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Abstract—Reliable operation, test, debug and diagnosis of com-
plex integrated systems are ensured by embedded instruments,
such as sensors, aging monitors or Built-In Self-Test (BIST)
registers. Reconfigurable Scan Networks (RSNs) offer a flexible
and efficient way to access such test instruments throughout
the whole life-cycle. However, improper RSN integration might
introduce additional connectivity properties to the device under
test (DUT), which can be exploited to perform unauthorized
access or cause information leakage. The existence of such
additional connectivity through the RSN can compromise the
security of the DUT and is considered as a security threat.

In this paper, a method is presented to resolve all such security
compliance violations. The problem is formulated in terms of
Integer Linear Programming (ILP) as a minimum cut problem
in multicommodity flow. An efficient heuristic is presented, which,
to our knowledge, for the first time allows to consider the whole
set of violations simultaneously and thereby to find a minimized
number of changes to the RSN structure in order to make it
compliant with the initial security requirements of the DUT and
prevent the information leakage through the scan chain.

Keywords-Reconfigurable Scan Networks, Hardware Security,
Secure DFT, Integer Linear Programming, Graph Partitioning

I. INTRODUCTION

A great variety of instrumentation is being used to facilitate
fast yield ramp-up through test and diagnosis as well as to
ensure the reliable operation throughout the whole life-cycle
by continuous monitoring and maintenance. Efficient access
to the instruments can be provided by Reconfigurable Scan
Networks (RSNs), which have been standardized by IEEE Std.
1687 [1] and IEEE Std. 1149.1 [2].

In order to guarantee the secure operation of a Device under
Test (DUT), a system designer might develop the connections
inside the DUT in a way that prevents the information leakage.
A test engineer may not be fully aware of the designer’s
intentions and may therefore extend the connectivity prop-
erties of the DUT, while integrating the RSN, and thereby
compromise the security of the design. An attacker might
exploit the RSN, e.g., to gain unauthorized access to protected
data or to alternate the system behavior [3–6]. Since the RSN
must be available online throughout the whole life-time of a
DUT to ensure its reliable and fault-tolerant operation, denying
access to the RSN during the functional time is not an option.
To secure the RSNs, authentication can be accomplished as
in [7], and fine-grained protection schemes, such as Locking
Segment Insertion Bits (Locking SIBs) [8, 9] and Secure SIBs
[10], as well as schemes using linear feedback shift registers
[11] or light weight encryption [12] have been proposed. Such
schemes can make unauthorized access extremely difficult, but

do not generally guarantee that the RSN will not extend the
allowed information flow.

In [13], an automated algorithm is presented to accurately
analyze the security compliance of a given RSN with the
security properties of the original DUT and identify all the
connectivities inside the RSN, which extend the allowed infor-
mation flow of the DUT, as security compliance violations. To
resolve these violations and prevent the information leakage
through the scan infrastructure, all functional paths causing
security violations must be cut physically, by reconnecting
certain scan segments, or logically, by only performing se-
curity preserving accesses to the RSN. The logical filter-
based approaches [14, 15] can efficiently handle the security
requirements and allow only security preserving accesses to
be performed. However, fulfilling some security requirements,
e.g. restricting access to two subsequent scan segments, can
make the corresponding instruments inaccessible through the
RSN and can potentially lead even to a system failure. The
existing physical approaches [16, 17] are able to handle any
compliance violations, but resolve the violations in a local way,
each time considering a single violation independently. Such
strategy might require many changes to the RSN structure,
especially if the number of violations is large as in [13], and
affect the complexity of the retargeting mechanism, especially
in case of homogeneous SIB-based RSN structures [18, 19].

In this work, we present an automated resynthesis approach
for RSNs, which is applicable even to a high number of
security compliance violations. The violations due to the RSN
integration are considered all together, which allows to dra-
matically reduce the number of changes in the RSN structure
compared to [16, 17]. The problem is formulated in terms of
Integer Linear Programming (ILP) as a minimum cut problem
in multicommodity flow [20, 21], which is known to be
NP-complete. The presented algorithm utilizes a divide-and-
conquer heuristic to find an appropriate solution and preserves
an acceptable run-time even for the largest benchmarks. The
major contributions of the presented approach are fourfold:

• Firstly, the integration of the resulting RSN does not ex-
tend the allowed connectivity properties of the DUT and
is compliant with its initial security properties, specified
by a system designer.

• Secondly, the presented approach preserves the accessi-
bility of the instruments through the RSN.

• Thirdly, the effectiveness of the applied heuristic allows
to resolve a high number of violations with a few struc-
tural changes in an acceptable time even for the large
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RSN designs.
• Lastly, the resynthesis approach is adjustable for the

needs of a test engineer and allows to consider the explicit
requirements, e.g. to the maximum access latency for
specific safety-critical instruments as well as restrictions
for hardware overhead, such as the maximal quantity and
complexity of the scan multiplexers.

The remainder of this paper is organized as follows. In
Section II the basic terminology on Reconfigurable Scan
Networks is given. Section III introduces the modeling of
the problem. Section IV provides an overview of the security
compliance analysis approach. In Section V the details of
a method are given to resolve the security violations and
integrate an RSN in a security preserving way. In Section VI an
approach to reintroduce the accessibility of all scan segments
is presented. An evaluation of experimental results is given in
Section VII. Finally, Section VIII concludes the paper.

II. RECONFIGURABLE SCAN NETWORKS

Reconfigurable Scan Networks (Fig. 1) are constructed us-
ing Scan Primitives as the basic components, which comprise
the following:
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Fig. 1. Reconfigurable Scan Network (RSN)

• Scan Segments are the scan primitives, used to shift the
data from Scan-In (SI) to Scan-Out (SO) and operated
by external control signals: Capture, Shift and Update. A
scan segment consists of a Shift Register with a defined
length n and of an optional Shadow Register.

• Scan Multiplexers are the scan primitives, used to control
an activated path by choosing one of the scan input
branches. The address control of a scan multiplexer can
be driven by an internal or an external control signal and
is used to specify the selected scan input.

• Segment Insertion Bits (SIB) are the scan primitives, used
to include or exclude the scan segments from a path.

• Wrapped Instruments are basic components, which con-
sist of a Scan Segment and a corresponding Instrument,
such as an aging monitor, a sensor or a Built-In Self-Test
register, as well as the connections between them.

An acyclic path through selected Scan Primitives between
primary SI and primary SO is called an Active Scan Path

(ASP). In the provided example the initial active scan path
is going from SI to SO through the scan segments s1, s2, s3,
s5 and s7. The state of all sequential elements and external
control signals defines the current Scan Configuration c ∈ C,
where C denotes the set of Scan Configurations. In a valid
Scan Configuration, only one ASP can exist.

An access to an RSN can be divided into three phases,
namely capture, shift and update phases, together forming a

CSU-operation. During the capture-phase test data from the
attached instruments is read. Data is being shifted from SI

to SO during the shift-phase. Then newly shifted-in data is
latched into the Shadow Registers of the Scan Segments during
the update-phase. The data in the Shadow Registers either can
be used to generate control signals or can be written to the
connected Instruments. Only Scan Segments included into an
ASP can be used to read or write data into the Instruments.
A sequence of CSU-operations can be used in an RSN to
transport the data. The computation of the control patterns for
such a sequence is called Retargeting.

Definition 1: The transition relation T is defined as the
set T ⊂ C2 that consists of all pairs of scan configurations
(c1, c2) such that c2 ∈ C can be reached from c1 ∈ C within
a single CSU-operation.

The Capture-Shift-Update (CAM)-accurate model of [22]
is used to represent the structural and functional properties of
RSNs and is defined as follows.

Definition 2: The CSU-accurate model (CAM) of an RSN
is a tuple M := {ST, In, C, c0, T}, such that the set ST is
used to represent all sequential elements, the set In denotes
external control inputs, the set C represents all possible scan
configurations, c0 is the initial scan configuration, and T is
used to denote the transition relation.

More details on CAM-accurate modeling can be found
in [22].

III. MODELING

The analyzed system consists of two major parts, the device
under test (DUT) and the RSN. The DUT includes the set
of functional registers R and the set of instruments I . The
RSN is used to access the instruments through the set of
scan segments S.

Example In Fig. 2 an example of an analyzed system is

shown, which is used throughout the paper to demonstrate the

most important concepts. The DUT is depicted in the upper

part of the figure, whereas the RSN is drawn in the lower part

of the figure.
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Fig. 2. Running example

The DUT is modeled as a directed graph
GDUT := (V DUT , EDUT ). The vertex set V DUT represents
the registers of the instruments i ∈ I , being accessed
through the RSN. Edges e ∈ EDUT correspond to the direct
functional dependencies between the vertices v ∈ V DUT or
dependencies through the functional registers.
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Functional reachability properties of the DUT are extracted
from the structural circuit description and augmented with the
explicit security requirements, specified by the system designer
as described in [13]. The security specification may explicitly
define the allowed connectivities between the instruments and
include the information on the trustworthiness of specific IP
cores and the data confidentiality as in [23]. The reachability
properties together with security specification form the set of
security properties of the DUT. In order to consider functional
connections of the DUT, false path analysis [24–27] can be
applied. The verification of possible glitch propagation through
false paths, as well as the security analysis of the DUT, must
be accomplished by the system designer and lay out of scope
of this work.

A directed graph GRSN := (V RSN , ERSN ) is used to
model an RSN. Each vertex v ∈ V RSN represents a single
scan segment sj or scan multiplexer mj , a primary SI or SO.
Each edge e ∈ ERSN represents a direct connection between
the scan primitives.

The combined system is modeled as a directed graph
G := (V,E) with vertices V and edges E ⊂ V 2, which is
denoted as a System Graph. The vertex set V and the edge set
E of the system graph are defined as follows:

V := V DUT ∪ V RSN (1)

E := EDUT ∪ ERSN ∪ Econnect, (2)

where Econnect defines the set of edges used to access the
instruments I through the scan segments S of the RSN.

Example (continued) The system graph for the running ex-

ample is depicted in Fig. 3. The DUT graph is represented

in the upper part of the figure. The vertex set V DUT con-

sists of the vertices (i1, i2, i5, i6, i7). An edge between the

vertices i1 and i2 represents a direct connection between the

corresponding instruments of the DUT. An edge from i1 to i5
represents the functional reachability of the instrument i5 from

the instrument i1 through the functional register r1. The RSN

graph is represented in the lower part of the figure.

RSN

i1 i2 i6

i5

DUT

s7m2m1

s5

s6
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s4

SOs1
s2SI

i7

Fig. 3. System graph for the running example

IV. SECURITY COMPLIANCE VERIFICATION

In order to keep this paper self-contained, this section briefly
summarizes the security compliance verification approach of
[13], which serves as the basis for the security preserving
resynthesis of RSNs below.

A. RSN Reachability Computation

The functional dependencies in the RSN described in [13]
consider possible structural cycles in the GRSN as well as the
capability of the RSN to transfer the data using multiple scan
configurations through retargeting. The reachability analysis
of the RSN can be divided into the following steps:

• Compute structural pairwise connections: The transitive
closure over the RSN graph is computed and the set
of all structurally possible connections between the scan
primitives is determined.

• Reduce connections to valid scan dependencies: Logic
signals, used to include specific scan primitives into an
ASP and to control the multiplexers, are analyzed and
the subset of connections, which belongs to valid scan
configurations, is calculated.

• Determine dependencies between scan configurations:

Reachability dependencies within single scan configura-
tions are combined to an unbounded sequence of scan
configurations and the set of functionally possible con-
nections is computed.

• Extract connections corresponding to the instruments:

Based on the reachability properties of the RSN, the
connectivity between instruments is determined.

For all vj ∈ V , the set of functional predecessors in G
is defined as p(vj , G) ⊂ V . For all vj ∈ V, vk ∈ p(vj , G)
data transfer from vk to vj is functionally possible. The set of
direct functional predecessors of vj is defined as pd(vj , G).
The set of all functional successors s(vj , G) and the set of
direct functional successors sd(vj , G) are also defined for all
vj . A functional path pathk,l in G between vertices vk, vl ∈
V is a sequence vk...vl of vertices, such that ∀vj , vj+1 ∈
pathk,l: vj ∈ pd(vj+1, G), where j, j + 1 are the indices of
the vertices in pathk,l. A functional path can be represented
as a connected sequence of sub-paths of a smaller size, e.g.:
patha,c = patha,b ∪ pathb,c.

B. Compliance Verification

The reachability of the instruments in the combined system
considers the reachability properties of the RSN and of the
DUT as well as hybrid paths, crossing both the DUT and the
RSN. Security preserving RSN integration must not provide
any new possibilities for an attacker to transfer the data inside
the DUT. The compliance of a given RSN with the DUT
is checked, and additional functional connectivity properties,
which have been introduced into the allowed information flow
of the DUT due to the RSN integration, are being identified.

Definition 3: A security violation violk,l is a pair of vertices
(sk, sl) in GRSN , such that the functional path between the
corresponding scan segments is sensitizable and extends the
functional connectivity properties of the DUT due to the RSN
integration.

The list of security violation warnings is generated and
serves as an input for a security preserving RSN resynthesis.
More details on the RSN reachability analysis as well as on
the security compliance verification of RSNs are given in [13].

Example (continued) In Fig. 3 a functional path between the

scan segments s2 and s6 extends the connectivity properties of
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the DUT by making the instrument i6 functionally reachable

from the instrument i2 through the RSN. Functional connec-

tivities between s1 and s6, s2 and s5, s2 and s6, s2 and s7,

s6 and s7 are considered as security compliance violations.

V. SECURITY PRESERVING RESYNTHESIS

In this section, an automated security preserving resynthesis
approach for RSNs is described and formulated in terms of
ILP. This approach is able to resolve the whole set of the
security compliance violations, which has been identified using
the verification method presented above.

A. Multicommodity Flow Problem

A single commodity (vs − vt) in a directed flow network
graph G := (V,E) with vertex set V and edge set E is defined
as a pair of vertices vs, vt ∈ V , such that vs is a source, vt is
a destination. A (vs−vt) cut of G is a subset Vcut ⊂ V , such
that in the resulting graph Gcut := (V \ Vcut, E) the vertex
vt is not reachable from vs.

If k multiple commodities (vsk − vtk) exist in a graph
G := (V,E), a cut in a multicommodity flow network is
computed. Subset Vcut ⊂ V is a cut of a multicommodity flow
network, if its removal from the vertex set V would preclude
the connectivity between the source vsk and destination vtk
for all the commodities (vsk − vtk).

The size of the cut can be minimized by means of Integer
Linear Programming (ILP). For each vertex vj ∈ V a variable
xj is defined, such that xj := 1, if a vertex vj is removed from
the vertex set and xj := 0 otherwise. The objective function
of a 0-1 linear programming algorithm minimizes the number
of vertices in the cut Vcut and is formulated as follows:

minimize(

n∑

j=1

xj), n = |V | (3)

Subject to the constraints:

n∑

j=1

(aj)lxj ≥ 1, l ∈ 1...m (4)

xj ∈ {0, 1}, j ∈ 1...n (5)

The constraints describe all possible paths between the
vertex pairs (vsk, vtk), representing the commodities, and m
denotes a total number of such paths. Binary coefficients (aj)l
define if a vertex vj , represented by xj , belongs to a path
pathl. If at least one vertex vj is removed from the path, the
connectivity through this path is prevented.

B. Overview

The problem of security preserving resynthesis of RSNs is
formulated as a minimum cut problem in a multicommod-
ity flow. Since the multi-commodity flow problem is NP-
complete, it is not feasible to solve it straightforward [20, 21]
and in order to achieve acceptable run-time and memory
consumption the exact solution can be sacrificed. To overcome
the exponential complexity of enumerating all paths and to find

an appropriate solution, a heuristic based on the divide-and-
conquer approach is presented, and at each step a problem of
a smaller size is resolved:

• A set of connectivities SC, (vsk, vtk) ∈ SC, vsk, vtk ∈
V RSN , extending the connectivity properties of the DUT,
is provided by the security compliance verification as a
list of security violation warnings.

Example (continued) All the functional paths between

vertex pairs s1 and s6, s2 and s5, s2 and s6, s2 and s7,

s6 and s7 extending the connectivity, must be cut.

• A cut (vm1, ...vmr), precluding the connectivities, is
computed. For each intermediate vertex vmj ∈ V RSN ,
on the path from vsk to vtk is to decide, whether:

1) vmj belongs to the cut (vm1, ...vmr), or
2) all the paths between vsk and vmj are cut, or
3) all the paths between between vmj and vtk are cut.

In Fig. 4, a single intermediate vertex vmj can be
removed to cut all the paths between vsk to vtk.

2 31

vtkvmjvsk

vml

vmn

Fig. 4. Node cutting options

• The solution is adjusted recursively and a possibly small
vertex cut is chosen. If, for some connectivity (vsk, vtk),
at some iterative step, vsk is a direct predecessor of vtk,
the vertex vsk is put into the cut. Although the applied
heuristic does not guarantee an optimal solution, experi-
mental results show, that using the presented approach, a
large number of violations can be resolved by applying
just a few changes to the RSN structure.

• From the connectivity perspective, the removal of a vertex
vsk is equivalent to the removal of its all outgoing
edges. So, instead of the vertices in the cut, all their
outgoing edges are removed from the graph, to preserve
the vertices, corresponding to the scan elements.

• The accessibility of the affected scan elements is reintro-
duced as described in Section VI.A. The completeness of
the algorithm is discussed in Section VI.B.

C. Divide-and-Conquer Heuristic

To resolve the violations, the RSN is represented as a graph
at various abstraction levels, starting from a lower-granular
Level-0 graph, which is represented in Fig. 5 for the running
example, and ending with a high-granular GRSN graph.

The Level-0 graph represents all security compliance
violations (connectivities from SC), as the pairs of vertices
and denotes the existence of violating functional paths in-
between as the edges. The sources of security violations are
represented by the set V S and the destinations - by the set
V T . A scan segment can serve as a source of one security
compliance violation and as a destination of another violation,
so that, the sets V S and V T are not forced to be disjoint. It is
also noteworthy to mention that it is not required to cut all the
possible paths between all the combinations of vertices in the
sets V S and V T . Only the paths between the pairs of vertices,
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which have been considered as the violations and denoted as
an edge in the graph representation, must be cut.

VT

s7

s5

s6

VS

s6

s1

s2SI SO

Fig. 5. Level-0 graph

Example (continued) The sources of violations are the ver-

tices s1, s2 and s6 and the destinations – s5, s6 and s7. The

vertex s6 is a source of one violation and a destination of two

other violations. Since the functional paths between the scan

segments s1 and s5 do not violate the compliance with the

DUT, it is not required to cut the functional paths between

them, although s5 is functionally reachable from s1.

At each step, starting from Level-1, we decide, which
functional paths must be cut. At each further step this
decision is adjusted to determine, where exactly the func-
tional path must be cut. The first step of the algorithm,
corresponding to the construction of the Level-1 graph
(Fig. 6) for the ”running example” is described here in detail
and all further steps follow the same idea. The number of
required steps depends on the size of the graph and the
maximal distance between the source and destination of a
security compliance violation in terms of the number of
vertices in the RSN graph.

INTOPT

m1

m2

s7

s5

s6

s6

s2SI SO

s1

Fig. 6. Level-1 graph

The edge set of the Level-1 graph represents all functional
paths between the sources V S, intermediate vertices and
destinations V T . Let the set of intermediate vertices INT
include all the vertices from V RSN , which are located on
the functional paths, violating the security compliance with
the DUT. If all the vertices from INT would be included for
constructing a graph, the run-time of the minimum cut problem
even on the Level-1 graph can be exponential from the whole
number of vertices in the RSN graph.

To prevent this, the set of intermediate vertices is optimized
during the construction of each Level-j graph. E.g., for Level-1

an optimized set of intermediate vertices INTOPT ⊂ V RSN

is built, which covers all functional paths between all pairs
of vertices, which cause security violations at Level-0 with a
small number of vertices.

Example (continued) Since the violations in the running

example are distributed through the whole RSN graph, the

set INT would include all vertices from V RSN , except the

vertices SI , SO, s1 and s7.

All functional paths for all violations can be intuitively

covered by just two vertices, m1 and m2, which constitute the

set INTOPT . The edges in the graph show the existence of a

functional path between the vertices. Any path from s1 to s7
includes at least one of the intermediate vertices (depicted by

bold line in Fig. 6), whereas all the paths from s2 to s5 cross

the vertex m1 only. The formal way to construct INTOPT is

shown below.

Since the accuracy of this step only affects the number
of recursive steps needed to perform the main algorithm, an
efficient polynomial-time heuristic is applied to minimize the
set of intermediate vertices and is described below:

• Firstly, for each intermediate vertex vj ∈ INT a number
of violation sources vl ∈ V S, having at least one func-
tional path to vj , is used as a global weight WeightG(vj).
This value considers all the violations simultaneously
and determines, how often a certain intermediate vertex
belongs to any path, introducing additional connectivity
to the DUT.

• Secondly, an optimized set of intermediate vertices INTk

is constructed for each violation violk. This set cov-
ers all functional paths from vsk to vtk with a small
number of vertices. The sub-graph GRSN

k is defined for
each violation and contains the vertices vsk, vtk and all
vertices from V RSN , which are traversed by at least
one functional path between vsk and vtk, as well as
all the edges from ERSN connecting those vertices.
For any intermediate vertex vj the sets of predecessors
p(vj , G

RSN
k ) and successors s(vj , G

RSN
k ) in a sub-graph

are computed. The set of covered vertices COVk for violk
is empty at this step.
A local weight of a vertex vj in a sub-graph is defined
as a number of predecessors and successors in this sub-
graph:

WeightL(vj , G
RSN
k ) : = |p(vj , G

RSN
k )|

+ |s(vj , G
RSN
k )|

(6)

• If a certain vertex vj has been included into an optimized
set of vertices INTk1 for an already considered violation
violk1, it is included into an optimized set INTk2 for
another violation violk2 with a higher probability. This
prevents the size of the set INTOPT from increasing. For
each intermediate vertex vj a boolean function sel(vj)
defines, how many times this vertex has already been
included into the optimized sets of vertices for the con-
sidered violations.

• For each violation violk the vertex vj with a highest value
of a cost function, considering both the global and the
local weight, and the value of the sel(vj) function:

cost(vj , G
RSN
k ) : = f(WeightG(vj),

WeightL(vj , G
RSN
k ), sel(vj))

(7)

is selected and added to an optimized set INTk and to the
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set of covered vertices COVk. The functional successors
and predecessors of vj in GRSN

k are also added to the
set of covered vertices. Then the next vertex with the
second highest value of a cost function is selected and
the procedure is repeated, until all intermediate vertices
for a violation are in the set of covered vertices COVk.
The same procedure is repeated for all violations.

Example (continued) The security violation from s1 to

s6 is considered first. A sub-graph for this violation is

shown in Fig. 7.a).

– The vertex f2 has the global weight of two, since the

functional paths from the source vertices, s1 and s2
to f2 exist in the RSN.

– All the vertices in the subgraph are either functional

successors or functional predecessors of f2, so that

f2 has the highest local weight in the subgraph.

– Since no other violation has been considered, the

value of sel(vj) function is zero for all the vertices

in the subgraph.

The vertex m1 has the highest value of a cost function.

Assume that m1 is selected and added to the optimized

set. The value of sel(m1) function is incremented. Since

all the paths from s1 to s6 are covered with a vertex m1,

the computation for this violation converges.

Next, violation from s2 to s5, is considered. Since, now

m1 has sel(m1) := 1, it is automatically selected to

form the optimized set for the second violation. All other

violations, except the violation from s6 to s7, shown in

Fig. 7.b), are also covered with m1. The vertex m2 is

selected to cover this violation.

m1

s3

s4

s2s1 s6

s7m2s6

a)

b)

Fig. 7. Subgraph for a violation a) s1 to s6 b) s6 to s7

• The optimized set of intermediate vertices INTOPT is
constructed as a union of the optimized sets for single
security violations, K being the total number of viola-
tions:

INTOPT =

K⋃

k=1

INTk (8)

Example (continued) The optimized set of intermediate ver-

tices consists of the vertices m1 and m2, representing the

optimized sets for single violations.

Finally, for each vj ∈ INTOPT , such that for a certain
security violation violk a functional path from a vsk to vj and
a path from vj to vtk exists, it is to decide, whether to cut the
path before vj (pathsk,j) or after it (pathj,tk ). To define the
minimized set of edges to remove from the graph, a minimum
cut problem in a multicommodity flow of a smaller size is
solved by means of ILP as described above.

If m certain functional paths (path1, ..pathm) are cut, at
the next step it should be decided with a higher granularity,
where exactly are they cut. At each iterative step the solution
is incrementally improving and an optimized set of interme-
diate vertices INTOPT is recomputed considering the paths
(path1, ..pathm), removed at the previous step, as security
violations. At each further level the lengths of the paths, which
must be cut, are gradually decreasing and the granularity of
the RSN graph is increasing until the exact vertices in a high-
granular graph GRSN , are found.

Example (continued) The min-cut in multicommodity flow is

run on the Level-1 graph (Fig. 6), which includes the source

vertices s1, s2 and s6, intermediate vertices m1 and m2,

and destination vertices s5, s6 and s7. After applying the

algorithm, all violating connectivities are cut, and the all paths

before m1, and after m2 are removed.

INTOPT

m1

m2

s7

s5

s6

s6

s2SI SO

s1

Fig. 8. Level-1 graph with the cut

Next, a Level-2 graph is constructed (Fig. 9). It is necessary

now to decide, where exactly to cut. Since m2 is a direct

predecessor of s7, the vertex m2 is added to the cut and its

outgoing edge to s7 is removed from the graph representation.

All the functional paths from s1 to m1 and from s2 to m1

are covered by the vertices s3, s4 and the optimized set of

intermediate vertices INTOPT includes the vertices s3, s4. A

min-cut algorithm is applied once again and the paths from s3
to m1 and from s4 to m1 are removed to resolve the remaining

violations. Finally, vertices s3, s4 and m2 are in the cut and

their outgoing edges are removed.

VT

s7

VS

m1

m2

s2

s1

SI SO

s3

s4

Fig. 9. Level-2 graph with the cut

Fig. 10 demonstrates a resulting graph after resolving all

security violations. The edges between the scan segment s3, s4
and the scan multiplexer m1, and between the scan multiplexer

m2 and the scan segment s7, are removed from the edge set.

VI. REINTRODUCING THE ACCESSIBILITY

After resolving the violations in the RSN not all the scan
segments, represented by the vertices v ∈ V RSN

secure, may be
accessible anymore through the functional ASPs going from
SI to SO as shown in Fig. 10.
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RSN

i1 i2
i6

i5

DUT

s7m2m1

s5

s6

s3

s4

SOs1 s2SI

i7

Fig. 10. Graph GRSN
secure with no security violations

The accessibility of the corresponding scan segments is
recovered in an automated way considering such optimization
criteria as access latency or hardware overhead, and the
final RSN graph GRSN

final := (V RSN , ERSN
secure ∪ ERSN

access) is
generated. The size of the set of augmenting edges is limited
by |ERSN

access| ≤ 2 ∗m, where m is number of edges, removed
at the previous step. The edges are reintroduced sequentially.
For each vertex vj , having no functional successors, the
accessibility is reintroduced through the following steps:

• The subset of the possible compliance-preserving succes-
sors SEC(vj) ⊂ V RSN is computed, such that for any
vl ∈ SEC(vj), a direct functional connection from vj to
vl would be compliant with the security properties of the
DUT and a path from vl to SO exists. The functional
connection from vj to vl, as well as the connections
between all the pairs of the functional predecessors of
vj and the functional successors of vl must not extend
the connectivity of the DUT. For each vj , at least the
vertex, corresponding to SO, is compliance-preserving,
and the set SEC(vj) is not empty.

• A single vertex vl is selected from SEC(vj) to become a
successor of vj and an edge ej,l is added to the edge set
of the graph GRSN

secure. If multiple choices are possible to
reintroduce the accessibility of a certain vertex, additional
requirements to access latency or acceptable hardware
overhead of the RSN can be considered. Time to access
specific scan segments could be crucial, especially in
safety-critical applications. One can decrease the access
latency by constructing more short paths from SI to SO,
which would, however, add additional scan multiplexers
to the RSN structure, and increase the hardware overhead.
The hardware overhead by the RSN integration must be
limited as well. Since the number of scan registers will
remain the same, the difference in the overhead will be
mostly caused by the number of scan multiplexers in the
given RSN and their complexity. Additional constraints
for the choice of an appropriate successor-vertex, can be
used to keep the complexity of the retargeting mechanism
rather low, while still obtaining a compliant RSN. E.g.,
for the SIB-based tree structures, the connections must
be adjusted in a way that the resulting RSN still retains
a tree structure as far as possible.

• The functional reachability of the vertices vj and vl, as
well as the reachability of the functional predecessors
of vj and the functional successors of vl is adjusted,
considering the newly introduced edge ej,l.

The process is repeated for the next vertex vm ∈ V , having
no functional successor, until all the vertices have at least
one successor. The same idea is applied to reintroduce the
accessibility of the vertices, which do not have any functional
predecessor. The accessibility of the affected vertices can be
then verified as in [22].

Example (continued) The functional reachability properties

of the graph (in Fig. 10) are recomputed. Since the vertex

m2 is now not accessible, it is necessary to reintroduce a

functional path from m2 to SO. The connection from vertex

m2 to vertex SO is added to the RSN graph, since this

connection is compliant with the requirements of the DUT.

The functional reachability of the vertices m2 and SO, as

well as the reachability of the predecessors of m2 is adjusted

corresponding to the newly added edge between m2 and SO.

Since the vertex m1 represents a scan multiplexer and neither

has any incoming edges inside the RSN graph nor is used

to transfer data towards the DUT, it is removed from the

graph representation. The procedure above is applied again,

when the connections from vertex SI to vertices s5 and to

s6, and from s3 and s4 to m2 are consequently added to the

graph GRSN
secure. The vertex s7 is now connected to SO through

m2, since multiple incoming edges are only allowed for the

vertices, corresponding to multiplexers. The graph GRSN
final,

which is shown on Fig. 11, represents the resulting RSN.

s7

m2s1 s5

s6

s2

s3

s4

SOSI

i1 i2 i6

i5

DUT

RSN

i7

Fig. 11. Accessible graph GRSN
final

with no security violations

A. Completeness of the Algorithm

Fig. 12 represents a so-called ”Verify ↔ Resolve loop”,
which is used to guarantee that all the existing security
violations are resolved using the presented heuristic.

Secure 

RSN

Violations?

Violations

2:
Resolve the violations and 

reintroduce accessibility

RSN

DUT

1:
Verify the security 

compliance

Fig. 12. ”Verify ↔ Resolve loop”

At Step 1, the verification of the initial RSN is performed
and the compliance violations are identified. After resolving
the violations and reintroducing the accessibility (Step 2), the
compliance of the resulting RSN is validated again using the
verification approach (Step 1). This step shows whether all
security compliance violations have been resolved:
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• If no additional connectivity is introduced by the RSN
integration, the integrated RSN is compliant with the
DUT and the computation converges.

• If the RSN integration still extends the connectivity of the
DUT, Steps 2 and 1 are repeated until all the violations
are resolved.

It is guaranteed that the process terminates with a compliant
RSN. In the worst case, the procedure would end up with a
parallel RSN structure, where all the scan segments, accessing
the instruments, are located in the individual branches, in
order to guarantee the the security compliance with a given
DUT. However, for the most of the considered cases, just one
iteration of the flow was enough to resolve all the violations.
For some cases, after the first iteration, a minor number
of violations were still present. For those cases, the whole
resynthesis process required a couple of subsequent iterations
of the ”Verify ↔ Resolve” loop.

VII. EVALUATION

A. Experimental Setup

The effectiveness of the proposed method has been evalu-
ated on the subset of benchmarks from the Bastion benchmark
set [19] and on the whole DATE’2019 benchmark set [17].
All experiments have been conducted on Intel(R) Xeon(R)
W-2125 CPU at 4.00GHz with 132 GB of main memory,
using the eda1687 framework [28] to model the RSN. The
optimization has been performed using the tool Gurobi [29]
and was aborted if a timeout of 30 hours was reached.

The evaluated benchmarks provide access to boundary and
internal scan chains and have a hierarchical structure. The
characteristics of the benchmarks are given in Table I. For all
benchmarks the number of scan multiplexers (Column 2), SIBs
(Column 3), scan cells (Column 4) and the highest hierarchy
level (Column 5) are given.

B. Experimental Results

Table II summarizes the experimental results for security
preserving resynthesis of RSNs. The reachability analysis has
been conducted for all benchmarks as in [13] and functionally
possible connections between the scan primitives have been
identified. The security compliance analysis as well as the
security preserving RSN transformation consider the retarget-
ing capabilities of RSNs and the data propagation through
the hybrid paths. Since a precise security analysis of the
DUT lays in hands of system designer, the complexity of the
DUT benchmarks is not important for the experimental setup
and all considered benchmarks have been integrated into the
benchmarks from ISCAS’89 [30]. The connectivity properties
of the ISCAS benchmarks have been used to represent the
connections inside the DUT. Each flip-flop in the ISCAS
benchmark represented a single instrument, accessed by the
RSN. The connections from a single scan segment to an
instrument are assigned in a random manner.

The security compliance violations due to the integration
of the given RSN design into a DUT have been identified
(Column 2). All security violations have been resolved. A
cost function for reintroducing the accessibility was chosen to

TABLE I
CHARACTERISTICS OF BENCHMARKS

Design(1) #muxes(2) #sibs(3) #scan cells(4) #level(5)
BasicSCB 10 - 176 4
Mingle 13 10 22 3
TreeFlat 24 12 101 2
TreeUnbalanced 28 28 41,887 11
TreeBalanced 46 43 5,581 7
TreeFlat Ex 60 57 5,194 5
q12710 25 25 26,183 2
a586710 47 - 41,682 3
p34392 142 - 23,261 3
t512505 160 - 77,006 2
p22810 283 283 30,111 3
p93791 653 - 98,637 3
N17D3 8 7 447 3
N32D6 10 13 96,135 4
N73D14 17 29 218,823 11
N132D4 40 39 2,912 5
MBIST 1 5 5 15 8 548 4
MBIST 1 5 20 15 8 1,523 4
MBIST 1 20 20 45 23 6,068 4
MBIST 2 5 5 28 16 1,091 4
MBIST 2 5 20 28 16 3,041 4
MBIST 2 20 20 88 46 12,131 4
MBIST 5 5 5 67 40 2,720 4
MBIST 5 20 20 217 115 30,320 4
MBIST 5 100 20 1,017 515 151,520 4
MBIST 5 100 100 1,017 515 671,520 4
MBIST 20 20 20 862 460 121,265 4
MBIST 55 20 5 2,367 1,265 118 970 4
MBIST 100 20 5 8,102 2,300 216,305 4
MBIST 100 100 5 20,102 10,300 1,080,305 4

minimize the latency. The third column represents the quantity
of connections removed from the graph representation to
resolve the violations. The fourth column shows the number of
connections added into the graph representation to reintroduce
the accessibility.

The experimental results show that the presented approach
allows to resolve a large number of violations by applying a
minor number of changes. Let the relative number of changes

(Column 6), which must be applied to resolve one security
compliance violation, be defined as follows:

connectrel = connectcut/violcorrect, (9)

where connectcut defines the number of connections removed
from the RSN and violcorrect represents the number of
corrected violations. The experimental results show that in
average one change to the RSN structure was able to resolve
8,6 violations.

The run-time of the algorithm (Column 5) does not only
depend on the number of resolved violations, but also on the
size of the considered RSN graph. However, thanks to the
applied divide-and-conquer-based heuristic, the exponential
complexity is mitigated in an average case. The size of the
graph affects the number of required recursive steps for the
consecutive representation of the RSN graph. Even for the
largest benchmarks the run-time does not exceed 10 minutes.

The benchmarks from the DATE’2019 benchmark set [17]
have a highly hierarchical structure, which allows to effi-
ciently process them despite their large size. Each benchmark
”MBIST N M O” (Fig. 13) handles N cores, each with M
memory BIST controllers, each controlling O memory blocks,
and is accessed through the Test Access Port (TAP) controller.
All other control blocks are omitted and control signals are
not shown for the better readability. In order to handle the
high number of violations, the bigger RSN graph is split
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TABLE II
SECURITY COMPLIANCE ANALYSIS AND RESOLVING ALL VIOLATIONS

Design(1) #violdetect(2) #connectcut(3) #connectadded(4) t[m:s](5) connectrel(6)
BasicSCB 148 33 49 00:10 0.22
Mingle 158 27 53 00:15 0.17
TreeFlat 211 41 47 00:05 0.19
TreeUnbalanced 291 28 43 00:06 0.02
TreeBalanced 208 64 47 00:03 0.23
TreeFlat Ex 458 76 107 00:23 0.16
q12710 316 45 55 00:53 0.14
a586710 1,625 36 52 00:31 0.02
p34392 2,227 63 100 02:33 0.03
t512505 1,005 174 237 00:46 0.17
p22810 2,114 119 275 05:55 0.06
p93791 355 15 4 06:31 0.04
N17D3 189 29 45 00:14 0.15
N32D6 285 33 48 00:02 0.11
N73D14 567 67 98 04:53 0.11
N132D4 932 115 181 09:28 0.12
MBIST 1 5 5 1,096 133 262 01:01 0.12
MBIST 1 5 20 387 53 105 02:14 0.13
MBIST 1 20 20 348 49 66 05:23 0.14
MBIST 2 5 5 1,057 125 20 00:05 0.11
MBIST 2 5 20 530 92 179 00:12 0.17
MBIST 2 20 20 938 182 175 00:59 0.19
MBIST 5 5 5 24,732 4,483 180 00:10 0.18
MBIST 5 20 20 60,519 5,279 18 02:01 0.08
MBIST 5 100 20 53,301 2,270 67 02:17 0.03
MBIST 5 100 100 57,338 734 207 03:15 0.03
MBIST 20 20 20 992 49 29 00:20 0.05
MBIST 55 20 5 678 61 75 01:14 0.09
MBIST 100 20 5 690 43 34 01:10 0.06
MBIST 100 100 5 2,164 64 58 03:01 0.03

into a number of smaller subgraphs and the violations are
sorted, according to which subgraph they belong. E.g., the
violation between the scan segments SA and SB can handled
inside the subgraph, corresponding to the controller 0. The
violation between the scan segments SB and SC, located in
two different memory controllers of the core 0, can be handled
by cutting the interconnection in the core-level graph, which
models the memory controllers as single vertices.

SIB core 

0

Core 

1

SIB core 

1

Core 

(N-1)

SIB core 

(N-1)

Chip TAP controller
SI SO

...
Controller

0

Controller 

1

Controller 

(M-1)...

SA SB SC

Core 

0

...

Fig. 13. Structure of MBIST benchmark.

C. Comparison to Previous Work

In order to show the efficiency of the proposed method,
an additional experiment has been conducted. To provide a
fair comparison to the results, which have been obtained
in the prior work [17] in this field, a comparable number
of security violations has been used (Table III). The RSN
benchmarks have been connected to the generated randomized
circuits. The number of such scan registers, where at least
one flip-flop causes a security violation with a predecessor,
before applying the resynthesis algorithm is computed for the
presented approach (Column 2) and for the previous work
(Column 5), and is denoted as #violreg−pred.

A number of changes (#changes), required to resolve all
the violations is presented for both methods, respectively, in
Columns 3 and 6. We computed the relative number of changes

changesrel−pred for the presented approach (Column 4) as
well as for the previous work (Column 7) as:

changesrel−pred = #changes/#violreg−pred (10)

A small number of violations to be resolved, can be considered
as a worst case scenario for the presented algorithm, since the
presented algorithm becomes more and more efficient with
the increasing number of violations. Despite this fact, the
experimental results show that the presented method requires
3.85 times less changes to the RSN structure in average.
Reducing the number of structural changes to the RSN, while
still obtaining a secure RSN, does not only require less costs
in terms of hardware to apply the changes, but also allows to
keep the structure of the resulting RSN similar to the initial
RSN and requires less changes for the retargeting mechanism.

VIII. CONCLUSION

This paper presents an approach to automatically resolve
all the violations, which have been identified by a previously
proposed accurate security compliance analysis approach [13],
considering the security properties of the device under test.
A minimized set of the structural changes to a given RSN
is identified, which allows to perform a security preserving
RSN integration and thereby prevent the information leakage
through the scan chain. The problem has been formulated
in terms of Integer Linear Programming as a minimum cut
problem in a multicommodity flow and avoids exponential
computational complexity for an average case by applying an
efficient heuristic, based on a divide-and-conquer approach,
to obtain an approximate solution. The effectiveness and
scalability of the algorithm has been evaluated on the set of
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TABLE III
COMPARISON TO PREVIOUS WORK [17]

Presented Approach Previous Work
Design(1) #violreg−pred(2) #changes(3) changesrel−pred(4) #violreg−pred(5) #changes(6) changesrel−pred(7)
BasicSCB 3.2 2.0 0.63 1.56 2.0 1.28
Mingle 5.0 3.2 0.64 2.21 2.5 1.13
TreeFlat 6.0 4.2 0.70 3.65 4.7 1.28
TreeFlat Ex 12.2 8.0 0.66 8.45 12.1 1.43
TreeBalanced 8.8 6.8 0.78 7.22 9.0 1.25
TreeUnbalanced 8.2 6.2 0.75 6.27 7.6 1.21
q12710 5.6 5.2 0.93 5.20 7.1 1.37
a586710 7.2 4.2 0.57 5.89 8.4 1.43
p34392 18.0 12.4 0.67 11.26 21.4 1.90
t512505 12.0 6.0 0.50 12.44 24.9 2.00
p22810 33.4 17.2 0.51 21.75 41.9 1.93
p93791 52.2 23.4 0.44 40.51 79.5 1,96
MBIST 1 5 5 5.0 3.0 0.60 6.64 13.2 1.99
MBIST 1 5 20 8.2 4.8 0.58 9.00 39.5 4.39
MBIST 1 20 20 9.6 5.2 0.55 7.60 40.6 5.34
MBIST 2 5 5 9.2 5.0 0.55 6.18 11.7 1.89
MBIST 2 5 20 8.4 4.4 0.52 8.88 43.6 4.90
MBIST 2 20 20 9.8 6.2 0.63 2.45 2.6 1,06
MBIST 5 5 5 6.6 2.2 0.33 9.54 21.7 2.27
MBIST 5 20 20 8.2 4.0 0.48 4.56 12.9 2.82
MBIST 20 20 20 19.0 8.4 0.44 19.62 104.8 5.34

industrial benchmarks. The obtained run-time is acceptable. In
average, for a large number of violations as in Table II, only
one structural change is needed to resolve eight violations.
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