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ABSTRACT—Most built-in self test (BIST) solutions re-
quire specialized test pattern generation hardware which
may introduce significant area overhead and performance
degradation. Recently, some authors proposed test pattern
generation on chip by means of functional units also used
in system mode like adders or multipliers. These schemes
generate pseudo-random or pseudo-exhaustive patterns for
serial or parallel BIST. If the circuit under test contains ran-
dom pattern resistant faults a deterministic test pattern gen-
erator is necessary to obtain complete fault coverage.
In this paper it is shown that a deterministic test set can be

encoded as initial values of an accumulator based structure,
and all testable faults can be detected within a given test
length by carefully selecting the seeds of the accumulator. A
ROM is added for storing the seeds, and the control logic
of the accumulator is modified. In most cases the size of
the ROM is less than the size required by traditional LFSR-
based reseeding approaches.

KEYWORDS—BIST, hardware pattern generator, embed-
ded cores

I. INTRODUCTION
The complexity of systems-on-chip makes Built-In Self

Test (BIST) an favorable method for system testing [1], [2],
[3]. The testability of embedded cores may suffer from
limited accessibility, and necessary test information is of-
ten hidden in order to protect intellectual property (IP). This
kind of problem is solved if the system is equipped with
BIST features, and the functionality of the core may be used
not only for implementing the system mode, but also for test
pattern generation and test response evaluation. Accumula-
tor based structures may work in an autonomous mode for
generating patterns with some pseudo-random or pseudo-
exhaustive properties (see fig. 1) or compress test data like
an LFSR during signature analysis.
The advantages of this approach are twofold: as a special-

ized BIST circuitry is not needed, the hardware overhead is
reduced to some modifications for implementing BIST con-
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Fig. 1. A typical accumulator structure used as test pattern generator. In
each cycle the constant value of register is added to register . The
content of register is a test pattern.

trol, and since BIST circuitry within the data path is com-
pletely avoided, this BIST method will not affect system
performance.
The use of accumulator based structures for test response

compaction has widely been investigated in literature [4],
[5], [6], and the aliasing probabilities of these structures
have the same magnitude as the aliasing probabilities of the
LFSR-based signature analysis.
Test pattern generation may be performed by using a va-

riety of functional units in the accumulator based structure
of fig. 1. Investigations are known about properties of test
patterns generated by simple adders [7], [8], ones- and twos-
complemented subtractors [6], [9], and more complex mul-
tipliers and MAC circuits [10]. All of them may generate
pseudo-exhaustive or pseudo-random patterns with a simi-
lar quality as LFSRs do, and may reach a comparable fault
coverage.
For random pattern testable circuits, the functional BIST

approachmay work efficiently, but it fails, if random pattern
resistant faults are present in the circuits. Random pattern
resistant faults may be removed by test point insertion [11],
[12], which cause some hardware overhead and additional
delays in the signal path. Moreover, test point insertion re-
quires the availability of a structural representation of the



core to be modified.
Recently some deterministic BIST schemes have been de-

veloped, like Bit-Flipping [13], [14], Bit-Fixing [15], [16],
Pattern-Mapping [17], or Reseeding [18], [19], [20], which
use dedicated hardware to generate deterministic test pat-
terns. To feed the patterns to the circuit under test (CUT)
these solutions have to add multiplexors to the signal path.
While these methods may obtain complete fault coverage,
they require considerable hardware overhead and may cause
some performance degradation.
Until now, system hardware based BIST schemes which

can test random-pattern-resistant faults, were restricted to
the use of processors present in the system [21]. In this pa-
per, we show how to combine the advantages of determin-
istic BIST and of BIST schemes based on functional units.
We are developing a novel scheme, that is used to compute
seeds for an accumulator with a simple adder, which cov-
ers a complete deterministic test set. These structures are
present in many data-path architectures and in specialized
digital signal processing circuits.
The use of an accumulator as test pattern generator is de-

scribed in section II. In section III an algorithm is outlined
for the symbolical search for optimal seeds. We present
heuristics to reduce the time complexity of this algorithm in
section IV. The use of fault simulation to improve the sub-
optimal solution is discussed in section V. Since to the best
of our knowledge this is the first time an adder based accu-
mulator is used as a deterministic test pattern generator, we
demonstrate the feasibility of our solution by applying it to
the random pattern resistant ISCAS89 and ISCAS85 bench-
marks in section VI.

II. ACCUMULATOR BASED PATTERN GENERATION

The typical accumulator structure of fig. 2 serves as a test
pattern generator with an adder as arithmetic unit. The test
patterns are given by

mod mod (1)

where is generated at clock cycle if the accumulator is
initialized with , and the constant is added iteratively.
The pair is called a seed, and for each deterministic
test set there are a seed and a number so that

and all patterns of are generated
by the accumulator within clock cycles. For and

the accumulator structure works like a counter, and
every pattern can be generated. The problem is to find a seed

so that a minimum satisfies .

Example 1: Assume a five input circuit with ran-
dom pattern resistant faults, which requires the

deterministic test set

(2)

We allow unspecified bits “-” in a test pattern so
that each test cube may represent a set of pat-
terns, of which one must be generated. With the
seed , the deterministic is gen-
erated within clock cycles (see fig. 2).
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Fig. 2. Embedding a deterministic test set (highlighted) in an accumu-
lator sequence . The accumulator register contains its
initial content. The topmost pattern in the pattern sequence is generated
last.

To generate all patterns of , a single optimal seed may
require a large number of clock cycles, which may increase
exponentially with the number of bits per pattern.
Hence, the deterministic test set

is partitioned into subsets with different seeds
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Fig. 3. Reseeding of accumulators

. Each of the seeds starts
a run of clock cycles. We should minimize with the
restriction

(3)

i.e. the total number of applied test patterns is restricted. The
number of seeds corresponds directly to the storage effort.

Example 2: In the previous example
clock cycles have been required. This number
can be reduced by partitioning the test set into

and . The seed
generates within

cycles, and seed generated
using cycle (see fig. 3).

In this very small example we have to store two

seeds for encoding 5 patterns, for larger test sets
the reseeding approach is much more efficient. In
a certain way the adder based reseeding corre-
sponds to the reseeding of LFSRs as proposed by
Koenemann[22].

III. SYMBOLIC SEARCH FOR SINGLE SEED SOLUTIONS
In this section, an optimal solution is discussed for con-

structing a single seed that generates a deter-
ministic test set in a minimal number of cycles. The
optimal solution will rarely be computable and will require
large test times, but it is the basis for heuristics of the sub-
optimal solution presented in section IV.
Let

mod (4)

be the set of seeds which generates test pattern in cycle
. The set

(5)

is the set of all seeds covering test pattern at least once in
cycles. As the entire test set has to be

generated we are interested in the set of seeds

(6)

Each seed of covers all patterns within cycles. Let
be the smallest number

of cycles so that all the patterns can be generated by a single
seed. All seeds of are optimal.
The sets consist of boolean vectors of length
. Such a set is efficiently described by its characteristic

function

with
(7)

Let be the characteristic function of the set men-
tioned in eqn. (6). Then we have

(8)

The evaluation of eqn. (8) requires an efficient way for ma-
nipulating boolean formulas, and for this purpose we use
reduced ordered binary decision diagrams (ROBDD) [24].
First we describe how to compute the characteristic function

of the set of seeds

mod (9)
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Fig. 4. Examples for the regularity of ROBDDs for . All nodes on the same level correspond to the same variable, of which the name is shown
on the left of each diagram. Dotted lines indicate complemented, dashed lines indicate regular “else” arcs [23].

by generating at most ROBDDs, one ROBDD for
each specified bit of the pattern . The bit of

mod (10)

is a boolean function . The ROBDD of
can be computed by applying the ROBDD of

a full adder repeatedly [25]. The size of the ROBDD of
increases linearly in both the number cycles

and bit position (see fig. 4) for the variable ordering ( ,
, , , .
For each specified bit in , we must have
, and the characteristic function of each specified bit is

for
for
for

(11)



and the characteristic function of the set of seeds generating
in cycle is given by

(12)

By applying eqn. (8) to the functions , we obtain the
set of all seeds by the characteristic function

(13)

Example 3: Assume, we have to generate the test
pattern in clock cycle .
The corresponding set of seeds is expressed by
its characteristic function in a ROBDD
form. The seeds in must satisfy

(14)

Hence the charcteristic function of the set of seeds
must satisfy the following formulas

(15)

We show the corresponding four BDDs in fig. 5.
The characteristic function for the pattern ,
we are looking for, is according to eqn. (12) given
by

(16)

We show the corresponding ROBDD in fig. 6.

Unfortunately, the direct application of eqn. (13) is not
always possible for two reasons: The smallest with
(equivalent to ) may still be too large for any

practical application, and computing requires complex
ROBDD operations, which may not be feasible for practical
examples. may be reduced by partitioning the test set
as outlined in section II. In the next section, heuristics for
generating suboptimal solutions are discussed.
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Fig. 5. ROBDDs for the zeroth (a), first (b), third (c), and fourth (d) bit of
an adder. The second bit in is not specified, therefore it is
not necessary to generate a ROBDD for the second adder bit .

IV. HYBRID SEARCH

Although efficient ROBDD representations for exist,
the optimal solution (eqn. (8)) may not be efficiently
represented by ROBDDs. The ROBDD explosion problem
can be avoided by approximations. We are proposing an al-
gorithm for generating suboptimal solutions, which is still
good in terms of test length, but we might need additional
seeds to obtain 100% fault efficiency. To get a feasible sub-



 r  0  [0] 

 c[0] 

 r  0  [1] 

 c[1] 

 r  0  [2] 

 c[2] 

 r  0  [3] 

 c[3] 

 r  0  [4] 

 c[4] 

  χ   1 
 1 

1

Fig. 6. The ROBDD of the characteristic function of the set of seeds,
which generates pattern in iteration .

optimal solution, two heuristics are applied.
The first heuristic partitions the set of variables into

smaller blocks of size , so that additions of
-bit words have to be performed instead of one addition

of an -bit word. The second heuristic reduces the search
space.

A. Partitioning of variables

For a large scan path with several thousands of flipflops,
the word size of the adder in fig. 1 is neither realistic nor
computationally tractable. Usually, adders are found up to a
word size of bits, and the pattern generation may
be performed either by using different adders or by dis-
tributing additions over clock cycles. In the latter case,
a register file is required for storing different accumula-
tor values and a ROM, which stores the
constants (see fig. 7). In any case, there is no
need to propagate a carry between different blocks, and the
variables of different blocks are separated.
For let

(17)

be the characteristic function for the set of seeds
of the block. This is a function in variables instead
of variables, and the optimal set of seeds for partitioned
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Fig. 7. Partitioning a seed by using a small adder and a register file.

variables is described by

(18)

The expression above is still expensive to compute as the
sum operation may cause an explosion of the ROBDD rep-
resenting .

B. Reducing the search space
So far we allowed a test pattern to be generated in any cy-

cle , which leads to an expensive sum operation.
If exactly one cycle is assigned to a pattern
eqn. (18) is reduced to

(19)

Now each block can be dealt with independently.
Due to preselecting cycle , in which each test pattern

is generated, we may loose solutions, and must be fixed
carefully. The preselection is controlled by a cost function

for generating by a seed of in a given cycle. We
used the cost function

Expected remaining cardinality of
Actual remaining of cardinality of

(20)

The “remaining cardinality” is defined by

Cardinality of with
Cardinality of w/o

(21)



Each specified bit reduces the cardinality of in average
by a factor of two. Thus, the expected remaining cardinality
for a pattern is given by where is the number of
specified bits in . The actual remaining cardinality of
is given by

with
w/o

(22)

where is the number of minterms of . This yields
our cost function

w/o with (23)

Now the test cycles are assigned, iteratively.
First we take two test patterns and with a maximum

number of specified bits and set and . Next
we compute for each remaining pattern the number of
possible seeds (that is the number of minterms of ) if we
set =2 and recompute . We choose pattern with

=2, which has the least costs. We iterate now for
until all patterns are generated.

It eventually happens that the seed set is empty for all
possible patterns . In this case, we store a seed from the
previous and iterate the complete procedure. The algo-
rithm is written more formally in a C-like syntax in algo-
rithm 1.

C. Reducing the Number of Seeds
A common method to reduce the storage space for pat-

terns or seeds is to allow intermediate patterns, which do
not necessarily find new faults. Assume, we allow pat-
terns to be applied in total, and deterministic test
patterns must still be generated in cycles. We limit
the number of useless patterns by generating a new pattern
within the next

(24)

cycles, which we call an iteration. The number of interme-
diate useless patterns is limited. If a new patterns is to be
selected, the corresponding cycle is within these cycles,
and the best time slot is selected by the cost function
as described in section IV-B.

Example 4: In this example, we demonstrate,
how the proposed algorithm encodes the patterns

(25)

given in eqn. (2). The first two selected pat-
terns may be and . Two seeds

Algorithm 1 Computation of
set of test patterns

while do
Select two patterns and

repeat

for do

if c is minimal then

end if
end for
if then

end if

until
store one seed of

end while

generate these two patterns in cycle and :
and . For the next

pattern we compute the cost function for
cycles (see eqn. (24)). We give

the number of minterms and the cost function in
brackets.

cycle 01010 01-01 11001
2
3
4
5

We find that two patterns have the same costs.
We choose because it is generated in a ear-
lier cycle. The seed generates all
three patterns , , and within

cycles.
We repeat the same procedure for the two remain-
ing patterns , . It turns out that in
cycles 4 to 8 none of the two patterns can be gen-
erated by the remaining seed. Therefore we store
the obtained seed and .



The remaining two patterns are generated by the
seed in one cycle ( ).
Note, in real circuits, the number of unspecified
bits and thus the cardinality of is much larger
than in this example.

D. Controlling ROBDD Growth

During the process of pattern selection and pattern encod-
ing described in section IV-B and IV-C, the ROBDDs and
therefore the computation time may increase. We imple-
mented a trade-off between the time efficiency of the pro-
gram and the encoding efficiency of the results by a simple
time limit strategy: We give a time limit for the complete
program and observe the remaining time, which is the time
limit minus the time the computations already runs. If the
product of the time for finding and the number of re-
maining test patterns is larger than the remaining time, we
stop the computation and take the pattern and cycle with the
best costs in the current iteration.

V. FAULT SIMULATION

The deterministic test set may be reduced by intertwin-
ing pattern encoding and fault simulation. Each time when a
seed is determined, all patterns generated by this seed
are simulated, the detected faults are removed from the fault
list, and the corresponding test patterns are not encoded in
future steps of the algorithm.
Moreover, we estimate the probability, that a fault is de-

tected by random patterns, by fault simulation. We try to
encode only patterns which are not covered by random
patterns in average at least twice. The test itself does not
contain any random pattern application.

VI. EXPERIMENTS

To evaluate our deterministic test pattern generator, we
performed simulations for the ISCAS85 [26] and ISCAS89
benchmarks [27], which are not randomly testable by 10000
test patterns. The test length was 10000 patterns, and the
computation time was restricted to 24 hours. We estimated
the fault detection probability by fault simulation of 10000
patterns. The encoding was performed by using an adder
of the size of bits. We compare our results with
the storage effort of a compact test set [28], [29], [30], [31]
and the storage requirements for the seeds of a test pattern
generator which needs a complete processor [21], in table I.
A seed of the adder based approach always con-

sists of two patterns, hence all the entries of the correspond-
ing column are even. The adder based approach needs al-
ways less patterns than the compact test. These patterns
were selected from the optimumof different published refer-
ences [28], [29], [30], [31]. Especially for the larger circuits,
the presented approach also outperforms a processor based

circuit PPIs Deterministic patterns
Adder C-Test Processor

s420.1 34 14 43 22
s641 54 12 24 7
s713 54 10 23 7
s820 23 16 95 0
s832 23 16 96 2
s838.1 66 52 75 78
s953 45 6 77 5
s1196 32 10 117 7
s1238 32 10 129 7
s1423 91 6 29 0
s5378 214 16 104 22
s9234 247 30 116 216
s13207 700 18 235 171
s15850 611 26 113 237
s38417 1664 44 91 658
s38584 1464 30 141 187
c2670 233 36 51 73
c7552 207 46 97 51

TABLE I. Number of test patterns to store for the proposed method, for
compact test sets and for a processor based approach.

encoding scheme [21] while only a simple adder based ac-
cumulator is used.
To evaluate the dependence of the number of patterns to

store on the test length, we performed an additional simu-
lation with 5000 patterns. Table II shows the data for a test
length of 10000 patterns in column 2 and 3 and for a test
length of 5000 patterns in column 4 and 5. We have to store

patterns. This number increases slightly for most bench-
marks, whereas the computation time in hours for the seeds
decreases if the test length is reduced. The computation time
is basically determined by the number of generated patterns
per seed and the total number of deterministic patterns.
The processor based scheme performs an additional com-

pression of patterns by exploiting unspecified bits. But the
seeds generated by the presented method contain unspeci-
fied bits, as well. Table III shows the number of unspecified
and specified bits of the stored seeds, and compares these
numbers to the number of bits to be stored by the processor
based approach. In some cases, storing complete seeds re-
quires less memory than the data requirements for the pro-
cessor. The specified part of the seed is distinctively less
than the processor requirements, and can be used for further
optimizations.
Overall, the experiments show the following trends:

For small circuits (less than 20 inputs or scan ele-
ments), it is favorable to try to get the optimal solu-
tion, or if this does not work to divide the patterns into
groups and find the optimal solution for them.



circuit 10000 patterns 5000 patterns
/h /h

s420.1 0.2 14 0.1 18
s641 0.5 12 0.4 6
s713 0.5 10 0.2 6
s820 1.2 16 0.4 14
s832 1.0 16 0.2 14
s838.1 0.8 52 0.6 52
s953 0.4 6 0.2 6
s1196 0.9 10 0.4 20
s1238 0.7 10 0.2 20
s1423 20.1 6 5.1 8
s5378 17.4 16 3.2 18
s9234 23.7 30 8.8 38
s13207 20.5 18 6.7 22
s15850 21.1 26 3.3 42
s38417 23.8 44 14.8 44
s38584 20.2 30 10.0 46
c2670 2.5 36 5.4 36
c7552 7.9 46 5.6 52

TABLE II. Dependence of the number of patterns to store and compu-
tation times for the seeds on the test length for the proposed method.

circuit Bits of seeds DC bits Spec. bits Proc.
s420.1 476 121 355 503
s641 648 201 447 261
s713 540 217 323 284
s820 368 13 355 95
s832 368 7 361 146
s838.1 3432 1681 1751 3246
s953 270 71 199 159
s1196 320 39 281 198
s1238 320 79 241 198
s1423 546 52 294 184
s5378 3424 1964 1460 759
s9234 7410 1538 5872 11766
s13207 12600 5766 6834 10796
s15850 15886 10368 5518 11826
s38417 73216 44052 29164 71491
s38584 43920 36955 6965 11529
c2670 8388 5980 2408 4178
c7552 9522 3110 6412 6889

TABLE III. Unspecified bits in the seeds allow further improval of the
encoding scheme.

For mid-size and large circuits, the presented heuristics
are satisfactory, although a sophisticated tuning of the
heuristics to determine the pattern sequence may im-
prove the results.
Large circuits show a linear growth of memory con-

sumption and sublinear growth of computation time,
given that the number of test patterns for hard faults
stays constant.

VII. CONCLUSIONS

BIST schemes, which exploit functional units of the sys-
tem for test pattern generation, can be efficiently extended
to a deterministic BIST strategy. For adder-based accumu-
lator structures, a few seeds can be computed so that the
output sequence contains a complete deterministic test set.
The storage requirements for the seeds are competitive to
known reseeding approaches, but hardware overhead and
performance impact of the new approach is less than it is
for the standard BIST schemes.
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