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Abstract—Small Delay Faults (SDFs) due to defects and
marginalities have to be distinguished from extra delays due
to process variations, since they may form a reliability threat
even if the resulting timing is in the specification. In this
paper, it is shown that these faults can still be identified, even
if the corresponding defect cell is deeply embedded into a
combinational circuit and its behavioral features are affected
by several masking impacts of the rest of the circuit.

The results of a few delay tests at different voltages and
frequencies serve as the input to machine learning procedures
which can classify a circuit as marginal due to defects or just
slow due to variations. Several machine learning techniques are
investigated and compared with respect to accuracy, precision,
and recall for different circuit sizes and defect scales. The
classification strategies are powerful enough to sort out defect
devices without a major impact on yield.

Index Terms—Small delay faults, variations, reliability, defect
modeling, statistical learning.

I. INTRODUCTION

Resistive opens and resistive bridges result most often in
Small Delay Faults (SDFs) [1] [2] [3] which are hard to
detect during production testing. Since they may change rather
early in the circuit’s lifetime and turn into a catastrophic
fault, they have to be covered during the test of high-quality
systems [4] [5] [6]. It is well known that testing at varying
voltages and especially low voltage testing increase the fault
coverage significantly [7] [8] [9] [10], and modern systems
with Adaptive Voltage Frequency Scaling (AVFS) have all the
means to support this test strategy [11]. However, technology
scaling comes with the additional difficulty that circuits are
subject to process variations which similarly affect the timing
as SDFs do. In both cases, the circuit behavior may be slowed
down but stays still within the specification. Yet, a slow circuit
due to variations may be safe whereas a slow circuit due to
resistive defects may form a reliability threat. Distinguishing
cells slow due to variations, from defect cells has been the
subject of ongoing research [12], [13], [10], and [14]. A severe
limitation of the previous works comes with the fact, that the
defect cells are subject to variations too. In some cases, a
defect fast cell may still be faster than a defect-free one.

In a recent paper, it was shown that cells from the Open Cell
Library (OCL) [15] can be classified with high accuracy by
statistical learning techniques, even if both defect and defect-
free cells are subject to variations [16]. This knowledge was
derived from extensive Monte Carlo Spice simulation [17]

which created data sets for defect and defect-free cells to be
used as input to supervised learning. While this classification is
encouraging, it is not immediately applicable to the production
testing of a combinational circuit, in which cells are embedded
and not directly controllable and observable. In addition, single
defect classification does not cover the challenges due to the
masking impact of all the other cells in the sensitized path.
The paper at hand investigates the possibility to classify a cell
even if it is deeply embedded into a combinational circuit as
in Fig. 1, with up to 16 levels of cells in the sensitized path
from the embedded cell to the primary output, which exceeds
the range of usual propagation paths.
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Fig. 1. An embedded slow cell in a combinational circuit

Based on extensive Monte Carlo Spice simulation, it is
shown, that a slow cell embedded into a combinational cir-
cuit under variations changes the behavior of the primary
outputs sufficiently to classify the root cause of the delay
into variations or resistive defects. The performance of several
statistical learning techniques is investigated, which learn from
the generated data set to classify defect and defect-free circuits
under variations. A detailed electronic analysis for different
behaviors of defect and defect-free models under variations is
performed, which is as far as we know the first time that defect
classification problem is analyzed besides using statistical
learning techniques. The evaluation takes into account how
deeply the gate is embedded, the fault sizes, and different
classification metrics such as accuracy and F1-score. The
evaluation results are extremely encouraging, for the feasi-
bility of exploiting this statistical learning-based technique in
production test of multi-gate bigger circuits or in CAD-tools
in presence of masking impact, with more efficient multi-level
simulators as already presented in [18] [19].

The rest of the paper is organized as follows. The next
section gives some orientation of the research background for
defect detection under variations as well as specific challenges
in combinational circuit behavior analysis. Supporting electri-
cal fundamentals of the proposed strategy are extracted and978-1-6654-2057-0/21/$31.00 © 2021 European Union



presented in Section III. Section IV describes in detail the
data generation process by Monte Carlo Spice simulation. In
Section V, the statistical learning techniques for classification
are introduced and Section VI evaluates the performance of
the classification with respect to the size of the circuit as well
as the size of the marginal defects.

II. RESEARCH BACKGROUND

A. State of the Art

Many works have studied the challenges to test a circuit
under varying operating conditions, e.g., [20] [21] [22]. Al-
ready in the 90s, [7] [8] have intentionally used the varying
voltage by applying Very-Low-Voltage test to detect defects
causing possible Early Life Failure (ELF). [23] also presented
a strategy to make use of dynamic voltage scaling for overall
fault coverage improvement.

Resistive opens, resistive bridges, and gate-oxide pinholes
are considered as defect mechanisms which may appear as
SDFs [16]. The behavior induced by resistive defects has been
analyzed in [24], and [14] investigates the detection of the
resistive defects by using delay tests.

Defect detection under variations has been taken into con-
sideration as a variation-aware test [25]. Publications [10]
and [14] propose methods to distinguish process variations
from marginal defects by using the different delay behavior
under varying voltages. However, their defect model adds a
fixed amount of delay and does not consider process variation
simultaneously. [16] used statistical learning schemes for dif-
ferentiating process variations and marginal defects, by some
experiments applied to an isolated single cell.

B. Combinational circuit behavior under variations and
defects

If a defect cell is embedded into a combinational circuit
(Fig. 1), its timing behavior has to be propagated to a primary
output for classification. As seen above, rather small changes
of the timing of the defect cell have to be propagated, and
the mechanisms already known from glitch analysis or soft
error analysis have to be considered. This section summarises
the main challenges of data collection from the output of a
combinational circuit, which impact the defect classification
of an embedded cell.

- Logical masking: To detect a delay, a propagation path
has to be sensitized. The discussion below assumes that only
appropriate test patterns are used. ATPG is not the subject of
this paper.

- Electrical masking: CMOS is a self-restoring technology
that filters short pulses and reshapes the slopes of transitions.
Therefore, not only the cell under investigation but also the
entire propagation path has to be subject to analog simulation.
It will be shown that electrical masking is still sufficiently
transparent to let timing information through for classification.

- Timing masking: All the cells on the propagation path
suffer from variations, and in general the propagation time of a
path has to be modeled by a skewed multi-variable distribution
[26] [27]. Since this distribution does not affect the output

shape with respect to different voltages, it is assumed below
that the path propagation delay follows a Gaussian distribution.

III. ELECTRONIC ANALYSIS OF DELAY FAULTS UNDER
VARIATIONS

Repeating from textbooks, e.g., [28], the simulating delay
τ of a CMOS transistor can be roughly expressed by

τ =
CLVddLTox

µεoxW (Vdd − Vt)α
(1)

Here τ denotes the delay, CL is the capacitance at the gate
output, Vdd is the supply voltage, Vt is the transistor threshold
voltage, α is the Sakurai’s index which can be taken equal to 1
in scaled technologies, L is the transistor channel length, W is
the transistor channel width, µ is the carrier’s mobility, tox is
the gate oxide thickness, and εox is the gate oxide permittivity.
The simulated delay versus Vdd for the original defect-free
NAND with nominal process parameters can be seen as the
black curve in the plot of Fig. 2.
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Fig. 2. Simulated delay vs. Vdd for a NAND Cell

Various process parameters can contribute to process varia-
tions. Threshold voltage fluctuation is considered as the major
source of variations in timing [29] which is the focus of this
work on modeling process variations. Assume, Vt is now
increased by δ due to process variations. By replacing Vt
with Vt − δ and some mathematical reformulations, Eq. 1 is
transformed into:

τ =
CL(Vdd − δ)LTox

µεoxW (Vdd − δ − Vt)α
+

CLδLTox
µεoxW (Vdd − δ − Vt)

(2)

I II
Part I of Eq. 2 shifts the black curve to the right by δ, part

II shifts it upwards with an increased slope. Combining this
results in the dashed green curve in Fig. 2, which is in fact
observed in simulation.

On the other hand, for constant Vt, the delay of a primitive
gate can be expressed by the usual RC model, τ = CL ∗Reff ,
and a resistive open will just increase Reff . The new delay
is τ ′ = CL ∗ (Reff + δ), which means a resistive defect of
size δ will shift the black curve of Fig. 2 upwards by CL ∗ δ
resulting in the dotted red curve. A similar analysis can be
performed for resistive bridges and gate oxide pinholes, but is
beyond the scope of this paper.

Fig. 2 indicates that it may be impossible to distinguish
a slow defect-free and a fast defect cell, based just on the
delay measurement for a single voltage. However, the shapes



of the two functions are sufficiently different, such that delay
measurements at only 13 different voltages allow a highly
accurate classification by statistical learning methods as seen
in Section VI. The brief analysis presented here explains also
why the experiments in [16] were successful, even if the defect
cell is fast due to variations: reduced Vt moves the red curve
to the left and reduces the slope, then the resulting curve is
significantly different from any defect-free behavior.

A simplified combinational circuit including an inverter
chain is modeled to investigate the masking impacts on the
circuit delay behavior. The inverter-cell is selected since it
has the minimum number of transistors and often the highest
impact of the variations on the delay behavior of the embedded
cell. The parasitic elements and buffers are added to the chain
to consider the fanout impact as well. Fig. 3 depicts a NAND
cell with a resistive defect which is equal to 3στ of the cell
and compares it with the embedded NAND cell in front of a
propagation chain of 16 inverters where all the transistors are
subject to σ = 0.2µ variation in their length (L) and width
(W) individually. From this, µτ and στ as the nominal values
and the standard deviation of the delay can be driven.
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Fig. 3. Defect and defect-free delay histograms of a single NAND and an
embedded NAND cell in front of a chain of 16 inverters

The points where the red and green curves of Fig. 2 get close
are reflected here as those delay bins where red and green bins
overlap. Exactly these bins form the challenge for any clas-
sification technique to be addressed in the next two sections.
Clearly, the overlap bins are wider and include more instances
in the combinational circuit of the embedded cell comparing

to a single cell case. Therefore, not only combinational circuit
masking impacts are the challenges which should be covered,
but also more instances are dealt with in the overlap delay
range which need to be classified.

IV. DATA GENERATION

The analysis procedure followed in this paper consists of
the four phases depicted in Fig. 4. The first two phases create
models for the defect and defect-free circuit as well as cor-
responding random samples reflecting variations. These two
phases are described in detail in this section. The third phase
selects and applies appropriate statistical learning schemes to
the data set, and finally, the performance of these schemes is
validated as described in the next section.
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Fig. 4. Classifier generation flow
A. Defect-free circuit model

The study at hand concentrates on a combinational circuit
which includes a NAND cell as the embedded cell and an
inverter chain as well as parasitic elements to consider fanouts.
All cells are from NanGate 15nm OCL which has FinFET
transistors [15]. The analysis of a complete library is beyond
the scope of the paper and left to an industrial exploitation of
the encouraging results presented in Section VI.

The netlist is shown in Fig. 5 where also two of the possible
resistive opens are marked. The output of the NAND cell is
connected to a chain of λ inverters as already seen in Fig. 3.
All transistor delays of the NAND cell and the inverter chain
as shown in Fig. 5 are subject to individual random variations
following a Gaussian distribution N(µτ , στ ). A more complex
modeling with chains of more complex cells and even with
individual distributions is possible [26] [27], but does not
affect the arguments below.
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Fig. 5. Embedded NAND cell with 2 possible resistive open locations in a
combinational circuit

If µemb is the nominal delay of the embedded NAND cell
and µInv is the nominal delay of each inverter, then:

µτout = µτemb
+ λ ∗ µτInv

(3)
is the expected delay of the entire circuit. For the corre-

sponding standard deviations στemb
and στInv

, the standard
deviation of the circuit output is:



στout
=

√
σ2
τemb

+ λ ∗ σ2
τInv

(4)

In summary, a large data set of modules will be generated
for different chain lengths (λ), where all the transistors have
individual random delays.

B. Defect circuit model

Resistive opens of varying sizes are injected individually
into the embedded NAND cell, at the possible locations as it is
depicted in Fig. 5. The defect sizes have to be chosen such that
the resulting timing from the circuit primary output overlaps
with the possible delay of a defect-free instance. If the delays
were too large, there would be no challenge for any Machine
Learning (ML) scheme, and standard delay testing would solve
the job as well. The minimum defect size considered here is
based on the delay of the embedded NAND cell τf = 3στemb

.
It means, if such a defect is injected into a fast instance with
the delay µτemb

− 3στemb
, the defect instance still reaches the

nominal speed and is hard to be identified.
The upper limit of the delay size which is interesting to be

analyzed is determined by Eq. 3 and Eq. 4. The additional
delay τf should not exceed the delay increase of an inverter
chain with slow transistors: τf ≤ 3στout

. The corresponding
defects have to be inserted into the SPICE netlist as a resistor.

C. Monte Carlo simulation

The data set passed to the machine learning schemes is
generated by Monte Carlo simulation. For each class of defect
and defect-free circuits, N instances are generated in which
all transistors may have different process parameter values.
The channel lengths (L) and gate widths (W ) of transistors
are assumed to be individual Gaussian random values in which
the mean value (µpv ) is the nominal value of (L) and (W ), and
the standard deviation (σpv ) equals 20% of µpv [30]. The data
set is generated for four different chain lengths λ = 2, 4, 8, 16.

The timing behavior of each defect and defect-free instance
is simulated under ω = 13 various voltages by transient anal-
ysis in Spice. The supply voltage as a controllable parameter
gets values between 0.4 V and 1 V with the step of 0.05 V. The
defect and defect-free instances which produce a delay in the
overlapped range are extracted from the total simulation results
and form the data set of size N ′ which will be further used
for the ML training and testing. The data set corresponding to
each chain length is presented by a table of N ′ tuples (rows)
of delays, and 13 attributes (columns) for the applied voltages,
and a label to indicate defect and defect-free instances. Each
circuit with λ = 2, 4, 8, 16 inverters is handled separately.

V. CLASSIFICATION BY SUPERVISED LEARNING

A. Learning schemes

Four different statistical learning schemes are trained. The
setup used for each scheme is described below. The focus
of this work is on investigating the defect classification. The
statistical learning scheme setup can be further optimized
which is beyond the scope of this work.

- Support Vector Machines (SVM): The Support Vector
Machine algorithm separates data points with the largest
margin into classes by constructing a hyper-plane between
them. SVM is an effective supervised learning method in
high dimensional spaces, and the kernel method is useful in
implementing non-linear classification [31]. In this work, the
Support Vector Classifier (SVC) with rbf [32] kernel is used.

- k-Nearest Neighbors (kNN): The k-Nearest Neighbors
algorithm finds the distances of a new data point to the k-
nearest data points and votes for the most frequent label.
kNN algorithm is among the simplest and yet most efficient
classification rules and is widely used in practice [33]. The
distance is computed by the Euclidean metric.

- Decision Tree (DT): The Decision Tree is a tree whose
internal nodes can be taken as tests on input data patterns and
whose leaf nodes can be taken as categories of these patterns
[34]. Tree-based algorithms empower predictive models and
map well to non-linear relationships as well as imbalanced
data sets. Moreover, they do not get influenced by outliers to
a fair degree and have high execution speed [35]. The Gini
coefficient is used as the decision criteria, and a maximum
depth of the tree is set to avoid over-fitting.

- Random Forest (RF): The Random Forest scheme is a
bagging method which builds up a set of trees and gets the final
result based on majority votes. It undertakes dimensionality
reduction methods to handle large data sets with higher
dimensionality [36]. The same setup as for the DT above is
used for this approach and the number of trees in the forest
is set based on achieving the highest classification result.

B. Evaluation
The classification quality for the four schemes above is

evaluated with respect to the standard metrics used in statistical
learning [37]. The attribute P of an instance means ”defect”
(positive), and N means ”no-defect” (negative). A correct clas-
sification is true (T), otherwise false (F). The test instances are
partitioned into four groups, which the classification quality
metrics are calculated based on.
• True Positive (TP): Defect instances correctly identified

as defect.
• True Negative (TN): Defect-free instances correctly iden-

tified as defect-free.
• False Positive (FP): Defect-free instances wrongly clas-

sified as defect.
• False Negative (FN): Overlooked defect instances

wrongly classified as defect-free.
Precision indicates the ratio of the classified instances,

which are correctly classified. Usually different values for the
class defect (D) and no-defect (ND) are observed:

PrecD :=
|TP |

|TP |+ |FP |
, P recND :=

|TN |
|TN |+ |FN |

(5)

Recall represents the ratio of the instances in a class, which
are classified correctly. Similar to precision, different values
for the class defect (D) and no-defect (ND) are observed:

RecallD :=
|TP |

|TP |+ |FN |
, RecallND :=

|TN |
|TN |+ |FP |

(6)



Accuracy denotes how much of the test data are in total
classified correctly. Accuracy is prone to get biased by imbal-
anced data sets. Assuming N ′ as the size of the overlap test
data, accuracy is defined as below.

Accuracy :=
|TP |+ |TN |

N ′
(7)

F1-score is defined as the harmonic mean of the correspond-
ing precision and recall for the defect (D) and no-defect (ND).
A high F1-score shows that the classification is not disturbed
by false alarms.

F1− score(D,ND) :=
2

1
Recall(D,ND)

+ 1
Precision(D,ND)

(8)

All the metrics mentioned above are applied to the four
ML schemes. To generate a robust and fair evaluation, K-fold
cross-validation is used [38]. The data set of N ′ instances is
partitioned into k = 10 disjoint randomly selected subsets. In
a round-robin fashion, the label is removed from one subset
in order to be used as test set, and the union of the remaining
sets is used for training. The metrics above are obtained as
the average outcome of these k = 10 experiments.

VI. SIMULATION RESULTS

In the first subsection, the four ML schemes are compared
according to the different metrics mentioned above. For the
sake of brevity, only the outcomes with respect to one circuit
and defect size are compared. The second subsection reports
the results of the best scheme for varying circuit and defect
sizes.

The minimum defect size 3στemb
and the maximum inter-

esting defect size 3στout
are defined by Eq. 4, which result in:

DSize(i) = 3στemb
+ i(στout − στemb

) (9)
for i = 0, .., 3

The resistors are injected into the cell, such that the addi-
tional delays of Eq. 9 are produced.

A. Comparing ML schemes

To present the comparison of the four schemes, a specific
relatively small defect size (DSize(1)) and moderate chain
length (λ = 8) are targeted. Table. I shows the results obtained.

Almost all the schemes reach an accuracy significantly
larger than 0.8. It is being observed the best results are
obtained by the Random Forest (RF) scheme. This is due to
the fact that tree-based classification schemes map well to non-
linear relationships, as well as imbalanced data sets and get
less influenced by outliers. In addition, RF can boost the tree-
based models by executing bias-variance trade-off analysis. It
also selects the features based on classification scores, which
enables it to handle a big set of data. The results from RF
scheme will be discussed in further detail. It has to be noted
that only N ′ hard to classify instances, which can be seen
as the overlapped range in Fig. 3 are under investigation.
Without the proposed technique to distinguish defect from
defect-free, this part of the produced chips (N ′) should be
completely removed from the final production to prevent ELF,
which means a high and expensive yield loss. By using the

proposed technique based on RF scheme, PrecD = 0.946
indicates that only 5.4% of chips classified as defect are
misclassified. Depending on the yield, this metric can also
be used as reliability binning. PrecND = 0.873 means that in
12.7% of the cases where a warning is not given, it should have
been done. Here, it should be considered that the experiment is
performed with a balanced data set. In practice, the defect parts
should be much less than 50%, and the portion of overlooked
cases will be much less as well. RecallD = 0.961 means that
only 3.9% of marginal chips will pass, and RecallND = 0.838
denotes that 84% of the marginal chips which are still in the
specification, can be sorted out.

TABLE I
CLASSIFICATION QUALITY METRICS FOR DSIZE(1) AND λ = 8

SVM kNN DT RF

PrecD 0.76 0.887 0.933 0.946

RecallD 0.886 0.984 0.937 0.961

F1D 0.812 0.931 0.935 0.954

PrecND 0.681 0.95 0.8 0.873

RecallND 0.465 0.619 0.794 0.838

F1ND 0.526 0.731 0.78 0.849

Accuracy 0.818 0.898 0.902 0.931

B. Impact of circuit and defect sizes

For the four defect sizes according to Eq. 9 and for the three
circuit sizes λ = 0 (no inverter chain), λ = 4 and λ = 16, all
the relevant metrics are reported in Table. II.

The general trend is that with increasing defect size the
performance of the RF scheme is increasing further. Anomalies
(λ = 16, DSize(1)) are due to the frequency distributions of
the defect and defect-free instances. It is observed that the
timing propagation through an inverter chain of 16 still allows
classification.

C. Application scenarios

According to the presented results, the RF scheme is able
to identify resistive opens with high classification quality. This
result is encouraging enough to train such a ML model on real
silicon data for which industrial support is needed.

VII. CONCLUSION AND FURTHER WORK

Resistive opens can be identified in a cell, even if it is
deeply embedded into a combinational circuit and it does
not change the circuit behavior beyond the specification. A
machine learning scheme based on Random Forest is able to
classify these cells under variations with a very high accuracy.
The encouraging result can be used for quality screening,
binning, and a diagnosis with a negligible impact on the yield.
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TABLE II
RF CLASSIFICATION QUALITY METRICS FOR VARYING DSIZE AND VARYING λ

λ Defect PrecD RecallD F1D PrecND RecallND F1ND Accuracy

0 DSize(0) 0.917 0.950 0.932 0.971 0.943 0.958 0.952

DSize(1) 0.957 0.983 0.968 0.962 0.889 0.916 0.959

4 DSize(0) 0.925 0.936 0.93 0.880 0.827 0.849 0.914

DSize(1) 0.953 0.969 0.962 0.866 0.841 0.846 0.941

DSize(2) 0.98 0.991 0.986 0.983 0.961 0.974 0.988

16 DSize(0) 0.888 0.912 0.900 0.898 0.866 0.879 0.894

DSize(1) 0.927 0.957 0.939 0.812 0.671 0.710 0.904

DSize(2) 0.937 0.963 0.951 0.958 0.926 0.941 0.974

DSize(3) 0.968 0.978 0.973 0.967 0.929 0.946 0.980
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