand ({100, 110}) = { 1-0 }.

Usually, FIX only contains a few minterms and its
complement is a very large don’t-care set which can be
exploited effectively. As the SML has several outputs
it is necessary to implement a bundle minimization that
is also able to exploit such a large don’t care set.

In addition to the minimization procedures, a cost
function is required to estimate the number of new
product terms corresponding to a vector of on-sets. The
cost function controls the embedding step of the
algorithm and the selection of an XOR slot if several
XOR gates per scan chain are required as described in
section 3.4.

For this reason the following model is used: Each
state word is concatenated with the 1-out-of-n code of
the scan path number (see figure 10). The vectors of
fix-, on- and off-sets described in the previous

subsections can now be represented by one set of cubes
each, FIX*, OFF* and ON*, where each cube consists of
a basic part representing the SML inputs and an
extension representing the scan path number.

∪

Figure 10: Cubes for bundle minimization

The SML is also represented by a set SML* of
cubes in which each literal of the extension can be
either ’0’ or ’-’. Let c ∈ SML* be a cube and let m ∈
FIX* ∪ OFF* ∪ ON* be a minterm originating from
FIXi ∪ OFFi ∪ ONi, 1 ≤ i ≤ n. The cube c covers m if
and only if the basic part of c covers the basic part of m
and the i-th literal of the extension of c is ’-’.

In return, for each scan chain i, the subset of cubes
that are contained in its function SMLi is given by

SMLi = { c ∈ SML* | literal i of the ext. of c is ’-’ }.

Now the single-output implementations of
"Expand" and "Reduce" can be used without
modifications and they minimize the total number of
product terms. Furthermore, a new minterm c ∈ ON*

can be merged with an existing cube c0 ∈ SML* by
"Expand" if

() ∅=∩− ,

where Expand (c, c0) denotes the smallest boolean
subspace covering both c and c0. This condition can
easily be checked and used to estimate the cost for a
pattern mapping as described in section 3.2.

For the example of figure 10, "Expand" will return

 SML* = {11-.-0--, 0--.0--0 }

as a minimal cover of the set ON*. The implementation
of SML* and the resulting pattern are shown in figure
11.

≥

Figure 11: Example for a pattern generator and the resulting
pattern

Each of the terms 0-- and 11- is used to change two
bits in different scan chains. Furthermore, 11- changes
two bits in chain 1 without any extra cost. This may
cause detecting more previously undetected faults.

3.4. Reflipping
Due to the logic minimization, many random bits

that were neither fixed nor subject of a mapping, may
change in a random way. Sometimes these incidental
changes have to be reverted. The best way to do so is
to allow several XOR gates to be inserted between the
LFSR and the scan paths. The general form of the
sequence generating logic is shown in figure 12.

Figure 12: General form of the Sequence Generating Logic

Instead of a single set of cubes SML*, the logic is
specified by a vector of cube sets (SML(1), ..., SML(s))
where each set represents one of the s XOR slots.

Let m be a minterm corresponding to a bit to be
modified. For m, an XOR slot i is selected as follows:

1. Select i ∈ { 1, ..., s }, such that SML(i) does not
cover m, but there is a c ∈SML(i) such that "Expand"
can merge m and c to a single cube.

2. If 1 is not possible, select an SML(i) which does not
cover m.

3. If 2 is not possible, introduce a new XOR slot s+1
and set SML(s+1):= { m }.
Experiments have shown that usually not more

than three XOR slots are required. Furthermore, not all
the XOR gates sketched in figure 12 have to be
implemented as reflipping may only be required for
some scan chains.

4. Experimental Results
A series of experiments was performed with

benchmark circuits from ISCAS-85 and ISCAS-89
[BRGL85, BRGL89a]. Only those circuits were
analyzed which have more than 50 flipflops and
primary inputs and still have undetected non-redundant
faults after applying 10,000 random patterns.

The chip area of the pattern generator is estimated
by using a 1 µm standard cell library, and the SML is
implemented by one or several PLA macro cells.

Into each circuit, several parallel scan chains of
equal length with at most 51 flipflops have been
inserted randomly. Table 1 shows the number of
pseudo-primary inputs PPIs (= number of primary
inputs + number of flipflops), the number of scan
chains inserted and the number of clock cycles needed
to apply a single pattern. The rightmost column of
table 1 shows the test application time in relation to the
time required for a test based on a single scan chain.

Name PPIs Chains
Clocks

per
pattern

Test time /
time for

single scan
c2670 233 5 47 21%
c7552 207 5 44 22%
s641 54 2 28 53%
s713 54 2 27 51%
s838 66 2 37 57%

s5378 214 5 43 20%
s9234 247 5 50 21%
s13207 700 14 50 7%
s15850 611 13 47 8%
s38417 1664 32 52 3%
s38584 1464 30 49 3%

Table 1: Inserting multiple scan chains

The first series of experiments investigated the size
of the sequence generating logic required to achieve
complete fault coverage. We varied the LFSR size, the

LFSR polynomial and the way the pseudo-random
sequences are generated (single sequence / multiple
sequences, see figure 5). Furthermore, in order to
minimize the width of the PLA, we restricted the
inputs of the SML to a subset of all LFSR and test
control signals. If a multi-level synthesis tool is used,
this restriction is not necessary.

Table 2 describes the smallest SGL we obtained
for each benchmark circuit. The column "LFSR"
denotes the length of the LFSR. The next column
shows if the sequence modification is based on a single
bit sequence or on multiple sequences. Then the total
number of XOR gates ("XORs"), the number of inputs
("ins"), the number of outputs ("outs") and the number
of product terms ("terms") of the sequence modifying
logic follow. The column "XORs" includes all XOR
gates for the LFSR, for the sequence decorrelation (if
different pseudo-random sequences are generated) and
for attaching the sequence-modifying logic. For
comparison, the number of product terms for a single
scan path architecture is shown in the rightmost
column. These numbers are based on the same number
of input lines for the SML (except for s38584).

For all large circuits, the number of product terms
for multiple scan chains is considerably smaller than in
the case of a single scan chain. If a multi-level
synthesis tool is used, a smaller number of product
terms usually results in smaller chip area. Thus in
consequence the pattern generator is smaller if the
circuit under test contains multiple scan chains instead
of a single one.

Multiple Scan Single
Scan

Circuit LFSR PR seq. XORs ins outs terms terms

c2670 9 single 17 14 10 58 81
c7552 14 single 23 14 12 249 323
s641 10 multiple 10 13 3 8 9
s713 9 single 9 13 2 11 7
s838 8 multiple 9 14 4 56 48

s5378 12 multiple 17 14 8 44 18
s9234 14 single 21 14 10 187 397
s13207 14 multiple 34 18 18 56 77
s15850 14 single 34 14 22 199 214
s38417 14 multiple 102 34 68 509 590
s38584 14 multiple 80 14 46 132 361*

* 32 PLA inputs

Table 2: Results of the SGL BIST for complete fault coverage

However, in order not to be biased by the quality
of logic synthesis tools, we measured the chip area of

the pattern generator (PG) based on a PLA
implementation of the SML. Table 3 shows the chip
area for the multiple scan pattern generator and
compares it to the area of a single scan pattern
generator. The columns "LFSR", "PLAs" and "XORs"
denote the area required for the LFSR flipflops, the
PLAs and the XOR gates. The sum of these numbers is
given in the next column. The rightmost column shows
the total area for a single scan PG.

Multiple Scan Single Scan

Circuit LFSR PLAs XORs Total Total

c2670 0.024 0.103 0.022 0.149 0.145
c7552 0.038 0.345 0.030 0.413 0.428
s641 0.027 0.029 0.013 0.069 0.063
s713 0.024 0.031 0.012 0.067 0.067
s838 0.021 0.087 0.012 0.120 0.101

s5378 0.032 0.080 0.022 0.134 0.096
s9234 0.038 0.266 0.027 0.331 0.494
s13207 0.038 0.134 0.044 0.216 0.195
s15850 0.038 0.332 0.044 0.414 0.308
s38417 0.038 1.685 0.133 1.856 1.370
s38584 0.038 0.313 0.105 0.456 0.851

Table 3: Area in µm⇢ required for complete fault coverage (1 µm
technology)

For some benchmarks circuits the multiple scan
PG requires more area than the single scan PG even if
the number of product terms is smaller. This is mainly
due to the large number of outputs causing a large OR-
array if a PLA implementation is used. However, for
the circuit s38417 e. g., a multiple scan PG is
approximately 35% larger than a single scan PG but
the test application time is reduced by about 97%.

Table 4 shows how the area of the pattern
generator depends on the basic pseudo-random
sequences. For some circuits a single random sequence
for all scan chains yielded much better results (e. g.
c2670, c7552, s9234), for some circuits it is favorable
to generate multiple pseudo-random sequences (e. g.
s5378, s13207).

Circuit Single sequence Multiple sequences

c2670 0.149 0.191
c7552 0.413 0.447
s641 0.072 0.069
s713 0.067 0.073
s838 0.121 0.120

s5378 0.233 0.134
s9234 0.331 0.476
s13207 0.373 0.216

s15850 0.414 0.426

Table 4: Results with / without decorrelation

We also compared the efficiency of the SGL
scheme with a pseudo-random scheme based on a 32-
Bit LFSR and a sequence decorrelation as described in
section 2 and shown in figure 6. For this reason we
stopped the SML synthesis after reaching the fault
coverage of the pseudo-random BIST. The results are
shown in table 5.

SGL LFSR-32

Name Fault
efficiency

Area Fault
efficiency

Area

c2670 90.4 0.061 88.2 0.125
c7552 96.6 0.101 96.3 0.125
s838 68.7 0.049 61.7 0.125

s5378 99.0 0.119 92.8 0.125
s9234 90.6 0.102 90.5 0.125
s13207 93.3 0.055 92.3 0.125
s15850 94.4 0.124 92.2 0.125
s38417 93.8 0.154 93.5 0.129
s38584 98.4 0.133 98.4 0.126

Table 5: Efficiency of the SML BIST and the LFSR BIST

In most cases, the area of the SGL scheme is
considerably smaller than the area of the 32-bit LFSR.
In two cases (s38417 and s38584) the area is slightly
larger due to the PLA implementation which is less
efficient than standard cell implementations especially
for small SMLs. In general, the SGL scheme allows
higher fault coverage than a pseudo-random BIST but
requires less chip area at the same time.

5. Conclusions
A synthesis procedure for a deterministic BIST

scheme has been presented for supporting multiple
scan chains.

The scheme is scalable with respect to hardware
overhead and fault coverage. On the one hand
complete fault coverage can be guaranteed if
requested. On the other hand for obtaining better fault
coverage than the classical LFSR-based STUMPS
architecture less hardware is required.

Furthermore, it is not necessary to modify the
mission logic or to reconfigure the scan chains, so
there is practically no additional effect on the system
performance besides the scan chain.

References
[Akers85] S. B. Akers: "On the use of Linear Sums in

Exhaustive Testing", Proc. Of the 15th Int. Symp. On
Fault-Tolerant Computing (FTCS), 1985, pp. 148-153

[BaMc84] P. H. Bardell, W. H. McAnney: "Parallel Pseudo-
random Sequences for Built-In Test", Proc. Int. Test
Conf. (ITC), 1984, pp. 302-308

[BaMc86] P. H. Bardell, W. H. McAnney: "Pseudo-random
arrays for built-in tests", IEEE Trans. Comp., vol. C-35,
No. 7, 1986, pp. 653-658

[Bard90] P. H. Bardell: "Design Considerations for parallel
pseudo-random pattern generators", Journal of Electronic
Testing: Theory and Applications (JETTA), vol. 1, No. 1,
1990, pp. 73-87

[Bard92] P. H. Bardell: "Calculating the Effects of Linear
Dependencies in m-Sequences Used as Test Stimuli",
IEEE Trans. on CAD, Jan. 1992, pp. 83-86

[BRAY84] R. K. Brayton, G. D. Hachtel, C. McMullen, A.
Sangiovanni-Vincentelli: "Logic Minimization
Algorithms for VLSI Synthesis", Boston: Kluwer
Academic Publishers, 1984

[BRGL85] F. Brglez, H. Fujiwara: "A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortran", Proc. Int. Symp. On Circuits and
Systems (ISCAS), 1985, pp. 663-698

[BRGL89a] F. Brglez, D. Bryan, K. Komzminski:
"Combinational Profiles of Sequential Benchmark
Circuits", Proc. Int. Symp. On Circuits and Systems
(ISCAS), 1989, pp. 1929-1934

[BRGL89b] F. Brglez et al.: "Hardware-Based Weighted
Random Pattern Generation for Boundary-Scan", Proc.
Int. Test Conf. (ITC), 1989, pp. 264-274

[Derv89] B. I. Dervisoglu: "Scan-Path Architecture for
Pseudorandom Testing", IEEE Des. & Test, Aug. 1989,
pp. 32-48

[EiLi83] E. B. Eichelberger, E. Lindbloom: "Random Pattern
Coverage Enhancement and Diagnosis for LSSD Logic
Self-Tet", IBM Journal of Research and Development,
Vol. 27, No. 3, May 1983, pp. 265-272

[FSSG85] P. P. Fasang, J. P. Shen, M. A. Schuette, W. A.
Gwaltney: "Automated design for testability of
semicustom integrated circuits", Proc. Int. Test Conf.
(ITC), 1985, pp. 558-564

[HELL92] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois:
"Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers",
Proc. Int. Test Conf. (ITC), 1992, pp. 120-129

[HELL95] S. Hellebrand, B. Reeb, S. Tarnick, H.-J.
Wunderlich: "Pattern Generation for a Deterministic
BIST Scheme", Proc. Int. Conf. on Computer-Aided
Design (ICCAD), 1995, pp. 88-94

[HWH90] S. Hellebrand, H.-J. Wunderlich, O. F. Haberl:
"Generating Pseudo-Exhaustive Vectors for External
Testing", Proc. IEEE Int. Test Conf. (ITC), 1990, pp. 670-
679

[KiWu97] G. Kiefer, H.-J. Wunderlich: "Using BIST Control
for Pattern Generation", Proc. IEEE Int. Test Conf. (ITC),
1997, pp. 347-355

[Koen91] B. Koenemann: "LFSR-Coded Test Patterns for
Scan Design", Proc. IEEE Int. Test Conf. (ITC), 1991, pp.
237-242

[NGB93] S. Narayanan, R. Gupta, M. A. Breuer: "Optimal
Configuring of Multiple Scan Chains", IEEE Trans. on
Comp., Sep. 1993, pp.1121-1131

[PaRa91] S. Pateras, J. Rajski: "Generation of Correlated
Random Patterns for the Complete Testing of
Synthesized Multi-level Circuits", Proc. 28th ACM/IEEE
Design Autom. Conf. (DAC), 1991, pp. 347-352

[RaTy98] J. Rajski, J. Tyszer: "Design of phase shifters for
BIST applications", accepted for the VLIS Test Symp. ’98

[StWu91] A. Ströle, H.-J. Wunderlich: "TESTCHIP: A chip
for weighted random pattern generation, evaluation, and
test control", IEEE Journal of Solid State Circuits, July
1991, Vol. 26, No. 7, pp. 1056-1063

[ToMc96] N. A. Touba, E. J. McCluskey: "Altering a pseudo-
random bit sequence for scan-based BIST", Proc. Int.
Test Conf. (ITC), 1996, pp.167-175

[Wu87] H.-J. Wunderlich: "Self Test Using Unequiprobable
Random Patterns", Proc. 17th In. Symp. Fault-Tolerant
Comput., Pittsburgh 1987, pp. 258-263

[WuKi96] H.-J. Wunderlich, G. Kiefer: "Bit-Flipping BIST",
Proc. Int. Conf. On Computer-Aided Design (ICCAD),
1996, pp. 337-343

[ZRTW96] N. Zacharia, J. Rajski, J. Tyszer, J. A.
Waicukauski: "Two-Dimensional Test Data
Decompressor for Multiple Scan Designs", Proc. Int. Test
Conf. (ITC), 1996, pp.186-194

