
Concurrent Test of Reconfigurable Scan
Networks for Self-Aware Systems

Wang, Chih-Hao; Lylina, Natalia; Atteya, Ahmed; Hsieh, Tong-Yu;
Wunderlich, Hans-Joachim

Proceedings of the IEEE International Symposium on On-Line Testing And Robust

System Design (IOLTS’21), Virtual, 28 - 30 June 2021, pp. 1-7

doi: https://doi.org/10.1109/IOLTS52814.2021.9486710

Abstract: Self-aware and safety-critical hardware/software systems rely on a variety of embedded instru-
ments, sensors, monitors and design-for-test circuitry to check the system integrity. The access to these
internal instruments is supported by standards commonly called iJTAG and employs so called reconfigurable
scan networks (RSNs), which are more and more used at runtime, too. They collect periodically and also
concurrently the information on the circuit’s health state and deliver it to some dependability management
unit. The integrity of RSNs is essential for the dependability of self-aware systems and can be ensured by a
combination of periodic and concurrent test methods of the RSN itself. The paper at hand presents the first
concurrent online test method for RSNs by adding a brief integrity test to each access operation. The pre-
sented scheme includes a hardware extension of negligible size, supports offline test, diagnosis and post-silicon
validation as well, and is further referred as ROSTI: RSN Online/Offline Self-Test Infrastructure. It exploits
the original RSN control signals and does not require any modification of the underlying RSN. The hardware
costs are independent of the size of the RSN, and ROSTI is flexible for generating different test sequences
for different types of faults. The experimental results validate these characteristics and show that ROSTI is
highly scalable.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE
c©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://doi.org/10.1109/IOLTS52814.2021.9486710

Concurrent Test of Reconfigurable Scan Networks
for Self-Aware Systems

Chih-Hao Wang1, Natalia Lylina2, Ahmed Atteya2, Tong-Yu Hsieh1, Hans-Joachim Wunderlich2

1Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
chwang.peter@gmail.com, tyhsieh@mail.ee.nsysu.edu.tw

2Institute of Computer Architecture and Computer Engineering (ITI), University of Stuttgart, Stuttgart, Germany
{lylina, atteyaad, wu}@informatik.uni-stuttgart.de

Abstract—Self-aware and safety-critical hardware/software
systems rely on a variety of embedded instruments, sensors,
monitors and design-for-test circuitry to check the system
integrity. The access to these internal instruments is supported
by standards commonly called iJTAG and employs so called
reconfigurable scan networks (RSNs), which are more and
more used at runtime, too. They collect periodically and also
concurrently the information on the circuit’s health state and
deliver it to some dependability management unit.

The integrity of RSNs is essential for the dependability of self-
aware systems and can be ensured by a combination of periodic
and concurrent test methods of the RSN itself. The paper at
hand presents the first concurrent online test method for RSNs
by adding a brief integrity test to each access operation. The
presented scheme includes a hardware extension of negligible
size, supports offline test, diagnosis and post-silicon validation as
well, and is further referred as ROSTI : RSN Online/Offline Self-
Test Infrastructure. It exploits the original RSN control signals
and does not require any modification of the underlying RSN.
The hardware costs are independent of the size of the RSN,
and ROSTI is flexible for generating different test sequences for
different types of faults. The experimental results validate these
characteristics and show that ROSTI is highly scalable.

Keywords– Self-Aware Systems, Reconfigurable Scan Networks,
Systems-on-a-Chip, Test, Online Test, Concurrent Test

I. INTRODUCTION

Self-aware and safety-critical hardware/software systems
rely on a variety of embedded instruments, sensors, monitors
and design-for-test circuitry to check the system integrity and
eventually to initiate fault-tolerance actions [1]. The access
to these internal instruments is supported by the standards
commonly called iJTAG (internal Joint Test Access Group)
and employs so called reconfigurable scan networks (RSNs).

Each instrument is connected to a scan segment, and control
segments determine via multiplexers and Segment Insertion
Bits (SIBs) an activated path through the network which
can transport information from one instrument to another
one, or which can collect information for central evaluation
and dependability management. Standards for such RSNs are
found under IEEE Std. 1687-2014 (iJTAG) [2] and IEEE Std.
1149.1-2013 (JTAG) [3].

Originally, iJTAG techniques were developed for test, debug
and diagnosis in post-silicon validation and production test,
but they can be also used at runtime to collect information
on the circuit’s health state and can pass it to a dependability
management unit at system level [4], or to support online test
and diagnosis at runtime [5]. In any case, the dependability and
fault-tolerance of the entire system depend on the integrity

of the access mechanism, and first papers on fault-tolerant
RSNs are already found in literature [6]. An essential part
of most fault-tolerance schemes is online fault detection as a
prerequisite for fault recovery, fault repair or reconfiguration.

The paper at hand presents the first scheme of a concurrent
online test of RSNs for fault detection. It includes a negligible
amount of additional hardware, and can also be used for an
offline test of the RSN in post-silicon validation and produc-
tion test. This scheme comprises an RSN Online/Offline Self-
Test Infrastructure (ROSTI), which augments each workload
shifted through the RSN by a brief pre-sequence which tests
the integrity of the activated path through the RSN.

This new online test scheme for RSNs has mainly four goals:

1) Support of system level recovery: A violation signal has
to be generated which may trigger an interruption and
forbid an upload operation of the RSN. Fault recovery
techniques like re-execution or reconfiguration can be
initiated.

2) Flexibility with respect to different fault types: The
above mentioned pre-sequence should be programmable
and adopted to technology dependent defect models.

3) Independence of the RSN structure: The hardware
implementation of ROSTI should only depend on the size
of the flush test sequence, and be independent of the RSN
size. The control of ROSTI has only to depend on global
signals, and an internal generation of control signals is
not required.

4) Cost-effectiveness and easiness to implement: ROSTI
has to be compliant with the upcoming standard P1687.1
[7] and can be integrated into a TAP controller with
negligible hardware costs.

To validate the approach, a set of commonly accessible
benchmarks of RSNs is used. According to the simulation
experiments, the online use of ROSTI reaches a comparable
fault coverage with external testing. Less than 0.69% of area
overhead with respect to the original RSN size is incurred for
all the benchmark circuits.

The rest of the paper is organized as follows. Section II
describes the required background of the RSNs. Section III
explains the runtime use and integrity tests of RSNs. Section
IV presents the basic strategy and algorithm of ROSTI, and
Section V explains the underlying hardware implementation.
Experimental results are discussed in Section VI. Finally,
Section VII concludes the paper.

II. TERMINOLOGY OF RSNS

Reconfigurable Scan Networks (RSNs) provide a flexible
and efficient mechanism to access on-chip instruments, such
as aging monitors, sensors, and Built-In Self-Test registers.
Typically, an RSN contains scan segments, wrapped instru-
ments, and scan multiplexers, as shown in Fig. 1.

0

1

s1

s2

cs1

0

1

s3

cs2

Primary SI Primary SO
SIB

m1 m2

Active Scan Path (ASP)

Scan

 Segment

Control

Segment

Scan

Mux

DUT
i1 i2 i3

RSN

Instrument’s

Instrument

Fig. 1. RSN terminology

Scan segments are acting as a normal scan chain to transfer
data from a scan-in (SI) towards a scan-out (SO) or with
an instrument via a data-in (DI) and a data-out (DO). A
scan segment can be connected to an instrument to form a
wrapped instrument. In order to reconfigure the path of data
transferring, scan multiplexers are added to switch between
different scan segments. An RSN may also contain optional
control primitives called Segment Insertion Bits (SIBs), which
include and exclude the parts of an RSN from an activated
path. A subnetwork is selected, only if the SIB is asserted.
Otherwise, the subnetwork will be bypassed.

A non-circular path from a primary SI to a primary SO
through a sequence of selected scan primitives is called an
Active Scan Path (ASP). The ASP in the provided example is
shown as a red dashed line in Fig. 1, and is going from SI to
the SIB to SO. Since the SIB is open, the control segments cs1,
cs2, as well as the scan segments s1, s3, are included into the
ASP. The control signals are used to drive the select-ports of
the scan primitives and thereby to build an ASP. These control
signals can be generated internally from the shadow registers
of the control segments, or externally from the outside of the
RSN. A Scan Configuration c is defined by the state of the
configuration registers in the RSN and by the assignments to
the external control signals. In a valid scan configuration, only
a single ASP is configured.

An access to an RSN includes three phases, namely the
capture, shift, and update. During a capture phase, the data
from the instruments is transferred to the scan segments. Then,
during a shift phase, the data is being shifted through the
ASP, while the new data is being shifted in. Finally, during
an update phase, the newly shifted-in data is latched in the
shadow registers of the scan segments. This data can be
further used to drive the internal control signals and thereby to
select a particular ASP. Alternatively, the data in the shadow
registers can be written into the instruments, e.g. to control
their operation.

III. RUNTIME USE AND INTEGRITY TESTS OF RSNS

A. Runtime Use of RSNs

A complete fault management solution for self-aware sys-
tems is proposed in [4], which uses RSNs to perform online
fault detection and to adapt the system operation, such that
only the healthy resources of the system are used.

In [8] an on-chip controller is presented to efficiently operate
the instruments, which are used to enhance the reliability and
the functional safety of the system during the whole life-cycle.
Cross-layer evaluation procedures are presented to process
the instruments’ measurement data and to control the system
operation.

Inline with the above mentioned solutions, an overall
architecture, which utilizes an RSN online, is shown in Fig 2.
A Test Access Port (TAP) Controller accesses an RSN through
a primary SI, and the data from an RSN comes to a primary
SO port. The external Capture-, Shift- and Update signals,
driven by a TAP controller, are used to control the operation
of the RSN. The standard extension proposal P1687.1 [7]
allows to access RSNs through alternate non-JTAG interfaces
such as e.g. I2C (Inter-Integrated Circuit), as long as the
iJTAG-compliant control signals are generated by the access
mechanism to drive the RSN. The RSN captures the evaluation
data from the dependability instruments of the hardware/-
software system, which is referred as a Device-under-Test
(DUT in Fig. 2), through the scan segments and transfers this
information to the dependability management unit through a
P1687.1 compliant access interface. This data is processed in a
dependability management unit concurrently to the functional
operation of the DUT. Depending on the health status of
the DUT and its instruments, the dependability management
unit decides, which of the system resources are healthy, and
controls the operation of the dependability instruments through
the RSN online.

P1687.1

Compliant Access

Access

Port

TAP

controller
Shift

Update

Capture

SI

SO

D
e
p

e
n

d
a

b
il

it
y

 M
a

n
a

g
e

r

D
U

T

Fig. 2. Runtime use of RSNs

However, even a single fault in an RSN itself can lead
to inaccessibility of some instruments through the RSN. An
online fault detection mechanism for RSNs is essential to
ensure the dependable RSN operation and thereby to support
the system-level dependability. To the best of our knowledge,
concurrent online test of the RSN has not been addressed yet.

B. Integrity Test of RSNs

The dependability and test infrastructure may occupy a
significant amount of the chip area [9, 10], and has to be
tested as well.

Faults in conventional scan chains can be detected by using
special sequences, which are shifted through a tested scan
chain. These sequences are usually referred as flush test
sequences [11] and can be applied to ensure the integrity of
the scan cells and their interconnection. Already conventional
scan-chain testing for realistic fault models is challenging [12–
14]. The test of RSNs is even more complicated due to their
high sequential depth, distributed control structure, as well as
the complex sequential and combinational dependencies [15].
Moreover, specific fault effects may become observable only
for certain RSN configurations, and sequential test sequence
generation (TSG) for such faults may be unfeasible for existing
TPG tools. As a highly sequential structure, an RSN is
also prone to soft-errors and transient faults which require
concurrent test methods.

Faults in scan segments of an RSN are mostly modeled as
stuck-at faults. In [16], a particular scan segment is tested by
configuring an ASP to select it and applying a flush sequence.
For ”stuck-at-faults”, flush sequences such as “01100” or
“10011” are used for the integrity test of scan cells by gener-
ating all possible transitions, including ”00”, ”01”, ”10”, and
”11”. The flush sequences are modifiable for more complex
fault models, such as delay faults. In [17, 18], a test method
for gate-level stuck-at-faults is presented and the quality of
different test strategies is investigated. Additionally, a design-
for-test approach is presented to cover also the faults in the
capture- and update-circuitry in scan segments with shadow
registers. Due to the increased observability and the controlla-
bility of shadow flip-flops, more realistic faults models, which
include flip-flop transparency faults for both shift and shadow
flip-flops, and also bridge faults, can be handled.

It should be noted that a fault in an RSN may arise
not only inside the scan segments but also inside the scan
multiplexers, control logic, or interconnects. Since the scan
segments occupies the largest area of the RSN, the integrity
test is mandatory. Offline test methods to the other parts of
the RSN can be found in the literature.

IV. ROSTI

ROSTI generates integrity test sequences and attaches them
to the workload sequences, which include the configuration
sequences and the instrument access sequences. The integrity
of the scan path is tested as a part of the access operation.

P1687.1 Compliant
Access with Online Self-Test

Access

Port
ROSTI

SI

S

O

To SI

From

SO

TSG

Controller

Acceptor

D
e
p

e
n

d
a

b
ili

ty
 M

a
n

a
g

e
r

Vio

CSU CSU
TAP

controller

R
S

N

3 3

Fig. 3. The ROSTI scheme for online RSN test

A. General Idea of ROSTI

ROSTI exploits the original RSN control signals, including
capture, shift, and update, to conduct an integrity test:

� After the capture signal and with the shift signal, a brief
pre-sequence is put in front of the workload sequence.
This pre-sequence implements a flush test and is pro-
grammable and flexible.

� The pre-sequence and the workload sequence are shifted
through the ASP.

� If the ASP is not corrupted, the bits of the pre-sequences
have been shifted-out unchanged, and the workload se-
quence is at the target instrument.

ROSTI includes a test sequence generator, an acceptor
and a controller, and it is placed between the RSN and the
TAP controller as illustrated in Fig. 3. Together with a TAP
controller and an access port, ROSTI represents an access
interface, which enables online RSN self-test and is compliant
with the P1687.1 standard proposal.

The inputs to ROSTI are the standard iJTAG interface
signals, which include the external Capture-, Shift- and Update
signals (referred as CSU in Fig. 3). The outputs are the V io
violation signal, which indicates the defectiveness of the RSN,
and a To SI signal, which is used to forward data to the
RSN. All the signals, which are required by ROSTI, are taken
directly from the TAP controller and additional control signals
are not needed. The controller triggers the select signals of the
scan multiplexers for generating the proper ASP test bit.

The flush test sequences are generated and evaluated by
ROSTI to test each ASP. These sequences can be modified
and extended according to the needs of the underlying tech-
nology for fault detection. They test not only the correct scan
operation but also multiplexers and selected branches to a wide
extent.

In general, a flush test sequence is symmetric with respect
to inversion, i.e., if T =< tn−1, . . . t0 > is a flush test
for the ASP, T =< tn−1, . . . , t0 > is one as well. If
W =< wm−1, . . . , w0 > is the workload bit sequence, the
tails of either T or T overlap with the head of W by at least
one bit, and there is no need to repeat these bits in T or T
(see Fig. 4).

(a)

(b)

Instrument access sequence W ASP test sequence T or T

Shared

bits

Fig. 4. Test-bit sharing mechanism

Since an overlap of a flexible number of bits between
workload and test sequence would require complex control, we
consider just a constant overlap of a single bit for the rest of
the paper. E.g., a widely used flush test is ”01100” (”10011”),
ROSTI generates four remaining bits ”1100” (”0011”) and is
thereby reducing the test time overhead by 20%.

Whenever the self-aware system mechanism accesses instru-
ments via the RSN, the ASP test sequence is automatically
generated and added to the instrument access sequence or the
configuration sequence. The RSN violation signal prevents the
fault manager from performing an invalid online test when
the RSN contains defects or soft errors. The violation signal
from ROSTI may also be a system primary output to trigger
a warning signal to the user showing that the system is
unreliable.

V. HARDWARE IMPLEMENTATION OF ROSTI

ROSTI generates a test sequence as described above and
shifts it into the RSN. Fig. 5 illustrates the architecture of
ROSTI. It only affects the scan-in (SI) of the RSN, and thereby
does not require any modifications of the DUT and the RSN.

In the following, the hardware implementation of ROSTI
will be explained in a block-by-block manner, including three
major parts: 1) Test Sequence Generator (TSG), 2) Acceptor,
and 3) Controller. The major definitions are summarized in
Table I.

SO

Record

Mux Control

TSG

2

TG0 TG1 TG2 TG3

D Q D Q D Q D Q

ROSTI Controller

Acceptor

FF0

AC3 AC2 AC1 AC0

Q DQ D Q D Q D

Q D

1

Vio internal

Capture

From SO

SI

clk

Vio

To SI

Capture

Shift

Update
Shift

Update

M

U

X
M

U

X

3

Fig. 5. Detailed architecture of ROSTI

TABLE I
DEFINITION OF TERMS

Terms Descriptions

n The length of the current ASP.

m The length of the test sequence. m = 5
in this case.

pi ∈ P, 0 ≤ i < n The sequence sent (capture) to (from)
the instrument, called instrument access
sequence.

tj ∈ T, 0 ≤ j < m The m-bit flush test sequence for testing
the ASP (ASP test sequence).

TGk, ACk, 0 ≤ k < m− 1 The flip-flops in the TSG and in the
acceptor, one bit is shared with an instru-
ment test sequence.

FF0 The flip-flop to store the first bit of in-
strument access sequences (p0)

A. Test Sequence Generator (TSG)

The ASP test sequence is added as a pre-sequence to the
instrument access sequence and is shifted-in together without
adding any hold cycle.

The operating flow of TSG is shown in Algorithm 1. Further,
we explain this flow step-by-step:

Algorithm 1: Operating flow of the TSG

Data: The length of the current ASP n.
Instrument access sequence:
{p0, p1, p2, p3, p4 . . . pn−1}

ASP sequence:
{t0, t1, t2, t3, t4} = {p0, p0, p0, p0, p0}

Result: Test sequence generator bits:
{TG0, TG1, TG2, TG3}

1 Shift operations: {
2 1st clock:
3 p0 → TG0; t0 → RSN ;

4 2nd clock:
5 p1 → TG0; p0 → TG1; t1 → RSN ;

6 3rd clock:
7 p2 → TG0; p1 → TG1; p0 → TG2; t2 → RSN ;

8 4th clock:
9 p3 → TG0; p2 → TG1; p1 → TG2; p0 → TG3;

t3 → RSN ;

10 5th clock:
11 p4 → TG0; p3 → TG1; p2 → TG2; p1 → TG3;

t4 → RSN ;
12 }

Step 1 (Line 2-3): As soon as the first bit of the instrument
access sequence (p0) is ready at the global scan-in port (SI),
it is directly used as the first bit of the ASP test sequence t0
and shifted into the RSN.

Step 2 (Line 4-9): In order to generate the rest of the ASP
test sequence (i.e. p0p0p0p0), a four-bit shift register (TG0−3)
is used as illustrated in Fig. 5. When the first shift operation
is done, the first bit of the instrument access sequence is at
TG1. The inversed logic value (Q) of TG0 is selected via the
multiplexers to shift t1(= p0) into the RSN. This procedure
iterates for m− 1 clock cycles in total, where m is the length
of the flush test sequence.

Step 3 (Line 10-11): At the mth clock cycle (in this case, the
5th), the first bit of the instrument access sequence is shifted
into the RSN and acts as the mth bit of ASP test sequence
t4(= p0). sequence

B. Acceptor

As described above, the ASP test sequence is generated
according to the assignment of p0. This value is recorded in
a flip-flop FF0 of the acceptor (marked in gray in Fig. 5) for
the further test response comparison. A finite state machine
(FSM) works as an acceptor of the test sequence. If the last
five bits shifted out of the RSN are identical with the pre-
sequence p0p0p0p0p0, the violation signal is not triggered and
it outputs V io := 0, which means that the ASP test passed. If
the compared bits are different, the violation signal (V io := 1)
is triggered.

A simple implementation of the acceptor can be repre-
sented as a combination of a shift register and a comparator.
Algorithm 2 shows the operating flow of the acceptor:

Algorithm 2: Operating flow of the acceptor

Data: The length of the current ASP n.
Instrument access sequence:
{p0, p1, p2, p3, p4 . . . pn−1}

ASP sequence:
{t0, t1, t2, t3, t4} = {p0, p0, p0, p0, p0}

Result: Test sequence generator bits:
{TG0, TG1, TG2, TG3}

Acceptor bits:
{AC0, AC1, AC2, AC3}

Violation V io
1 Shift operations: {
2 nth clock:
3 t0 → SO;

4 (n+ 1)th clock:
5 t1 → SO; t0 → AC0;

6 (n+ 2)th clock:
7 t2 → SO; t1 → AC0; t0 → AC1;

8 (n+ 3)th clock:
9 t3 → SO; t2 → AC0; t1 → AC1; t0 → AC2;

10 (n+ 4)th clock:
11 t4 → SO; t3 → AC0; t2 → AC1; t1 → AC2; t0 → AC3;
12 }
13 Update operation: {
14 V io → Primary output or TAP controller
15 }

Step 1 (Line 2-3): If the current ASP has the length n, then, at
the nth cycle of the shift operation, the first bit of the ASP test
sequence is shifted-out and this bit is simultaneously written
into the acceptor.

Step 2 (Line 4-11): During the test response comparison, the
acceptor is working aside the RSN and the shift operation
is performed normally, and thereby does not require any
additional control.

Step 3 (Line 12-13): As soon as the shift operation is done,
the violation signal V io is fetched at the update operation of
the RSN. This signal serves as a primary output of ROSTI, and
can be forwarded to the TAP controller, in order to interrupt
the update, or to the dependability management unit directly.

The presented acceptor is independent of the length of the
ASP and its hardware costs depend only on the length of the
test sequence since the acceptor is controlled by the available
global shift and update signals.

C. ROSTI Controller

The most important task of the controller is to generate the
violation signal (V io) with a correct timing. When a violation
occurs, i.e. if an RSN test fails, ROSTI raises the violation
signal. This signal is triggered by the rising transition of the
clock signal after the removal of the shift signal (shift) and it
holds for one cycle as shown in Fig. 6. The controller is also
responsible for writing the first-bit of the instrument access
sequence into the flip-flop FF0 of the acceptor.

VI. EXPERIMENTAL RESULTS

The presented approach is evaluated with the help of the
ITC’02 SoC (System-on-a-Chip) benchmark set [19]. The
RSNs are constructed for these benchmarks by using the
method from [20] and [15], and have a hierarchical bypass
(SIB-based) structure. Table II summarizes the characteristics
of the considered RSNs. The RSNs contain up to 197,208 flip-
flops (Column 2), which can form 327 to 9,174 possible ASPs
(Column 3).

All the generated RSNs and ROSTI structures are synthe-
sized for the TSMC 90nm technology library by commercial
tools.

TABLE II
BENCHMARK CHARACTERISTICS

Circuits # FFs # ASPs
(1) (2) (3)

u226 2,930 615
d281 7,742 774
d695 16,792 2,385

h953 11,280 702
g1023 10,770 1,005
f2126 31,658 540

q12710 52,366 327
p22810 60,220 3,972
p34392 46,482 1,815

p93791 197,208 9,174
t512505 154,010 2,001
a586710 83,348 534

clk

Capture

Shift

Vio

Init
1

st
-bit

record
Wait

Viol.

trigger
Task

n
th

cyclen-1 cycles

Update

t0 at

SO

p0 at

SO

n : the length of the current ASP

t0 : 1
st
-bit of ASP test pattern

p0 : 1
st
-bit of instrument access pattern

Shift

Cycles 4 cycles

Fig. 6. Waveform of the ROSTI scheme

The design-for-testability scheme, which has been presented
in [18], is integrated into the considered RSN designs. Feed-
back routes are injected to enhance the observability of the
shadow registers in the RSNs and thereby to achieve higher
fault coverage. The test generation process is implemented
in C++ as described in [18] with the RSNs described in
Instrument Connectivity Language (ICL) [2]. Stuck-at faults
are considered to evaluate the fault coverage. The commercial
fault simulation is very compute intensive. So for the largest
circuits, fault sampling [21] is used for determining the fault
coverage with a confidence interval of 99% .

A. Hardware Cost

For the ROSTI architecture (Fig. 5), where a flush test
sequence consists of five bits, four flip-flops are required for
the TSG, and another four bits are required for the acceptor.
For the controller of ROSTI, only eight flip-flops are used.
The architecture of ROSTI is independent of the RSN and the
number of the required flip-flops is also fixed for any RSN
under test. ROSTI is placed between the TAP controller and
the RSN, but the delay overhead of ROSTI is negligible and
is less than 0.07 ns, since ROSTI contains only a few gates.

The area overhead of ROSTI is reported in the second
column of Table III. According to the results, ROSTI always
needs less than 1% of the area needed by the RSN itself. The
average cost of the investigated examples is around 0.15%.

B. Fault Coverage

The access traffic on an RSN equipped with ROSTI was
analyzed with a commercial fault simulator, and the fault
coverage obtained in online mode is reported in column (3)
of Table III. Fault coverage reached in external offline testing
are listed in column (4).

According to the results, the ROSTI scheme provides a
similar fault coverage as a conventional external test scheme.
The fault coverage is above 92.60% for nine benchmark
circuits without fault sampling, and is 94.72% on average. It
validates that the approach is able to generate and compare the
proper sequences for the RSN test. The missing percentage of
the fault coverage requires testing the interfaces to instruments
and logic as explained above.

TABLE III
AREA OVERHEAD, FAULT COVERAGE, AND TEST TIME

Circuits AO* Fault coverage** # of clock cycles
(1) (2) for a complete test

Online Offline External External
(3) (4) w/o ROSTI w/ ROSTI

(5) (6)

u226 0.69% 93.48% 93.65% 23,262 22,647
d281 0.27% 95.44% 95.51% 34,887 34,113
d695 0.19% 92.60% 92.17% 118,619 116,234

h953 0.18% 96.28% 96.32% 38,949 38,247
g1023 0.20% 95.59% 95.66% 51,423 50,418
f2126 0.06% 95.10% 95.11% 75,809 75,269

q12710 0.03% 95.43% 95.43% 110,231 109,904
p22810 0.08% 93.89% 93.96% 298,755 294,783
p34392 0.06% 94.67% 94.70% 156,403 154,588

p93791 0.04% 84.57±0.94% 85.98±0.90% 888,873 879,699
t512505 0.02% 85.77±0.87% 86.37±0.85% 404,930 402,929
a586710 0.02% 85.99±0.90% 86.90±0.88% 178,655 178,121

*AO: Area overhead, compared to the underlying RSN
**Fault sampling is used to p93791, t512505, and a586710 with 99% of
confidence interval

ROSTI as any Design for Testability (DfT) circuitry has to
be tested itself as well before using it. The test generation
process is done by a commercial tool with full-sequential
ATPG setting, and achieves a fault coverage of 96.84% with
16 patterns and 278 test cycles.

C. Support of off-line test

The presented ROSTI scheme can also be reused for an
offline test, as shown below. The remainder of the subsection
compares the following test schemes:

� External Offline Test: An external tester is used to
shift-in the test sequences into the RSN. A complete
test sequence includes an instrument test sequence W
and a flush test sequence T , as shown in Fig. 4.(a).
The instrument access sequence can be generated by an
external tester and is used e.g. for testing the interfaces to
instruments, whereas the flush test sequence is responsi-
ble for performing the integrity test of the selected ASPs.
Each complete test sequence requires |W | + |T | shift
cycles.

� External Offline Test + ROSTI: The same instrument
test sequences are shifted-in into the RSN externally, but
the flush test sequences are generated by ROSTI. Thanks
to the presented bit sharing mechanism, a complete test
sequence would require only |W |+ |T |− l cycles, where
l denotes the number of shared bits.

An external test tries to cover all primitives and instrument
interfaces of the RSN by activating a minimized number
of activated scan paths. Column 3 of Table II shows the
number of ASPs to be activated by the test generation method
according to [15]. Column 5 of Table III denotes the number
of clock cycles including capture, shift and update cycles and
the cycles of the flush sequences for the used ASPs. Column
6 of Table III shows that the test time is reduced, if the flush
test sequence generation is supported by ROSTI. The results
validate that ROSTI is able to reduce the test time and the test
volume when used to support an external external test.

VII. CONCLUSION

This paper presents the scheme ROSTI to generate online
testable reconfigurable scan networks to be used for monitor-
ing, sensing and self-testing of self-aware systems. The method
greatly reduces the test cost by self-generating and self-
comparing test sequences and enables an online test strategy.
The control of ROSTI does not cause significant overhead,
since it exploits the existing RSN control signals.

ROSTI has excellent scalability with nearly fixed, negligible
hardware cost and supports also an external test in production.
Furthermore, ROSTI is also modifiable and programmable for
more complex test sequences.

ACKNOWLEDGMENTS

This work was supported in part by the German Research
Foundation (DFG) under Contract Number WU245/17-2, by
Advantest as part of the Graduate School “Intelligent Methods
for Test and Reliability” (GS-IMTR) at the University of
Stuttgart, and by the Ministry of Science and Technology
of Taiwan under Contract Number MOST 108-2911-1-110-
503, MOST 108-2628-E-110-004-MY3 and MOST 107-2221-
E-110-006-MY2.

BIBLIOGRAPHY

[1] A. Jantsch, N. Dutt, and A. M. Rahmani, “Self-Awareness in Systems
on Chip—A Survey,” IEEE Design & Test, vol. 34, no. 6, pp. 8–26,
2017.

[2] “IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device,” IEEE Std 1687-2014, pp. 1–283, 2014.

[3] “IEEE Standard for Test Access Port and Boundary-Scan Architecture,”
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444,
2013.

[4] K. Shibin, S. Devadze, A. Jutman, M. Grabmann, and R. Pricken,
“Health Management for Self-Aware SoCs Based on IEEE 1687 In-
frastructure,” IEEE Design & Test, vol. 34, no. 6, pp. 27–35, 2017.

[5] M. A. Kochte and H.-J. Wunderlich, “Self-Test and Diagnosis for Self-
Aware Systems,” IEEE Design & Test, vol. 35, no. 5, pp. 7–18, 2018.

[6] S. Brandhofer, M. A. Kochte, and H. Wunderlich, “Synthesis of Fault-
Tolerant Reconfigurable Scan Networks,” in Proc. Design, Automation
Test in Europe Conf. Exhibition (DATE), 2020, pp. 798–803.

[7] A. L. Crouch, B. G. Van Treuren, and J. Rearick, “P1687.1: Accessing
Embedded 1687 Instruments using Alternate Device Interfaces other
than JTAG,” in Proc. IEEE European Test Symp. (ETS), May 2020,
pp. 1–6.

[8] A. M. Y. Ibrahim and H. G. Kerkhoff, “An On-chip IEEE 1687 Network
Controller for Reliability and Functional Safety Management of System-
on-Chips,” in Proc. Int’l. Test Conf. in Asia (ITC-Asia), 2019, pp. 109–
114.

[9] R. Guo and S. Venkataraman, “A Technique for Fault Diagnosis of
Defects in Scan Chains,” in Proc. Int’l. Test Conf. (ITC), 2001, pp.
268–277.

[10] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomer-
anz, “On the Detectability of Scan Chain Internal Faults An Industrial
Case Study,” in Proc. VLSI Test Symp. (VTS), 2008, pp. 79–84.

[11] K.-J. Lee and M. A. Breuer, “A Universal Test Sequence for CMOS
Scan Registers,” in Proc. of the Custom Integrated Circuits Conference,
1990, pp. 28.5/1–28.5/4.

[12] S. R. Maka and E. J. McCluskey, “ATPG for Scan Chain Latches and
Flip-Flops,” in Proc. VLSI Test Symp. (VTS), 1997, pp. 364–369.

[13] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomer-
anz, “Detection of Internal Stuck-open Faults in Scan Chains,” in Proc.
Int’l. Test Conf. (ITC), 2008, pp. 1–10.

[14] W. Cheng, G. Mrugalski, J. Rajski, M. Trawka, and J. Tyszer, “On Cyclic
Scan Integrity Tests for EDT-based Compression,” in Proc. VLSI Test
Symp. (VTS), 2019, pp. 1–6.

[15] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
Scan Networks: Modeling, Verification, and Optimal Pattern Genera-
tion,” ACM Trans. on Design Automation of Electronic Systems (TO-
DAES), vol. 20, no. 2, p. 30, 2015.

[16] R. Cantoro, M. Montazeri, M. S. Reorda, F. G. Zadegan, and E. Larsson,
“On the Testability of IEEE 1687 Networks,” in Proc. Asian Test Symp.
(ATS), 2015, pp. 211–216.

[17] M. A. Kochte, R. Baranowski, M. Schaal, and H. Wunderlich, “Test
Strategies for Reconfigurable Scan Networks,” in Proc. Asian Test Symp.
(ATS), 2016, pp. 113–118.

[18] D. Ull, M. Kochte, and H. Wunderlich, “Structure-Oriented Test of
Reconfigurable Scan Networks,” in Proc. Asian Test Symp. (ATS), 2017,
pp. 127–132.

[19] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of Benchmarks
for Modular Testing of SOCs,” in Proc. Int’l. Test Conf. (ITC), 2002,
pp. 519–528.

[20] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Modeling, Veri-
fication and Pattern Generation for Reconfigurable Scan Networks,” in
Proc. Int’l. Test Conf. (ITC), 2012, pp. 1–9.

[21] V. D. Agrawal and H. Kato, “Fault sampling revisited,” IEEE Design &
Test of Computers, vol. 7, no. 4, pp. 32–35, 1990.

