
Testability-Enhancing Resynthesis of
Reconfigurable Scan Networks

Lylina, Natalia; Wang, Chih-Hao; Wunderlich, Hans-Joachim

Proceedings of the IEEE International Test Conference (ITC’21), Virtual,

10 - 15 October 2021, pp. 1–10

doi: http://dx.doi.org/10.1109/ITC50571.2021.00009

Abstract: Reconfigurable Scan Networks (RSNs) have to be tested before they can be used for post-
silicon validation, diagnosis or online reliability management. Even a single stuck-at fault in the switch
logic of an RSN can corrupt the scan paths and make instruments inaccessible. Testing the switch logic of
an RSN is a complex sequential test problem. The existing test schemes for RSNs rely on the assumption
that a fault in the switch logic will be detected by the altered length of the erroneously activated scan
path. However, often this assumption does not hold and faults in the switch logic remain undetected.In
this paper, an automated testability-enhancing resynthesis is presented. First, the testability of the initial
RSN is accurately analyzed. If any single fault in the switch logic is undetectable by the altered path
length, a small number of scan cells is inserted into the RSN. The presented scheme is applicable to
arbitrary RSN designs and is compliant with state-of-the-art test methods and the applicable standards.
The experimental results show the efficacy, the efficiency and the scalability of the approach.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE
c©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,

in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

http://dx.doi.org/10.1109/ITC50571.2021.00009

Testability-Enhancing Resynthesis
of Reconfigurable Scan Networks

Natalia Lylina, Chih-Hao Wang, Hans-Joachim Wunderlich
ITI, University of Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany

{lylina, wangco, wu}@informatik.uni-stuttgart.de

Abstract—Reconfigurable Scan Networks (RSNs) have to be
tested before they can be used for post-silicon validation, diagno-
sis or online reliability management. Even a single stuck-at fault
in the switch logic of an RSN can corrupt the scan paths and
make instruments inaccessible. Testing the switch logic of an RSN
is a complex sequential test problem. The existing test schemes for
RSNs rely on the assumption that a fault in the switch logic will
be detected by the altered length of the erroneously activated
scan path. However, often this assumption does not hold and
faults in the switch logic remain undetected.

In this paper, an automated testability-enhancing resynthesis
is presented. First, the testability of the initial RSN is accurately
analyzed. If any single fault in the switch logic is undetectable by
the altered path length, a small number of scan cells is inserted
into the RSN. The presented scheme is applicable to arbitrary
RSN designs and is compliant with state-of-the-art test methods
and the applicable standards. The experimental results show the
efficacy, the efficiency and the scalability of the approach.

Keywords-Reconfigurable Scan Networks, Testability, Design-
for-Test, Online Test, Offline Test, Switch Logic

I. INTRODUCTION

Modern devices integrate complex on-chip instrumentation
to enhance fast yield bring-up as well as to ensure its de-
pendable and reliable operation [1]. Numerous instruments,
such as Built-In Self-Test registers (BIST), sensors, aging
monitors or trace buffers are integrated into the Device-
under-Test (DUT). Reconfigurable Scan Networks (RSNs), as
standardized by IEEE Std. 1687 [2] and IEEE Std. 1149.1 [3],
can be used to collect the evaluation results from the embedded
instruments and to control their operation. Thereby, an efficient
online reliability management for safety-critical systems can
be enabled using RSNs throughout the device lifetime [4, 5].

All these applications rely on the correct operation of the
RSNs, which may become a dependability bottleneck of a
device. Even a single fault in the RSN could corrupt scan
paths, the erroneous data may be fetched by the RSN, make
the instruments inaccessible through the RSN, and eventually
result in a system failure. To ensure the reliable operation of
RSNs, various approaches for test, diagnosis and post-silicon
validation of RSNs have been presented [6–12]. The publi-
cations [7] and [8] present test methods to address gate-level
stuck-at-faults in scan segments. Additional control structures
can be added into the RSN to improve the observability of
shadow regissters [7]. In [9], the focus is on the testability of
reconfiguration modules, such as scan multiplexers. In [11],
the problem of post-silicon validation of RSNs is considered

to find possible mismatches between the specification and the
actual silicon implementation. In [12], a diagnostic procedure
is presented for permanent faults in the reconfiguration logic.

The above mentioned test, validation and diagnosis methods
rely on the fact that a fault or a mismatch in the switch
logic is detected based on the altered scan path length [6–
12]. However, if such fault does not alter the length of
the activated scan path, it remains undetected. Although, the
untestable mismatches can be enumerated using simulation-
based techniques as in [11], currently there does not exist any
systematic solution to detect them during test.

Sequential test generation could be applied to detect the
faults, which remain undetected by the above mentioned test
strategies [13]. However, such strategies are costly, typically
require a high number of test vectors and are often not
feasible due to their test length. In addition, these strategies
are not applicable for online and concurrent test of RSNs
during lifetime. At the same time, structural resynthesis has
been proposed to improve various dependability aspects of
RSNs, including trustworthiness [14], fault-tolerance [15] and
security compliance with the DUT [16–18].

This paper presents a design-for-test (DfT) approach to im-
prove the offline and online RSN test with negligible hardware
costs. First, an accurate testability analysis is performed to find
faults, which are not detectable by an altered path length. If
such faults are present in the RSN, a light-weight automated
resynthesis enhances the testability with respect to single faults
in the switch logic of RSNs. The resynthesis changes some
scan path lengths and ensures a successful fault detection by
the existing test, diagnosis and validation schemes. The only
changes consist in adding a small number of scan cells, and
leave the RSN still compliant with state-of-the-art standards
and algorithms.

The remainder of the paper is organized as follows. The
background of RSNs is presented in Section II. In Section III,
the details of RSN modeling are given. In Section IV, a
testability analysis is presented for so-called series-parallel
RSNs. Section V discusses the applicability of the presented
algorithm for arbitrary RSN graphs. In Section VI, a method is
presented to improve the testability by adding a minor number
of scan cells. In Section VII, some implementation details are
given. Section VIII provides experimental results, which show
the efficacy, the efficiency and the scalability of the presented
method. Finally, Section IX concludes the paper.

Regular Paper

II. RECONFIGURABLE SCAN NETWORKS

A. Basic Definitions
Reconfigurable Scan Networks, as shown in Fig. 1, are

constructed of the basic components, which are commonly
referred as scan primitives, and include the following:

s1

s2

0

1

m1
s3

s4 s5

0

1

m2

s7 SOf2f1

S-a-1

SI

Sensor 1

Sensor 2
Fig. 1. RSN example

• The Scan Segments are the scan primitives, which directly
access the instruments and transfer the data from a
primary scan-in port (SI) towards a primary scan-out port
(SO). Each scan segment consists of a shift register and
of an optional shadow register.

• The Scan Multiplexers are the control scan primitives,
which include specific parts of the RSN into an activated
path, depending on the value of the address control signal.

• The Segment Insertion Bits (SIBs) are the control scan
primitives, which either include or exclude specific part
of the RSN into a path.

The control signals, which drive the control scan primitives,
can be external to an RSN, or be internal, if they come from
the shadow registers of the control scan segments. A Scan
Configuration is defined by the state of the control scan seg-
ments. A non-circular path, which includes currently selected
scan primitives, is referred as an Active Scan Path (ASP), and
considers valid assignments to control signal values. In a valid
scan configuration, a single ASP is activated.

Each access to an RSN is modeled as a Capture-Shift-
Update (CSU)-operation, as presented in [6]. During the
capture-phase, the data is read from the instruments to the
shift registers of the scan segments. During the shift-phase, this
data is shifted through the RSN towards the scan-out port, and
new data is being shifted-in through the scan-in port. Finally,
during the update-phase, the data is latched in the shadow
registers and can be used to drive the internal control signals
or to control the instrument’s operation. More details on RSNs
can be found in [6].

B. Test of RSNs
Test and debug infrastructure occupy a significant area on a

chip. For example, an industrial report describes applications
where 20% of functional bugs occur in the debug circuitry
[19]. Faults in RSNs may arise in various fault locations, which
include the scan segments, the control scan primitives and the
interconnects. In contrast to testing conventional scan chains
[20, 21], specific fault effects in RSNs are observable only for
certain scan configurations. To test a particular fault in a scan
primitive, the scan primitive must be included into an active
scan path at least once.

Stuck-at-faults in scan segments can be addressed as in [7, 8,
22]. Single high-level stuck-at fault in the switch logic, which
may occur e.g. in a scan multiplexer or in a SIB, can corrupt
the data flow in the RSN. If a scan multiplexer is affected by
a ”stuck-at-id” fault, it always selects a specific scan-input
regardless of the logic value, which drives its address control
port. A SIB is ”stuck-at-asserted”, if access to the underlying
segment is always provided. In the opposite case, the SIB is
”stuck-at-deasserted”.

As mentioned above, state-of-the-art test and validation
schemes rely on the assumption that a fault in the switch
logic changes the length of the activated scan path and can
be detected this way [6–12]. If this assumption is not valid,
the target fault remains undetected.

Definition 1: Any single fault f in the switch logic of the
RSN is categorized as ”detectable by a path length (DT-PL)”,
if under the same scan configuration, the path length of the
fault-free RSN is different compared to the faulty path, which
is erroneously activated due to the fault f . Otherwise, a fault
is categorized as ”undetectable by a path length (UDT-PL)”.

Example: In Fig. 1, an initial ASP traverses the scan
segments s1, s3 and s7. If the scan multiplexer m1 is affected
by a stuck-at-1 fault, the actual scan path is corrupted and
now traverses the scan segment s2 as shown with a dashed
red line. In this case, the data from the sensor 2 is captured
instead of the data from the sensor 1. If the scan segments s1
and s2 have the same length, the fault is undetectable by a
path length and Silent Data Corruption occurs.

C. Resynthesis Goals

The presented testability-enhancing automated resynthesis
of RSNs has the following goals:

• Exact testability analysis: The testability of RSNs should
be accurately analyzed as shown in Section IV. If even a
single fault is undetectable by a path length, the RSN is
untestable. Otherwise, it is proven to be testable.

• Enhanced fault detection for single faults: For any ini-
tially untestable RSN, an automated resynthesis should
ensure that all single faults in the switch logic are
detectable by a path length, as discussed in Section VI.

• Completeness and scalability: The method should be ap-
plied within an acceptable runtime to large RSN designs
with an arbitrary structure. For the resulting RSN, the
testability analysis should validate that all target faults
are now detectable by a path length.

• Minimized hardware overhead: A number of scan cells,
which are added into the RSN to ensure unique path
lengths, should be minimized.

• Compatibility with the existing test schemes: The RSN
topology rules should not be modified. Thereby, the
efforts of changing the existing test and access patterns
are minimized, and also the security compliance with
the DUT [17, 23] is not affected. The method should
be applicable in addition to the existing online or offline
techniques for RSNs [6–12].

Regular Paper

III. RSN MODELING

A. Flat RSN Graphs

An RSN is modeled as a directed graph G := (V,E), where
V is a vertex set and E is an edge set of the graph. The sources
I are the vertices, which only have outgoing edges; the sinks
O only have incoming edges. A graph representation of the
RSN from Fig. 1 is shown in Fig 2.

m1SI

s1

s2

f2

s3

s4 s5

m2 s7 SOf1

Fig. 2. Graph representation

Each vertex models a single scan primitive, a fan-out or
corresponds to a primary scan-in or to a primary scan-out
port. The edges represent the direct structural connectivities
between the vertices. All control scan primitives, such as SIBs
and multiplexers with an arbitrary number of scan inputs, are
modeled as a combination of 2-input scan multiplexers and
scan segments.

The considered fault set includes all the single high-level
”stuck-at” faults in the switch logic.

B. Series-Parallel RSN Graphs

A so-called series-parallel graph simplifies the testability
analysis presented in Section IV and the synthesis presented
in Section VI. A general algorithm is proposed in Section V.

Definition 2: A directed acyclic Series-Parallel RSN graph
(SP-RSN) G := (V,E) with a vertex set V and an edge set E
has a single source vertex and a single sink vertex, and is
defined as:

• A graph, which consists of two vertices, which are
connected via a single edge;

• Or a composition of two series-parallel graphs G1 :=
(V1, E1) and G2 := (V2, E2):

1) A parallel composition: The source of G1 is identified
with the source of G2, and the sink of G1 is identified
with the sink of G2.

2) A series composition: The sink of G1 is identified with
the source of G2.

Fig. 3.a and b show a parallel and a series composition of
two sub-RSNs. Any directed graph, which does not fulfill the
conditions above is referred as a non-series-parallel graph.

f1 m1

branch2

branch 1

branch 1 branch2

a) b)
Fig. 3. RSN segments connected in a) parallel b) series

C. Hierarchical RSN Structures

To process RSNs efficiently, possible hierarchical relations
between the scan primitives are formalized, as shown in Fig. 4.

A gate mn is reachable from another gate mi if at least one
valid path can be activated from mi to mn in the RSN. For
each reconvergent fan-out stem fi, a gate mi is its reconver-
gence gate [24], if there exist at least two disjoint paths from
fi to mi. Due to the RSN structure, only scan multiplexers
can serve as reconvergence gates. A closing reconvergence of
the stem region is such a reconvergence gate, which does not
reach any other reconvergence gate of the corresponding fan-
out stem. The stem regions of the reconvergent fan-out stems
are composed of all such scan primitives which are reachable
from a given fan-out stem and also that a path from any
of these primitives to the closing reconvergence exists. The
stem region of fi is shown with grey color. The following
hierarchical relations are considered:

0

1

mi
(S-a-1) mn0

1

mc.1

0

1

mc.2fi fn

Parent

Children

Neighbors

0

1

mm

0

1

Fig. 4. Hierarchical relations

• All the paths through a scan primitive mi traverse another
scan primitive mn and mn is reachable from mi. We say
that mn dominates mi.

• A scan primitive mi dominates mc.1, and mc.1 belongs
to such a stem region, where mi is a closing reconver-
gence. We say that mi is a parent of mc.1.

• A scan primitive mc.1 reaches a scan-input ”0” of its
parental scan mux mi, it is referred as an 0-child.

• A scan primitive mn dominates mi, but is not its parent.
We say that mn is a neighbor of mi.

Example: The RSN graph from Fig. 2 is a series-parallel
RSN. The multiplexer m2 is a reconvergence multiplexer of
the fanout stem f2 and is its closing reconvergence.

IV. TESTABILITY ANALYSIS

Testability analysis has to identify all the single faults at
the control signals which cannot be detected by observing the
length of the activated path, in other words, the faults, which
are undetectable by a path length. This section describes an
algorithm to be applied to series-parallel RSN graphs. Series-
parallel graphs allow to process the data hierarchically by a
divide-and-conquer approach [24, 25]. To keep the algorithm
complete, in Section V, some details on the additional steps
are provided, which are required to transform an arbitrary non-
series-parallel RSNs into a series-parallel representation.

Regular Paper

In Section IV-A, a construction of binary decomposition
trees for series-parallel RSNs is described. This information
is further used to relax the testability constraints given a
single fault assumption, as discussed in Section IV-B. Finally,
in Section IV-C, a divide-and-conquer graph-based testability
analysis is presented for single faults, which uses the binary
decomposition tree to split a larger analysis problem into a
number of smaller problems.

A. Binary Decomposition Tree Construction
To check, whether an RSN graph is series-parallel, an

algorithm based on [26] is applied. The reachability of all scan
primitives within the RSN is computed as in [23]. If the initial
RSN graph has multiple sources or sinks, auxiliary source and
sink vertices are added into its graph representation. A depth-
first-search routine validates, whether a given RSN graph is
acyclic. If the RSN graph contains cycles, an acyclic repre-
sentation is built by removing a few edges. Although a graph,
which contains cycles is non-series-parallel by definition, we
proceed with the scheme below.

In order to identify the hierarchical relations between the
scan primitives, which are used for a further analysis, a
sequence of series and parallel reductions is applied. Fig. 5
shows an example for the left part of the RSN from Fig. 1.

• A series reduction (S) is applied, if two series-parallel
subgraphs are connected in series, and the sink of the
first subgraph is the source of the second subgraph. In
the resulting graph, the source is taken from the first
subgraph, and the sink – from the second subgraph.

• A parallel reduction (P) is applied, if the source of the
first sub-graph is also the source of the second sub-graph;
the same applies to the sinks.

S

s1

S

s2

P

s1,s2

f1 s1

s1 m1

f1 s2

s2 m1

f1 m1

f1 m1

f1 m1

Fig. 5. Graph reduction: two edge pairs are reduced by a series reduction.
Then, the resulting subgraphs are reduced in parallel, and a subgraph on the
right hand side is obtained

At each step, the information about the performed reduction
is saved into a binary decomposition tree. It includes the
reduction type and the pointers to two initial subgraphs, each
with a list of included scan primitives. If a parallel reduction is
applied, some multiplexer mi becomes the sink of the resulting
graph. The multiplexers, which belong to the initial subgraphs,
are identified as children of the multiplexer mi, and mi is
identified as their parent. If a series reduction is applied, all
the scan multiplexers of the first subgraph are identified as
neighbors of the multiplexers of the second subgraph, and
vice versa.

The reductions are applied, until no more reductions are
possible, in a top-down manner. A binary decomposition tree
for the RSN from Fig. 1 is shown in Fig. 6. If an RSN graph
is series-parallel, its decomposition tree can be decomposed to
a single vertex. The vertices of the decomposition tree define,
whether the subgraphs are connected in parallel, as shown
with a green ”P” vertex, or in series, as shown with a blue
”S” vertex.

S

P/m1

s1 s2

S

P/m2

s3 S

s4 s5

s7

Fig. 6. Binary decomposition tree

Thanks to the Church-Rosser property [27] of the reduction
system, any sequence of such reductions, which are applied
to an RSN graph, would lead to a graph, which consists of a
single edge. In the other case, the graph is not series-parallel
and has to be handled as detailed in Section V.

B. Single Fault Reachable Paths Identification

The presented analysis is restricted to a realistic case of
single faults and can be incrementally extended for multiple
faults. The method presented in this subsection allows to relax
the testability conditions under the single fault assumption.
More specifically, it allows to identify for a pair of paths,
whether the first path can be erroneously activated instead of
the second path, due to a single fault f in the switch logic,
or vice versa. If it is not the case, the detection of the fault
f does not depend on the difference between the lengths of
these paths.

Definition 3: An ASP pl is called to be
”single fault reachable” from the intended ASP pk if
and only if, due to a single fault in the switch logic, instead
of an intended path pk a path pl is activated.

To check if the paths are single fault reachable, their activa-
tion conditions are analyzed. First, the activation conditions are
computed for all vertices in the RSN graph. This step is only
performed once for a given (sub-)RSN. For each vertex, the
possible partial paths, which start at a (pseudo-) primary scan-
in and reach the vertex, are collected into a map. A path length
serves as a value, and arrays of possible conditions, which are
required to activate a certain path, serve as a key, as shown in
Table I for the RSN from Fig. 1. Each condition array includes
the assignments to the multiplexers, which are required to
include a given primitive into an ASP. Each bit conds(mi)
of the configuration array conds specifies the required value
of the address control signal of the scan multiplexer mi.

To determine, whether a certain partial path p1 is ”single
fault reachable” from another partial path p0 given a fault in
the multiplexer mi (as shown in Fig. 4) in a series-parallel

Regular Paper

TABLE I
POSSIBLE PATHS

Segment Length Conditions
m1 m2

s1 |s1| 0 X
s7 {|s1|or|s2|}+ |s3|+ |s7| X 0

{|s1|or|s2|}+ |s4|+ |s5|+ |s7| X 1

RSN, the conditions arrays of the last elements of the paths
are compared bit by bit. The comparison continues either until
both arrays are processed or until at least one contradicting
value is found. If all the conditions below are fulfilled the
paths are single fault reachable, and otherwise they are not
single fault reachable:

• Faulty multiplexer mi: The conditions arrays should
differ at the bit conds(mi) to reflect the fault.

• Children of mi: The conditions arrays can take arbitrary
values for the bits, which represent the children of mi. If
the multiplexer mi, due to a fault, always selects a wrong
scan-input, e.g. it is stuck-at-1, the multiplexer mc.1 is
no longer included into an ASP, and can take an arbitrary
value. The scan multiplexer mc.2, on the contrary, is now
included into a path. If its value was not restricted in the
initial path p0 (X-value), it can also take an arbitrary
value. A similar logic is applied, if the multiplexer mi is
stuck-at-0.

• Neighbors and parents of mi: The conditions should
not differ for any of the bits, which correspond to
the neighbors or to the parents of a faulty multiplexer.
In Fig. 4, mn is a neighbor, mm is a parent of the
multiplexer mi. Since these multiplexers do not belong
to a stem region, where a mi is a closing reconvergence,
a fault in the multiplexer mi does not affect the data
propagation through the multiplexers mn or mm.

Example: In Fig. 1, if the multiplexer m1 is faulty, the
partial ASP, which traverses the RSN from the fan-out stem f2
to the scan-out port is not affected. The faulty ASP, which is
highlighted with a dashed red line, is ”single fault-reachable”
from the intended ASP, which is shown with a blue color. The
paths through s7 in Table I are single fault reachable from
one another, given a fault in the multiplexer m2.

C. Testability Property Analysis

Section IV-C1 identifies whether there are single fault
reachable paths with the same length in a simple flat RSN
graph. This approach is extended in a divide-and-conquer
manner, using the binary decomposition tree, as shown in
Section IV-C2.

1) Analysis of Elementary Flat RSNs : The detectability
of the faults, which affect a multiplexer m, is analyzed as
shown in Algorithm 1. The multiplexer is annotated with a
list of possible path length differences between the different
scan-inputs of this multiplexer. All the combinations of partial
paths, which end at the 0-input paths0, and the 1-input paths1
(Line 1-2) of a multiplexer m, are analyzed. The values in the
conditions arrays of the last vertices in the partial paths are
compared (Line 9) as described in Section IV-B.

If the activation conditions (conds0 and conds1) for these
paths fulfill the single fault reachability property, the differ-
ences between the path lengths (pathLen) are added into
the differences set (Line 12). If any single fault reachable
pair of paths is indistinguishable by a path length, a fault is
undetectable UDT-PL (Lines 15-16).

Algorithm 1: Node :: analyze
Input: The initial scan multiplexer mi
Output: List of problematic spots problems

1 paths0 mi.child0.paths;
2 paths1 mi.child1.paths;
3 for path0 2 paths0 do
4 pathLen0 path0.key();
5 conds0 path0.value();
6 for path1 2 paths1 do
7 pathLen1 path1.key();
8 conds1 path1.value();
9 if (1FReachable(conds0, conds1,mi)) then

10 dif [pathLen0 � pathLen1];
11 differences.append(dif);
12 end
13 end
14 end
15 if differences.contains(0) then
16 problems.add(mi, differences)
17 end

2) Hierarchical Analysis: The testability analysis is applied
hierarchically and follows the order of the reverse polish
notation of the decomposition tree from Section IV-A. The
smallest considered subgraph is limited by a first traversed
parallel composition vertex of the tree. The sub-graph is
processed as described in Section IV-C1, and the detectability
of the faults, which affect the control logic in the sub-RSN,
is analyzed. The whole subgraph is abstracted to a single
vertex, and the possible partial path lengths in this subgraph
are used for annotation of this vertex. As soon as the low-level
subgraphs are processed, the computation proceeds to a higher
level, until the whole RSN is validated. If all the target faults
are detectable by a path length, then the RSN is testable and
the computation converges. Otherwise, the information about
the control primitives, which are affected by undetectable
faults, as well as the possible differences of the partial path
lengths through different scan-inputs of the affected primitive
is used to ensure fault detection during the resynthesis.

Example: Given the decomposition tree from Fig. 6, the
computation starts at the scan segment s1. The tree is tra-
versed upwards until the first parallel composition is found.
The smallest considered network includes the nodes s1, s2 and
P/m1. The Algorithm 1 is performed on the subgraph. After
the path lengths are validated in this sub-RSN, it is represented
as a single node, as shown in Fig 7.

At this step, not all the children of the top level series
composition are processed. The algorithm backtracks to the
node s3, and then to the nodes s4 and s5. The considered
subgraph now includes the nodes s3, s4, s5, S and P/m2,
and its testability is analyzed. The computation continues, until
the whole RSN is processed.

Regular Paper

S

S

P/m2

s3 S/
(s4, s5)

s7

P/m1
(s1, s2)

Fig. 7. Tree with merged nodes

V. NON-SERIES-PARALLEL RSNS

Although most RSNs can be directly modeled as series-
parallel graphs, for some RSNs additional steps might be
required to transform them into a series-parallel representation.
To transform a non-series-parallel graph into a series-parallel
form, either additional vertices or edges might be added into
the initial graph [28], or removed from the graph [29].

In this section, for each non-series-parallel RSN region, a
minimized number of additional virtual vertices is added into
the initial RSN graph to build its series-parallel representation.
The resulting series-parallel RSN graph representation is used
for a testability analysis and, if needed, for a resynthesis
of the RSN. Since the virtual changes will be reverted in
the resynthesis phase, additional hardware overhead is not
needed to transform the RSN graph into a series-parallel
representation.

In the RSN graph, such fan-out stems are identified, which
prevent the RSN graph from being series-parallel. Any fan-out
stem fviol, which is located in the stem region of another
fan-out stem finit, and which has the same closing reconver-
gence gate, is referred as a violation spot. The vertices, which
are located between the fan-out stem finit and the violation
spot fviol, are duplicated and are placed after the violation
stem in the graph representation.

Example: The initial RSN example from Fig. 1 is modified
by adding an additional scan segment s6, as shown in Fig. 8.a.
If its graph representation, which is shown in Fig. 8.b, would
be reduced as much as possible, a single vertex representation
will not be achieved. The decomposition tree for the resulting
structure would include two sub-RSNs connected in series, as
shown in Fig. 9.a. The first one consists of the scan segments
s1 and s2, which are connected in parallel, and of the non-
series-parallel subgraph.

In Fig. 10.a, the fanout-stem f2 is a violation spot. In
Fig. 10.b, the branch 1 is duplicated; its copies are placed after
the violation fan-out stem. The violation spots are resolved

sequentially, until a series-parallel representation of the RSN
graph is obtained. The violation spots and their relative order
of processing, are selected in a topological order of the RSN
graph, which starts at the scan-in port. The fan-out stems,
which are located closer to a primary scan-in vertex, are
processed first, followed by the fan-out stems in their stem
region, each time either going deeper in the hierarchy, or
moving forward to a neighboring fan-out stem.

Example: In the subgraph on the right hand side of Fig. 8,
the fanout vertex f3 is located between the vertices f2 and
m3. Since the multiplexer m3 is the closing reconvergence
of the fanouts f2 and f3, it prevents the stem region of
f2 from being series-parallel. In Fig. 10.c, an NSP region
is transformed into a series-parallel form by duplicating the
vertex s4. The resulting hierarchical binary decomposition
tree, as shown in Fig. 9.b, only contains parallel and series
compositions, as well as the leaf nodes, which correspond to
the individual scan segments.

VI. AUTOMATED RESYNTHESIS

At this point, either the initial RSN is series-parallel, or
a small number of virtual vertices is added to obtain a
series-parallel representation. The automated resynthesis is
performed on series-parallel RSNs only if any faults are identi-
fied as undetectable by the altered path length. The resynthesis
method discussed in Section VI-A ensures the detectability
of a single fault in an elementary RSN and in Section VI-B
the detectability of all single faults in the switch logic of
a flat RSN is discussed. Section VI-C presents a divide-
and-conquer approach, which uses the previously constructed
binary decomposition tree and makes the resynthesis approach
scalable for large RSNs.
A. Enhancing the Testability for a Single Multiplexer

In order to guarantee the detectability of the ”stuck-at”
faults, which affect a multiplexer m, it should be ensured that
all the ”single fault reachable” paths through the multiplexer
have a unique path length. Therefore, a small number of cells
is added at the scan-inputs of this multiplexer.

The possible differences between the lengths of the partial
single fault reachable paths, which end at the specific scan-
inputs of the multiplexer, is obtained from the testability anal-
ysis as the set differences. A minimized length difference
addedCells is calculated as a smallest by the absolute value
number, which is missing in the differences set.

s1

s2

0

1

m1
s3

s4 s5

0

1

m2

s7f2f1

S-a-1

SI

Sensor 1

Sensor 2 s6

m3
0

1

0

1

SO
m1SI

s1

s2

f1 f2

s3

s4 f3 s5

m2

s7
m3

s6

SO

a) b)
Fig. 8. a) Non series-parallel RSN b) Its graph

Regular Paper

S

NSPP/m1

s1 s2

S

P/m3P/m1

s1 s2 S S

s4.2 s6P/m2

s3 +

s4.1 s5

s7

Fig. 9. Binary decomposition tree for a) non-series-parallel RSN from Fig. 8 b) its series-parallel representation

f1 f2branch
1

branch
2

branch
3

f1
branch

1.1f2
branch

2

branch
3

branch
1.2

s3

s5

m2

s7

m3

s6

f2
f3

s4.1

s4.2

merged
fan-outs

duplicated
vertex

a) b) c)
Fig. 10. a) Initial prohibited subgraph b) Transformed subgraph b) Transformed sub-graph of an RSN from Fig. 8

If the minimum length difference is a positive number, a
number of scan cells equal to the absolute value of addedCells

is inserted at the 1-scan-input of the multiplexer. The cells are
added at the 0-scan-input otherwise.

Example: If the set of the path length differences contains
the values {�3,�1, 0, 1, 2, 3}, a value ”�2” is taken and two
scan cells are added at the zero scan-input.

B. Enhancing the Testability in a Flat RSN
The testability in a flat RSN graph is enhanced by using

Algorithm 2, which ensures that the single fault reachable
paths are distinguishable by path lengths. The vertices Vin of
the graph serve as an input. The algorithm provides the vertex
set Vout annotated with the updated lengths as an output. The
following steps are performed:

• The topological order is computed, starting at the pseudo-
primary scan-input (Line 1).

• Each node is annotated with a weight, which is equal to
the length of a scan primitive (Line 2). The lengths of
the partial paths from a (pseudo-)primary scan-input to a
given vertex and their activation conditions are obtained
from the analysis, which is described in Section IV-B.

• If a given node is a scan multiplexer (Line 6), the infor-
mation about its children is obtained. After the children
are processed, it is ensured that the paths through the
0-input of the multiplexer, are distinguishable from the
paths through the 1-input by the altered path length, as
discussed in Section VI-A (Line 9).

• Additional scan cells are inserted at one of the scan-inputs
of the multiplexer, and the path lengths of the children
nodes are updated considering the added scan cells (Line
10-11). The possible paths through the multiplexer are
computed as a union of the paths through the scan-in
branches of the multiplexer.

Algorithm 2: uniqueLength
Input: The initial vertex set Vin
Output: The resulting vertex set with updated lengths Vout

1 vertexOrder TopologicalOrder(Vin, SI);
2 assignWeights(Vin);
3 Vout Vin;
4 for node 2 vertexOrder do
5 node.processed := true ;
6 if (node.type = scanMux) then
7 child0 node.child0;
8 child1 node.child1;
9 if (child0.processed ^ child1.processed) then

10 hcells0, cells1i node.ensureLen2Ins();
11 child0.updateLen(cells0);
12 child1.updateLen(cells1);
13 Vout.updateV alues(child0, child1);
14 node.paths [child0.paths [child1.paths];
15 else
16 node.ensureChildrenProcessed();
17 end
18 end
19 end
20 Vout updatedLengths();
21 return Vout

• The output vertex set Vout is updated with the new lengths
of the scan primitives (Line 20).

C. Hierarchical Resynthesis

The resynthesis of Section VI-B is applied in a divide-
and-conquer manner, using the binary decomposition tree, as
shown in Algorithm 3. The binary decomposition tree T of the
series-parallel RSN serves as an input, and the output is the
vertex set V RSN

out with the updated scan segments lengths. In
the resulting RSN, all the single faults in the control logic are
detectable by the altered path length. The computation starts
from the left-most leaf node of the tree, and continues in the
order of the reverse polish notation (Line 1).

Regular Paper

Algorithm 3: uniqueLength hierarchical

Input: The binary decomposition tree T of a series-parallel graph
representation G

RSN
SP

Output: The vertex set with updated scan segments lengths V
RSN
out

1 vertexOrder Order(T,Rev � Polish) ;
2 for node 2 vertexOrder do
3 child0 node.treeChild0;
4 child1 node.treeChild1;
5 if (child0.processed ^ child1.processed) then
6 node.ensureChildrenProcessed();
7 end
8 if node.processed then
9 Vsub.append(node);

10 node.processed true ;
11 end
12 if node.treetype =0

P
0 then

13 V
new
sub uniqueLength(Vsub) ;

14 V
RSN
out .updateV alues(V new

sub);
15 Vsub ;;
16 end
17 end
18 return V

RSN
out

The order vertexOrder implies that the stem regions of the
neighboring fan-out stems are processed sequentially, starting
from a top-level fan-out stem, which is located closer to a
primary scan-in port. Each stem region is processed in a
bottom-up manner, starting from the leaves.

For each vertex, it is ensured that its children are already
processed (Lines 5-6). A subnetwork is constructed by adding
each further unprocessed vertex into a subset Vsub (Line 7-9).
The graph traversal continues until the first parallel composi-
tion vertex is met (Line 12). A low-level sub-network, which
includes the vertices Vsub, is processed as in Algorithm 2 (Line
13), and the output vertex set is updated with the values from
the vertex subset V new

sub , which considers the updated segment
lengths. (Line 14).

Example: For RSN in Fig. 1, the resynthesis follows the
same order, as the hierarchical validation in Section IV-C2.

VII. IMPLEMENTATION

An initial RSN is given e.g. in the Instrument Connectivity
Language (ICL). The information about the virtual vertices,
which have been added, as discussed in Section V, to build a
series-parallel RSN representation, is only required to speed
up the analysis and the resynthesis process and is not needed
for the output ICL generation.

The information about the new lengths of the scan segments,
which have been updated to enhance the testability of a given
RSN, is used to regenerate the ICL description. The ICL code
lines, which provide the information about the length of a scan
segment located at a particular scan input of a scan multiplexer,
are updated with a new value. If, in the original RSN, there
is no scan segment at the scan input of the multiplexer, an
additional scan segment is added to the RSN structure and
also to its ICL description. Since only some buffer scan cells
are added into the initial RSN, the presented approach does not
affect the functional connectivity and thereby also the security
compliance [23] of the RSN. In the resulting RSN, any fault
in the switch logic would result in the altered ASP length.

VIII. EXPERIMENTAL RESULTS

The automated resynthesis flow has been implemented in
the eda1687 framework of [6]. The experiments have been
conducted on Intel(R) Xeon(R) W-2125 CPU at 4.00GHz
with 132 GB of main memory. The RSN benchmarks have
been taken from the ITC’2016 [30] and the DATE’2019 [16]
benchmark sets.

For the considered benchmarks the number of scan multi-
plexers (Column 2), SIBs (Column 3), scan segments (Column
4), scan cells (Column 5) and the highest hierarchy level
(Column 6) are given in Table II.

TABLE II
CHARACTERISTICS OF BENCHMARKS

(1)Design (2) #muxes (3) #sibs (4) #segs (5) #cells (6) #lvl
BasicSCB 10 - 21 176 4
Mingle 13 10 22 270 3
TreeFlat 24 12 24 101 2
TreeUnbalanced 28 28 63 41,887 11
TreeBalanced 46 43 90 5,581 7
TreeFlat Ex 60 57 123 5,194 5
q12710 25 25 47 26,183 2
a586710 47 - 79 41,682 3
p34392 142 - 245 23,261 3
t512505 160 - 288 77,006 2
p22810 283 283 537 30,111 3
p93791 653 - 1,241 98,637 3
MBIST 1 5 5 15 8 113 548 4
MBIST 1 5 20 15 8 338 1,523 4
MBIST 1 20 20 45 23 4,179 6,068 4
MBIST 2 5 5 28 16 224 1,091 4
MBIST 2 5 20 28 16 674 3,041 4
MBIST 2 20 20 88 46 2,624 12,131 4
MBIST 5 5 5 67 40 557 2,720 4
MBIST 5 20 20 217 115 6,557 30,320 4
MBIST 5 100 20 1,017 515 32,557 151,520 4
MBIST 5 100 100 1,017 515 151,135 671,520 4
MBIST 20 20 20 862 460 26,222 121,265 4
MBIST 55 20 5 2,367 1,265 22,607 118,970 4
MBIST 100 20 5 8,102 2,300 41,102 216,305 4
MBIST 100 100 5 20,102 10,300 172,700 1,080,305 4

A. Initial Benchmark Set
The presented analysis method has checked the existence of

faults in the switch logic, which remain undetected due to the
unaltered path length. If any faults are undetectable, additional
scan cells are inserted into the RSN. The testability analysis
has been performed within an acceptable runtime.

1) Problems with Testability: For the benchmark designs
TreeBalanced, Mingle, BasicSCB, the presented testability
analysis approach identified single faults in the switch logic,
which are undetectable by a path length. A minor number of
scan cells, which ranges between 4 scan cells for Mingle and 8
scan cells for BasicSCB, has been added into the initial RSN
structure to ensure fault detection by the existing methods.
A negligible runtime (below 3 seconds) has been required to
perform both the analysis and the resynthesis.

2) Proof of Testability: As expected, for a major part
of all widely-approved benchmarks, any fault in the RSN
switch logic is detectable by an altered path length. Using the
presented approach, it has been algorithmically proven that the
remaining considered benchmarks are testable with respect to
single faults. The ability to prove this property for any given
RSN design with an arbitrary structure is one of the major
contributions of this paper.

Regular Paper

B. Specifics of Processing
1) ITC’16 Benchmarks [30]: The ITC’16 benchmarks are

processed with the presented DfT method. As expected, most
of the RSN benchmarks can be modeled as series-parallel
graphs, and a transformation into a series-parallel form is
not required. Only the ”TreeFlat” benchmark graph is not
series-parallel. It is transformed into a series-parallel form,
and virtual vertices are added to perform the transformation.

2) DATE’19 Benchmarks [16]: A hierarchical structure of
benchmarks from the DATE’19 benchmark set is shown in
Fig. 11. A top-level chip TAP controller is used to access N

cores, such that each of the cores accesses the memory via
M controllers. Each core is accessed via a separate Segment
Insertion Bit (SIB core).

SIB core
0

SIB core
(N-1)

SI SO

...Controller 0 Controller (M-1)

Core
0

...

Chip TAP controller

...

Core
(N-1)

Fig. 11. MBIST benchmarks structure

The automated testability-enhancing resynthesis is applied
to the DATE’19 benchmarks hierarchically. First, each sub-
RSN, which corresponds to a single core (shown with green in
Fig. 11), is modeled as a series-parallel graph. The resynthesis
approach is first applied on a core-level to ensure single
fault detection. A top-level chip TAP controller graph rep-
resentation, is constructed next. Here, each core is modeled
with a single vertex, and the information about the possible
path lengths in a core is used for vertex annotation. A top-
level representation is transformed from an arbitrary non-
series-parallel graph into a series-parallel graph by adding
just two virtual vertices for each benchmark. The detection
of faults in a top-level representation is analyzed with the
presented approach, and, if needed, a minimized number of
cells is added.

C. Artificial Benchmarks
Since for the most initial benchmarks, the testability prop-

erty has been proven, the applicability of the structural resyn-
thesis up to this point has been only validated on a limited
number of the initial benchmarks. For the third-party RSN
designs the testability property is not guaranteed, and the
scalability and efficiency of the resynthesis must be validated
as well. To create a representative benchmark set, which
contains a high number of large RSN designs, additional
bypass registers with a controllable length are implemented.
The testability of the modified benchmarks has been analyzed
and the benchmarks have been resynthesized to ensure the
unique path lengths within a single fault assumption in the

switch logic. The output of the automated resynthesis method
is the list of scan segments with their modified length. This
list is used to modify the initial RSN to obtain a testable RSN.

The results are presented in Table III. Column 2 shows a
number of additional scan cells, which have been added into
the RSN. In average, one additional scan cell has been required
for each modified scan segment. Compared with the total
number of scan segments in RSNs (Column 4, Table II), and
especially with the number of scan cells (Column 5, Table II),
the presented method requires a negligible hardware overhead,
and the increase of the instruments access latency through the
resynthesized RSN is negligible as well. The number of virtual
changes, which have been performed to transform an arbitrary
graph into a series-parallel form, is given in Column 3 for all
the benchmarks.

The number of faults in the control scan primitives is given
in Column 4 for all the benchmarks, and includes all single
stuck-at faults, affecting control primitives. In Column 5, the
number of undetected faults, whose detection relies on ASP
length, UDT � PL is given for the initial RSNs. For the
resynthesized RSNs, after the presented method is applied,
each single fault in the control logic is detectable by an altered
path length, as validated by the repeated testability analysis.
The runtime of the approach is acceptable and requires less
than 25 minutes for the largest benchmarks, and just few
seconds for the most of the benchmarks (Column 6).

IX. CONCLUSION

This paper presents an automated resynthesis approach,
which allows to test the control signals of RSNs. The testa-
bility of RSNs with respect to high-level stuck-at faults in
the switch logic and control signals is accurately analyzed.
If at least one fault in the switch logic is not detectable by
the changed path length in the initial RSN, a light-weight
resynthesis is applied to the RSN and adds a minimized
number of scan cells. The resulting RSN is validated again
using the presented testability analysis method, to check
whether all the faults are now detectable by a path length. The
presented method can be applied in addition to the known test,
diagnosis and post-silicon validation methods for RSNs. The
results show the efficiency and the scalability of the presented
method for large RSNs designs with an arbitrary structure.

ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (DFG) under grant WU 245/17-2 (ACCESS) and partially
supported by Advantest as part of the Graduate School
”Intelligent Methods for Test and Reliability” (GS-IMTR) at
the University of Stuttgart.

BIBLIOGRAPHY

[1] M. A. Kochte and H.-J. Wunderlich, “Dependable on-chip infrastructure
for dependable MPSOCs,” in Proc. Latin-American Test Symp. (LATS),
2016, pp. 109–114.

[2] “IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device,” IEEE Std 1687-2014, pp. 1–283, Dec.
2014.

Regular Paper

TABLE III
TESTABILITY-ORIENTED RESYNTHESIS TO DETECT ALL UDT-PL

(1) Design (2) #cellsadded (3) #virtualadded (4) #faultstotal (5) UDT-PL (6) runtime[s]

BasicSCB 8 0 40 16 1.0
Mingle 4 0 52 8 1.2
TreeFlat 2 2,047 48 4 25.5
TreeUnbalanced 9 0 112 18 2.1
TreeBalanced 9 0 200 22 2.4
TreeFlat Ex 28 0 256 56 3.5
q12710 23 0 108 46 1.0
a586710 22 0 128 44 1.3
p34392 73 0 388 146 2.2
t512505 107 0 636 214 8.6
p22810 224 0 1,080 460 3.2
p93791 550 0 2,384 1,100 10.1
MBIST 1 5 5 4 2 30 10 1.1
MBIST 1 5 20 4 2 30 8 1.6
MBIST 1 20 20 15 2 90 30 3.3
MBIST 2 5 5 7 2 56 14 2.2
MBIST 2 5 20 9 2 56 18 0.8
MBIST 2 20 20 32 2 176 64 9.1
MBIST 5 5 5 20 2 134 40 1.1
MBIST 5 20 20 75 2 434 150 26.1
MBIST 5 100 20 365 2 2,034 730 120.7
MBIST 5 100 100 375 2 2,034 750 1453.0
MBIST 20 20 20 300 2 1,724 600 21.4
MBIST 55 20 5 866 2 4,734 1,732 356.2
MBIST 100 20 5 1,586 2 8,604 3,172 168.1
MBIST 100 100 5 7,600 2 40,204 15,200 280.3

[3] “IEEE Standard for Test Access Port and Boundary-Scan Architecture,”
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444,
May 2013.

[4] A. Tsertov, A. Jutman, K. Shibin, and S. Devadze, “IEEE 1687 Com-
pliant Ecosystem for Embedded Instrumentation Access and In-Field
Health Monitoring,” in Proc. IEEE AUTOTESTCON, Nov. 2018, pp.
1–9.

[5] A. M. Y. Ibrahim and H. G. Kerkhoff, “An On-chip IEEE 1687 Network
Controller for Reliability and Functional Safety Management of System-
on-Chips,” in Proc. Int’l. Test Conf. in Asia (ITC-Asia), Sep. 2019, pp.
109–114.

[6] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
Scan Networks: Modeling, Verification, and Optimal Pattern Genera-
tion,” ACM Trans. Design Automation of Electronic Systems (TODAES),
vol. 20, no. 2, pp. 30:1–30:27, 2015.

[7] D. Ull, M. Kochte, and H.-J. Wunderlich, “Structure-Oriented Test of
Reconfigurable Scan Networks,” in Proc. IEEE Asian Test Symp. (ATS),
Nov. 2017, pp. 127–132.

[8] M. A. Kochte, R. Baranowski, M. Schaal, and H.-J. Wunderlich, “Test
Strategies for Reconfigurable Scan Networks,” in Proc. IEEE Asian Test
Symp. (ATS), Nov. 2016, pp. 113–118.

[9] R. Cantoro, F. G. Zadegan, M. Palena, P. Pasini, E. Larsson, and M. S.
Reorda, “Test of Reconfigurable Modules in Scan Networks,” IEEE
Trans. on Computers, vol. 67, no. 12, pp. 1806–1817, 2018.

[10] R. Cantoro, A. Damljanovic, M. S. Reorda, and G. Squillero, “A
New Technique to Generate Test Sequences for Reconfigurable Scan
Networks,” in Proc. IEEE Int’l Test Conf. (ITC), 2018, pp. 1–9.

[11] A. Damljanovic, A. Jutman, G. Squillero, and A. Tsertov, “Post-Silicon
Validation of IEEE 1687 Reconfigurable Scan Networks,” in Proc. IEEE
European Test Symp. (ETS), May 2019, pp. 1–6.

[12] R. Cantoro, A. Damljanovic, M. S. Reorda, and G. Squillero, “A Novel
Sequence Generation Approach to Diagnose Faults in Reconfigurable
Scan Networks,” IEEE Trans. on Computers, vol. 69, no. 1, pp. 87–98,
2020.

[13] I. Hamzaoglu and J. H. Patel, “Deterministic test pattern generation tech-
niques for sequential circuits,” in IEEE/ACM Int’l Conf. on Computer
Aided Design (ICCAD), Nov. 2000, pp. 538–543.

[14] M. A. Kochte, R. Baranowski, and H.-J. Wunderlich, “Trustworthy
Reconfigurable Access to On-Chip Infrastructure,” in Proc. IEEE Int’l
Test Conf. in Asia (ITC-Asia), Sep. 2017, pp. 119–124.

[15] S. Brandhofer, M. A. Kochte, and H. Wunderlich, “Synthesis of Fault-
Tolerant Reconfigurable Scan Networks,” in Proc. Conf. on Design,
Automation Test in Europe (DATE), Mar. 2020, pp. 798–803.

[16] P. Raiola, B. Thiemann, J. Burchard, A. Atteya, N. Lylina, H.-J. Wunder-

lich, B. Becker, and M. Sauer, “On Secure Data Flow in Reconfigurable
Scan Networks,” in Proc. Conf. on Design, Automation Test in Europe
(DATE), Mar. 2019, pp. 1–6.

[17] N. Lylina, A. Atteya, C.-H. Wang, and H.-J. Wunderlich, “Security Pre-
serving Integration and Resynthesis of Reconfigurable Scan Networks,”
in Proc. IEEE Int’l Test Conf. (ITC), Nov. 2020, pp. 1–10.

[18] N. Lylina, A. Atteya, and H.-J. Wunderlich, “A Hybrid Protection
Scheme for Reconfigurable Scan Networks,” in To appear in Proc. of
the IEEE VLSI Test Symp. (VTS’21), Apr. 2021, pp. 1–7.

[19] S. Kumar, “Industrial Challenges of Bugs and Defects,” in NSF/SR-
C/DFG Joint Workshop on Bugs and Defects in Electronic Systems:
The Next Frontier, Apr. 2013, Schloss Dagstuhl, Germany.

[20] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomer-
anz, “Detection of Internal Stuck-open Faults in Scan Chains,” in Proc.
Int’l. Test Conf. (ITC), Dec. 2008, pp. 1–10.

[21] S. R. Maka and E. J. McCluskey, “ATPG for Scan Chain Latches and
Flip-Flops,” in Proc. VLSI Test Symp. (VTS), Apr. 1997, pp. 364–369.

[22] R. Cantoro, M. Montazeri, M. S. Reorda, F. G. Zadegan, and E. Larsson,
“On the Testability of IEEE 1687 Networks,” in Proc. Asian Test Symp.
(ATS), 2015, pp. 211–216.

[23] N. Lylina, A. Atteya, P. Raiola, M. Sauer, B. Becker, and H.-J. Wunder-
lich, “Security Compliance Analysis of Reconfigurable Scan Networks,”
in Proc. IEEE Int’l Test Conf. (ITC), Nov. 2019, pp. 1–9.

[24] F. Maamari and J. Rajski, “A method of fault simulation based on stem
regions,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 9, no. 2, pp. 212–220, 1990.

[25] H. Fujiwara and T. Shimono, “On the Acceleration of Test Generation
Algorithms,” IEEE Trans. on Computers, vol. C-32, no. 12, pp. 1137–
1144, 1983.

[26] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The Recognition of Series
Parallel Digraphs,” in Proc. of the Annual ACM Symp. on Theory of
Computing, 1979, p. 1–12.

[27] A. Church and J. B. Rosser, “Some properties of conversion,” vol. 1,
no. 2, p. 472–482., 1936.

[28] J. Keller and R. Gerhards, “PEELSCHED: a Simple and Paral-
lel Scheduling Algorithm for Static Taskgraphs,” PARS: Parallel-
Algorithmen, -Rechnerstrukturen und -Systemsoftware, vol. 28, Oct.
2014.

[29] M. Mitchell, “Creating minimal vertex series parallel graphs from di-
rected acyclic graphs,” in Proc. of the Australasian Symp. on Information
Visualisation (invis.au’04), 2004, p. 133–139.

[30] A. Tsertov, A. Jutman, S. Devadze, M. S. Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in Proc. IEEE Int’l Test Conf. (ITC),
Nov. 2016, pp. 1–10.

Regular Paper

