
SWIFT: Switch Level Fault Simulation on

GPUs

Schneider, Eric; Wunderlich, Hans-Joachim

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD) February 2018

doi: http://dx.doi.org/10.1109/TCAD.2018.2802871

Abstract: Current nanometer CMOS circuits show an increasing sensitivity to deviations in first-order
parameters and suffer from process variations during manufacturing. To properly assess and support test
validation of digital designs, low-level fault simulation approaches are utilized to accurately capture the
behavior of CMOS cells under parametric faults and process variations as early as possible throughout
the design phase. However, low-level simulation approaches exhibit a high computational complexity,
especially when variation has to be taken into account. In this work a high-throughput parallel fault
simulation at switch level is presented. First-order electrical parameters are utilized to capture CMOS-
specific functional and timing behavior of complex cells allowing to model faults with transistor granularity
and without the need of logic abstraction. Furthermore, variation modeling in cells and transistor devices
enables broad and efficient variation analyses of faults over many circuit instances for the first time. The
simulation approach utilizes massive parallelization on Graphics Processing Units (GPUs) by exploiting
parallelism from cells, stimuli, faults and circuit instances. Despite the lower abstraction levels of the
approach, it processes designs with millions of gates and outperforms conventional fault simulation at
logic level in terms of speed and accuracy.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

http://dx.doi.org/10.1109/TCAD.2018.2802871


JOURNAL OF XXX, VOL. YYY, NO. ZZZ, MONTH YEAR 1

SWIFT: Switch-Level Fault Simulation on GPUs
Eric Schneider, Student Member, IEEE, Hans-Joachim Wunderlich, Fellow, IEEE

Abstract—Current nanometer CMOS circuits show an increas-
ing sensitivity to deviations in first-order parameters and suffer
from process variations during manufacturing. To properly assess
and support test validation of digital designs, low-level fault simu-
lation approaches are utilized to accurately capture the behavior
of CMOS cells under parametric faults and process variations as
early as possible throughout the design phase. However, low-level
simulation approaches exhibit a high computational complexity,
especially when variation has to be taken into account.

In this work a high-throughput parallel fault simulation at
switch level is presented. First-order electrical parameters are
utilized to capture CMOS-specific functional and timing behavior
of complex cells allowing to model faults with transistor gran-
ularity and without the need of logic abstraction. Furthermore,
variation modeling in cells and transistor devices enables broad
and efficient variation analyses of faults over many circuit
instances for the first time. The simulation approach utilizes
massive parallelization on Graphics Processing Units (GPUs)
by exploiting parallelism from cells, stimuli, faults and circuit
instances. Despite the lower abstraction levels of the approach,
it processes designs with millions of gates and outperforms
conventional fault simulation at logic level in terms of speed and
accuracy.

Keywords—parallel simulation; fault simulation; switch level;
parametric faults; complex gates; variation analysis; GPU

I. INTRODUCTION

THE simulation of faults is an important task of test
validation flows for current nanometer CMOS designs [1].

Parametric deviations within cells cause faults at transistor
level [2], [3], such as resistive opens, bridges, cross-wire
opens or shorts, as well as parasitic capacitances. Due to the
continuity of the fault parameters, they can exhibit varying
timing and functional behavior based on the type of parameter
and the amount of the deviation. Small deviations in resistive or
capacitive parameters of a CMOS cell might cause delay faults
that violate the timing along certain paths in the design. Larger
parameter deviations are able to impact the functional behavior
and cause, for example, transistor stuck open faults [4], [5].
Both, small and large faults are hard to detect and often not
screened properly in testing, due to complex activation and
propagation conditions [6]. On top of that, the detection is
tampered by hazards [7], [8] or pessimistic timing assump-
tions [9], [10] and has become subject of recent test and
diagnosis research [1], [11], [12].

For a proper validation full timing- and glitch-aware sim-
ulation approaches have to be applied in order to ensure
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proper activation and propagation of faults and signal tran-
sitions. Logic level simulation-based approaches typically rely
on data from low-level characterization, but expose severe
inaccuracies due to abstraction and modeling limitations by
simplified timing assumptions and defect mechanisms. As soon
as complex CMOS-cells are involved, more refined defect and
simulation models at lower abstraction levels are necessary,
since the behavior of many parametric and parasitic faults
cannot be expressed at logic level at all. Furthermore, effects,
such as multiple input switching (MIS) [9], [10], tamper
with the circuit timing and can severely impact the fault
detection of small delay faults by resistive opens. Thus, for
accurate validation, it is crucial to apply as little abstraction
as possible in order to avoid loss in information or modeling
capabilities. Low-level effects that impact either functional
and timing behavior in CMOS cells should be considered as
many as possible. Clearly, by using analog simulations (i.e.,
SPICE [13]), more realistic results can be produced, but this
comes along with an increase in simulation time by several
orders of magnitude. Extensive analog simulations take hours
or even several days to finish, even for small designs and few
stimuli [14]. In cell-aware test [1] low-level characterization
of cells is utilized to derive so-called user defined fault models
which is based on information down to cell layout by small-
scale analog simulation. Still, in order to avoid this simulation
overhead, sufficiently accurate, but less expensive switch level
simulation and fault modeling was applied [15], [12]. Yet,
despite the lower runtime complexity, switch level simulation
is still performed only in small scale.

With shrinking circuit structures and near-threshold operat-
ing conditions of devices, process variations and physical man-
ufacturing defects exhibit increasing impact on the behavior of
cells and gain more significance [16], [17]. Small deviations
in first-order parameters in the layout of CMOS cells are suf-
ficient to compromise the reliability of a system [18]. Several
logic-level approaches have been proposed [19], [20], [21],
[22], [23] that employ statistical timing analyses and Monte
Carlo simulations with randomized gate delays to determine
the impact of delay variation in a design on the test coverage
as early as possible. However, the timing description of the
simulation models is too abstract and the resulting errors by
neglecting either transition ramps or MIS effects can end up
quickly in the range of both variations or faults. Hence, in
order to investigate variations more properly extensive and
comprehensive low-level simulations are required.

The complexity of a holistic and accurate fault simulation of
CMOS circuits further raises a big scalability problem that has
been tackled by exploiting the inherent parallelism from circuit
and fault [24], [25]. With the recent introduction of general
purpose computing on graphics processing units (GPUs) high-
throughput acceleration got cheaper and more effective by pro-
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cessing thousands to millions of lightweight threads on a single
die [26]. Many GPU-based simulation approaches have been
published to pursue faster and more efficient simulations [27],
[28], [29], [30], [31], [32], [33], [34]. While at higher levels
simulation runtimes have shown a significant improvement, the
speedup of accelerated analog simulation is still limited and
the scalability is not sufficient to process designs with millions
of cells. A first GPU-accelerated switch level simulation and
switch level fault simulation have been presented in [32],
[35] that allowed waveform accurate timing simulation with
transistor granularity based on first-order parameters. The GPU
acceleration and arithmetic throughput allowed for significant
speedup even over conventional logic level timing simulation,
despite employing a more accurate simulation model.

This work presents ”SWIFT” (SWItch level FaulT simu-
lator), the first high-throughput simulation approach for fast
and scalable variation-aware switch level fault simulation on
data-parallel GPUs. The core contributions are the following:

• Explicit modeling of functional and timing-related para-
metric and parasitic faults of CMOS cells at switch level.

• Transparent and overhead-free fault injection scheme in
order to maintain high simulation performance.

• Pre-processing of structurally independent parametric
faults for parallel injection and evaluation in order to
drastically reduce the simulation overhead.

• Modeling of first-order parametric variation of cells with
transistor granularity supporting both random as well as
systematic variability in the design.

Besides the cell and waveform parallelism [32], the pre-
sented novel simulation approach is able to utilize up to four
dimensions of parallelism simultaneously (cells, waveforms,
faults and circuit instances under variation). Efficient pro-
cessing as well as marginal memory overhead and negligible
synchronization overhead enable to fully occupy computing
resources of single or multiple GPU devices. The simulator
achieves high throughput performance that outperforms con-
ventional time simulation approaches at logic level in terms
of simulation speed and accuracy. Furthermore, the presented
approach enables:

• In-situ generation of arbitrary circuit instances under
variation during simulation for efficient investigations of
first-order parameter deviations.

• Accurate syndrome evaluation allowing for comprehen-
sive analysis of faults under parametric variation appli-
cable to designs with millions of cells.

The remainder of this paper is structured as follows: The
following section briefly summarizes characteristics of GPU-
architectures and GPU-accelerated simulation approaches. Sec-
tion III gives an overview of our novel parallel switch level
fault simulation approach. The basic switch level model is
briefly explained in section IV. The novel extension to device
level variation analysis is presented in section V. In section VI,
the low-level parametric and parasitic switch level fault model-
ing is explained, followed by the calculation and evaluation of
syndromes in section VII. Section VIII summarizes the con-
cepts of the high-throughput parallelization for data-parallel
architectures. Finally, comprehensive experimental results are
presented in section IX.

II. BACKGROUND

Graphics processing units (GPUs) and their programming
paradigm enable the vast acceleration of applications by mas-
sive computing throughput [26], [36], which have established
in high performance computing. Yet, the architecture also has
certain restrictions which need to be taken care of. The limited
global memory on the GPU (usually 4–12GB) is shared among
all running threads and the available local registers in the
multi processing cores pose a limit to the number of active
threads on each multi processor. The threads invoked by the
parallelized programs (called kernels) should therefore work on
compact data sets with as little registers as possible. The exe-
cution of threads is organized in a single instruction multiple
data (SIMD) fashion, which demands for simple control flows
and control flow uniformity of the kernels. Global synchroniza-
tion between threads is expensive, any thread divergence will
result in serialization and synchronization overhead and lower
the performance. Furthermore, host to device memory transfers
are costly in terms of runtime and should be minimized or
avoided at all. Ideally, only small data packages are transferred
between host CPU and GPU which are expanded prior to and
packed after the computations on the device by parallel threads
to reduce the bandwidth of the communication.

A. Circuit Simulation on GPUs

Due to the inherent parallelism available in circuit sim-
ulation, several circuit [28], [27], [31] and fault simulation
approaches [37], [30], [29] have been developed for GPUs.
The acceleration is achieved through structural independence
from cells and faults, where the circuit netlist is partitioned
into areas, each of which is handled by individual threads
or groups of threads. Data-parallelism through simultaneous
evaluation of input stimuli is also used for acceleration [29],
[30] by exploiting word-level parallelism when calculating
logic operations which is a common practice used in zero-
delay simulation [38], [25].

In contrast to zero-delay approaches, timing simulation
computes numbers (continuous time values) rather than plain
logic values only. Timing descriptions for logic simulation
are usually provided in Standard Delay Format (SDF) that
describes the pin-to-pin delays for rising and falling signal
transitions for each cell in the netlist. The authors of [39]
proposed an GPU-accelerated statistical static timing analy-
sis (SSTA) which implements parallel pseudo random number
generators (PPRNG) to accelerate Monte-Carlo simulation by
generating random numbers in parallel. A first timing-accurate
and glitch-aware simulator on GPUs has been presented in
[40], [33] that computes full switching histories (waveforms)
at signals with support for individual pin-to-pin delays as well
as fine-grained small delay fault simulation [34]. By exploiting
both structural and data parallelism during time simulation, and
the high floating point throughput of the GPUs, speedups in
the order of three magnitudes were achieved with a throughput
of up to several hundred million gate-evaluations per second.

The high arithmetic throughput of GPUs also leads to the
acceleration of low-level analog simulation (SPICE) [28], [31].
While in [28] the computationally expensive calculations were
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moved to the GPU, which showed a speedup of 10⇥, but
regarding the runtimes it is still infeasible for multi-million
cell designs. In [31] the complete SPICE simulation flow is
performed on the GPU achieving two orders of magnitude
speedup. However, due to the high working set footprint
the simulation scales only for netlists composed of a few
transistors only (up to 30) with quickly diminishing speedup.

B. Fast Switch-Level Simulation on GPUs

A recently presented approach [32], [35] implemented
switch level simulation on GPUs that considers first-order
electrical parameters, such as resistances and capacitances, for
describing the functional and timing behavior of CMOS cells.
In contrast to logic level simulation, the simulation at switch
level utilizes simplified assumptions to model the electrical be-
havior of CMOS cells as shown in Fig. 1. Instead of modeling
instantaneous transitions of discrete signal values, the timing
is expressed as a function of continuous voltages over time
based on the RC properties of the cells. The simulator [32],
[35] can process complex CMOS-cells and covers important
CMOS related timing effects, such as glitch filtering, transition
ramps and multiple input switching [9], [10]. Despite the
more complex simulation model, it fits well into the GPU
environment and outperforms traditional logic level timing
simulation approaches by several orders of magnitude.
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Fig. 1. Signal and timing abstraction in a) logic level and b) switch level
simulation of a faulty (slow-to-fall) inverter cell.

III. PARALLEL SWITCH-LEVEL FAULT SIMULATION

This work utilizes the GPU-accelerated switch level simu-
lator presented in [32], [35] and provides extensions to sup-
port high-throughput parametric and parasitic fault simulation
with comprehensive syndrome analysis under systematic and
random parameter variation. Fig. 2 illustrates the dimensions
of parallelism that are simultaneously exploited by the imple-
mented fault simulator during evaluation: a) cell-parallelism,
b) waveform-parallelism, c) fault-parallelism and d) instance-
parallelism. The structural parallelism from cells and data
parallelism from stimuli have been adopted from [32]. These
dimensions have been extended for cell-fault and instance
parallelism which allows to simulate different instances of a
circuit with varying parameters at the same time.

To achieve a high-throughput parallel simulation, the naı̈ve
serial simulation flow is mapped as shown in Fig. 3 to exploit
the four dimensions of parallelism. Given a set I of instances
of a circuit population, the naı̈ve flow assigns the parameter
specification of an instance to the netlist one after another.
Input stimuli of the provided test set T are then assigned one

Δ(p , p , ... )i i
0 1
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Fig. 2. Dimensions of parallelism exploited during simulation: a) cell-,
b) fault-, c) waveform- and d) instance-parallelism.

by one, for each of the faults F to be investigated. In the worst
case, the evaluation of a stimuli for a fault in a circuit instance
involves the evaluation of all cells N in the circuit netlist.
Hence, as indicated by the four nested loops, the total number
of simulation problems can sum up to |N | ⇥ |T | ⇥ |F | ⇥ |I|
cell evaluations.
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Fig. 3. Serial simulation flow mapped to the parallel evaluation scheme.

This work combines the structural problems (i.e., cells N
and faults F ) to utilize structural parallelism for accelerating
switch level simulation of the circuit. All data-specific prob-
lems (i.e., stimuli T and instances I) are merged in addition
in order to exploit data-parallelism during simulation, thus
forming a multi-dimensional parallelization scheme.

The overall view of the presented fault simulation comprises
two phases as shown in Fig. 4. During an initialization
phase (Steps 1–3), the combinational netlist is extracted from
the design and mapped to switch level primitives (1), so-called
Resistor-Resistor-Capacitor (RRC-) cells [32], that consider
first-order electrical parameters of CMOS cells. The required
electrical parameters are extracted from Detailed Standard
Parasitics Format (DSPF) files [41] obtained from layout
synthesis. After mapping, the RRC-cells are partitioned into
levels of topologically ordered cells (2). Then the provided
fault set is collapsed in order to remove any equivalent faults
and grouped into fault groups for parallel injection (3). In
the simulation phase, the fault groups are processed one after
another. First, the current fault group is injected into the
circuit description (4). Then, the circuit instance parameters
are assigned (5) which are used to modify the cell descrip-
tions. In (6) a waveform-accurate switch level simulation is
performed followed by a fault detection kernel (7) that captures
the output responses of the circuit at given sample times. The
shaded boxes denote parallel processes on the GPU.
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IV. SIMULATION MODEL

In the following, the basic switch level circuit model of
the Resistor-Resistor-Capacitor (RRC-)cell-based time simula-
tion [32] and the signal representation will be briefly explained.

A. Circuit Model

For simulation of a CMOS circuit, the transistor netlist is
partitioned into so-called channel-connected components [42],
[12], which are sub-networks of PMOS and NMOS transistors
that are connected via their drain and source terminals, such
that current can flow freely in-between via their channels.
Channel-connected components can be derived from most
primitive cells (such as AND, NAND, ...) and complex CMOS-
cells (AOI, XOR, ...) found in cell libraries. Fig. 5 shows an ex-
ample of a highlighted channel-connected mesh extracted from
the transistor netlist of a complex 10-transistor XOR-cell with
some output load. The extracted mesh is controlled by pull-
up and pull-down networks that drive an intermediate signal
domain (Y), which is input to transistors of a next channel-
connected component. Ideally, current flows only within the
mesh and is not allowed to pass over transistor gate terminals to
other meshes. Thus, each channel-connected component draws
current independently from its associated power supply.

The signal voltage of the channel is controlled via the pull-
up and pull-down networks of the mesh. Depending on the
input voltages at the transistor gate terminals, pull-up and pull-
down meshes behave like a voltage divider, that drive an output
capacitance Cload via some wire resistance Rw.
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Fig. 5. Extraction of channel-connected components in a transistor netlist.

Resistor-Resistor-Capacitor (RRC-) cells provide a simple
unidirectional model for representing the switching behavior
within channel-connected components [32]. An RRC-cell mod-
els a channel-connected component, that is driven by PMOS
and NMOS transistor networks as shown in Fig. 6.
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Fig. 6. Switch-level abstraction of cells modeling an input-controlled voltage-
divider (Ru, Rd) driving an output load Cload as RRC-cell.

The transistors are described each by a 3-tuple D =
(Vth, {Roff , Ron}) as part of the RRC-cell description R, with
Vth as threshold voltage and Roff (Ron ) as blocking (conduct-
ing) drain-source resistance. Both resistances and thresholds
of the transistors are obtained from characterization of the
SPICE model cards, which needs to be done only once for each
transistor type during a pre-processing. Each device is viewed
as a voltage-controlled resistor RD(v), that models a threshold-
based binary switch based on the applied gate voltage v:

RD(v) =

⇢
Roff if v < Vth,

Ron else.
(1)

The resistances from pull-up net Ru and pull-down net Rd

form a voltage divider (Ru, Rd) driving a lumped output
capacitance Cload via an output resistance Rw. Upon transistor
switches, the resistances Ru and Rd change as a consequence.
After a change at time ti, the output vc(t) will follow an ex-
ponential curve for t � ti with time constant τ = S ·RuCload,
due to the RC-property of the cell. Starting from vc(ti) the
curve aims for a stationary voltage v = S · V + GND,
with S = Rd

Ru+Rd

as divider ratio and V = VDD � GND.

Since RRC-cells derived from most standard-cell libraries
show regular pull-up and pull-down nets, simple nodal analyses
using Kirchhoff’s laws are applied to obtain Ru and Rd [32].

B. Signal Representation

The curve segment of a transient response at time ti is
expressed as exponential function for t � ti as follows:

v(t) := (v(ti)� vi) · e
�∆t

τi + vi (2)

where v(ti) is the signal value when the transition is initiated
and ∆t = (t�ti). Between two consecutive transistor switches
at ti and ti+1, all resistances in the RRC-cell remain constant.
As shown in Fig. 7, the curve in each switch interval [ti, ti+1]
can be described entirely by a tuple of three parameters pi =
(ti, vi, τi), referred to as pivot [32], which are:

• ti: The time of the switch that initiates the curve.
• vi: The stationary voltage targeted by the curve.
• τi: The slope of the curve given by the time constant.
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The complete switching history or waveform w of a signal
is described by a list of pivots w = {p0, ..., pk}. The pivots
are ordered temporally from earliest to latest and allow to
model arbitrary waveforms as shown in Fig. 8 using piecewise
approximation. For the evaluation of a waveform w(t) at time t
Eq. (2) is applied iteratively along the pivot times ti and even-
tually for t itself to obtain w(t) = v(t) . Hence, detailed signal
information is sustained with very small memory overhead,
allowing for an efficient time- and value-continuous evaluation
without the need of sampling [32].

V. VARIATION MODELING

Parametric variation among circuit instances affects both
functional and timing behavior of cells. Its source is dis-
tinguished as either random or systematic nature. Random
variations have quantum mechanical origin and involve uncer-
tainties which are typically modeled by independent random
variables [16]. Systematic variation on the other hand takes
into account spatial and parametric dependencies within dies,
wafers or lots that affect the underlying cells simultane-
ously [43], [44]. Sources relate to material properties and lim-
itations of fabrication processes (e.g., lithography, polishing)
that sustain correlations between neighboring structures.

At logic level, variations are typically modeled by modifying
or randomizing the delay of cells for each instance of a circuit
population [39], [22], [34]. In this work, the variation modeling
of [34] is mapped to switch level for application with transistor
granularity. The modeling supports both independent random
as well as correlated systematic variation and provides:

• efficient generation of arbitrary individual circuit in-
stances during simulation, and

• modeling of variability faults that involve parametric
deviations due to higher uncertainty.

A. Random Parameter Variation

Random variation is typically modeled using random vari-
ables RV from uniform or normal distributions [39], [22]
which can be described by mean and variance. Given the
nominal specification of a parameter πnom 2 R, the expected
value of the distributions is assumed to be E(RV ) = πnom .
Thus, cell descriptions need to be extended only by a variance
parameter. For the number generation during simulation, a
pseudo random number generator (PRNG) is used, which uses
initialization with a unique seed for each instance of a circuit
population [34]. When a cell is simulated, additional entropy
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from cell identifier, cell type and other parameters is added to
obtain a unique seed within its respective instance.

The randomization is described by the function θ : P 7! R

which takes as input a vector P that represents a point in the
parameter space that identifies a specific circuit instance of the
population. The vector P is composed of the standard devi-
ation σ and a set of parameters {p0, p1, · · · , pu} containing
the initial seed and additional entries for entropy. For each
nominal cell parameter πnom 2 R the simulation procedure
applies the variation once upon loading the cell description:

πres := πnom · (1 + θ(σ, p0, p1, . . . , pu)) . (3)

Thus, compared to the cell evaluation itself, only little
computational overhead is introduced while computing the
variation during simulation. Furthermore, new instances of the
circuit population can be generated on the fly without the need
for storing and transferring descriptions of every instance.

B. Systematic Parameter Variation

For systematic variation, the previous modeling concept is
generalized to consider parametric correlations between the
input variables. The parameters and their variation impact are
described on multiple levels using a hierarchical parameter
space model [16], [43]. On each level of the hierarchy, a real
function θv : Pv 7! R is specified to calculate the parametric
deviation with respect to a subset of input parameters Pv .
A function can take a vector Pv of entries pi as input that
refer to coordinates of the cell at die-, wafer- or lot-level,
or manufacturing-related and environmental parameters (i.e.,
ambient temperature), and map to an absolute parametric devi-
ation in an RRC-cell. The individual systematic components θv
are implemented as series of either polynomials or trigono-
metric functions over the parameters to approximate between
process corners. To obtain the deviation of a specific (cell)
instance parameter, the components of the hierarchy are added
and weighted based on their individual impact αv:

πres := πnom ·

 
1 +

nX

v=0

(αv · θv(p0, p1, . . . , puv
))

!
. (4)

This way, the spatial and parametric correlations within and
across levels are sustained for the population.

The evaluation of these functions can be efficiently pro-
cessed on GPU devices due to their high floating point
throughput. In case the θv are described by polynomials,
Horner’s method can be applied to reduce the number of
arithmetic operations. Also, the use of architecture-specific
instructions, such as fused multiply-add (FMA), is enforced
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which provides an increase in computation speed on current
device generations [36].

VI. FAULT MODELING

Low-level parametric faults in the circuit are typically
modeled by utilizing first-order electrical parameters of CMOS
cells. In cell-aware test, the identification of potential faults
usually requires manual work and additional effort to obtain
user-defined fault models [1]. Ways for layout-aware extraction
of defects and their abstraction to relevant fault types in either
electrical or logic domain have been already proposed in [45],
[46]. This work utilizes the RRC-cell parameters R for fault
modeling and injection, allowing to model a broad variety of
cell-internal low-level parametric faults without the need of
higher level abstraction [35]. In the following, the general fault
modeling and the injection methods will be explained.

A. Parametric Faults

Each RRC-cell description R is organized as a set tuples
containing device descriptions D = (Vth , {Roff , Ron}) with
blocking and conducting resistances as well as threshold volt-
ages of each PMOS and NMOS transistor D, along with the
output load Cload and the voltage levels for VDD and GND.
Additional static resistances can be considered to model cell-
internal wire and via resistances in the cell descriptions [35].

1) Resistive Shorts and Opens: A resistive fault f of a cell
is described by a tuple f = (loc,∆Rf ), which is composed
of a location parameter loc as well as a fault size ∆Rf . The

location loc refers to a resistive parameter Rloc 2 R of the
cell which is either the blocking or conducting resistance of a
transistor D or a static resistance. The fault size describes the
actual deviation of the selected parameter in Ohms, which is

modified accordingly by eRloc := Rloc +∆Rf . Depending on
the sign of ∆Rf , either resistive opens (∆Rf > 0) or resistive
shorts are modeled (∆Rf < 0). Transistor open faults can be
obtained by increasing the conducting resistance Ron , while
for shorted transistors the blocking resistance Roff is lowered.
The static resistances in the RRC-cell model offer to include
parametric faults related to the vias and wires in a cell, such
as cross-wire opens and bridges [6].

2) Capacitive Faults: For modeling resistive and capacitive
faults in interconnects, a lumped model is assumed [35]. The
capacitive faults are described as tuple f = (loc,∆Cf ), intro-
ducing an additional capacitance ∆Cf to the RRC-cell output
capacitor Cload . The resistive property of the interconnection
fault is added to the wire component Rw of the driving cell.

3) Voltage-related Faults: The RRC-cell voltage parameters,
such as device threshold, VDD and GND, offer opportuni-
ties for modeling power-related issues and aging phenomena,
such as Negative-Bias Temperature Instability (NBTI) or Hot-
Carrier Injection (HCI). NBTI and HCI cause an increase
in the threshold voltage of devices over time, which delays
the transistor switching process [47], [48]. In the RRC-cell
descriptions the threshold voltage parameter Vth of a transistor
allows to inject aging faults. A particular shift ∆V can be
modeled by lowering (raising) the threshold of the targeted

PMOS (NMOS) transistor respectively eVth := Vth ⌥∆V [35].

Similarly, the VDD and GND voltage of a cell can be altered to
reflect power-related issues, such as fluctuations in the power
grid due to IR-drop and ground bounce [49].

B. Variability Faults

Severe shifts in standard deviation and other variability
parameters can cause outliers due to unstable components that
expose different fault behavior throughout a circuit population.
These unstable components can cause yield problems, and
need to be identified early. However, worst case analyses are
too pessimistic to provide meaningful information.

In order to tackle this issue, the fault modeling is extended
by variability faults. For random variation, faults are injected
by modifying the standard deviation parameter σ of the cell
description f = (loc,∆σf ) by some size ∆σf . By increasing
the standard deviation eσ := σ + ∆σf , unstable properties
can be triggered within a cell to exhibit different impact over
a circuit instance and the entire circuit population. As for
systematic variation, the injection of an offset vector ∆P with
f = (loc,∆P ) allows to move cells within the parameter
space. Thus, by modification of the cell parameter vector
eP := P + ∆P , changes in multiple dimensions can be per-
formed simultaneously that maintain all spatial or parametric
correlations within the parameter space.

C. Fault Collapsing

For a particular fault size, the number of fault locations can
be reduced by structural collapsing of the fault list. Compared
to transition faults [38], collapsing becomes more restrictive
if actual timing has to be taken into account [34]. For this,
classes of timing equivalent faults need to be identified. Timing
equivalent faults show identical waveform behavior in the
switch level model. Thus, simulation of only one representative
is necessary to evaluate all faults of a class. At switch level the
scope of fault collapsing is even more restricted than at logic
level, since not only the switching times, but also the shape
of waveforms needs to be considered. For faults in different
cells, both affect the switching of their successors differently.

For fault locations within a RRC-cell, this work applies
a simple rule to collapse resistive opens and shorts. Let
π0,π1, ...,πn 2 R be resistances or devices in either pull-
up or pull-down net of a cell. Two fault locations πi and πj

in a net N are timing equivalent iff there is a path p 2 N
from VDD or GND to the cell output with πi,πj 2 p, such
that 8p0 2 N : p0 6= p either πi,πj 2 p0 or πi,πj /2 p0. In
the example of Fig. 6, resistors associated with the NMOS
devices of signals A and B are considered equivalent, since
they form a series (RA,N , RB,N ) where current needs to
flow through both resistors. Thus, for any resistive fault f of
size ∆Rf the injection in RA,N or RB,N delivers identical
results: (RA,N +∆Rf ) +RB,N = RA,N + (RB,N +∆Rf ).

D. Fault Injection

Any RRC-fault is injected into the circuit prior to its actual
simulation by manipulating the associated cell descriptions,
and marking the fault sites as faulty. During simulation, the
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presence of faults is transparent to the kernels. Multiple faults
can be injected simultaneously to model multi-faults across
the circuit or within RRC-cells, as well as for exploiting
fault parallelism (cf. Sec. VIII-B). After the simulation has
been completed, the descriptions of all fault sites marked
as faulty are restored to their original specification and the
simulator is ready for a new fault simulation run. Since the
fault descriptions are compact, only a few small memory
transactions are necessary during the injection process.

VII. SYNDROME EVALUATION

After the simulation of the circuit, the waveforms of all
output pins in the output cone of a fault site are captured at a
user-specified signal sample time point. Given the sample time
tsamp, each output waveform is traced pivot by pivot until the
latest curve segment pi = (ti, vi, τi) with ti+1 > tsamp is
reached. The signal voltage is computed iteratively along the
pivot boundaries according to Eq. (2). Eventually, the final
signal value at tsamp 2 [ti, ti+1) in the last segment pi is
computed for ∆t = (tsamp � ti) time units respectively [35].

A. Signal Interpretation

Eventually, the obtained voltage values are compared against
the reference values of the fault-free simulation to determine
right from wrong. The logical interpretation of the continuous
signals is done by applying a threshold-based characterization
of the voltage level. The obtained voltage values are interpreted
as either high (1), low (0) or unknown (X). For this, a threshold
interval (VthL, VthH) 2 [GND,VDD] is defined, which is
bounded by a low threshold VthL and high threshold VthH .
Given an arbitrary voltage value v 2 R sampled from a
signal waveform, the mapping to the logic symbols {0, 1, X}
is described as follows [35]:

val : R ! {0, 1, X}, val(v) :=

8
<
:

0 if v  VthL,

1 elif v � VthH ,

X else.

(5)

Signal values v within [GND, VthL] ([VthH ,VDD]) are consid-
ered as low (high), since the voltage levels are likely to be am-
plified in CMOS technology. Values in (VthL, VthH) are con-
sidered pessimistically as undefined and possibly erroneous,
since succeeding cells might interpret voltages differently.

B. Discrete Syndrome Computation

To determine the presence of a faulty value at a given output
and time t, the output waveform w(t) is compared against the
fault-free value w(1) for t ! 1. It is assumed that the fault-
free responses of a circuit are stable and have clear high or
low signals. A syndrome waveform syn(t) maps the voltage
differences of the output waveform w(t) and the fault-free
values according to Eq. (5) to discrete logic symbols [35]:

syn(t) :=

⇢
val(v(t)) if v(1) ( VDD+GND

2 ),

val(VDD � v(t) + GND) else

allowing to distinguish the three discrete logic cases (0, 1, X).
Therefore, syn(t) = 1 (syn(t) = 0) iff the cell produces a

faulty (fault-free) signal at time t. In case w(t) is undefined
the syndrome is unknown and the output is pessimistically
considered as possibly erroneous (X).

C. Setup-Hold Time Violations

To consider violations in setup and hold times of storage
elements, margins for setup tsetup and a hold times thold are
utilized to check the stability of an output signal in some inter-
val [tS , tH ] with tS := tsamp�tsetup and tH := tsamp+thold .
Any violations can be obtained by traversing the syndrome
waveform. First, the value syn(tS) is captured for reference.
Since the curve segments in w are monotonously increasing,
further comparisons of the signal values only need to be done
at pivot boundaries ti until time tsamp is reached. A setup-
violation S is raised iff

S , (9t 2 [tS , tsamp ] : syn(t) 6= syn(tsamp)) .

Similarly, for hold-violations the value at tsamp is used as
reference and the traversal is continued until tH . A hold
violation H is issued iff

H , (9t 2 [tsamp , tH ] : syn(t) 6= syn(tsamp)) .

This way, the syndrome capturing, as well as the checks for
setup and hold time violations can be performed in the same
process during output evaluation.

Regarding the impact on the fault detection, it is assumed
that any setup or hold time violation at an output causes addi-
tional uncertainty in the captured signal. For simplification, the
captured output will be considered pessimistically as unknown
and thus possibly erroneous, if either S = 1 or H = 1 holds.

D. Fault Detection

The detection of a fault is classified into detected, undetected
and possibly detected. The classification is performed by
looking up the syndromes syno(t) of all the outputs o in the
corresponding output-cone O of the fault. Given the captured
syndromes of the outputs, a fault is:

• detected (DT) iff any output signal in the output-cone
shows a faulty syndrome (9o 2 O : syno(tsamp) = 1),

• undetected (UD) iff all outputs in the output-cone show
a fault-free syndrome (8o 2 O : syno(tsamp) = 0),

• possibly detected (PD) iff a non-empty subset of
outputs in the output-cone exhibits an unknown
syndrome (9o 2 O : (syno(tsamp) = X) _ (So _Ho)),
while the others do not show a faulty syndrome
(8o 2 O : syno(tsamp) 6= 1).

After a simulation pass, the output waveforms remain un-
touched during the evaluation and stay present in the memory.
They can be sampled quickly in succession at further points
in time. Individual capture times can be considered for each
output, thus allowing to model skew in the clock distribution.
Also, since the output responses are available for all stimuli,
space- as well as time-compaction can be applied.
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VIII. PARALLELIZATION

The whole simulation of the circuit is implemented as a
sequence of smaller tasks, each of which handles a different as-
pect during evaluation (e.g., stimuli conversion, cell evaluation,
fault detection, data extraction, etc.). Each task is executed
by a multi-dimensional simulation kernel that invokes many
threads arranged as an array or grid on the GPU device. A
single thread within the grid performs its respective task for a
distinct cell (and fault) under a particular stimuli and circuit
instance parameters. In the following, the implementation of
each dimension will be briefly explained.

A. Cell-Parallelism

The parallel simulation of RRC-cells is based on the parallel
processing of mutually data-independent nodes [32], [33]. If
two cells are neither in their input- nor output-cones of each
other, the order of their evaluation can thus be chosen freely
and as well be scheduled for parallel execution, as opposed to
data-dependent cells, where the output of one cell needs to be
computed first to be provided as input for another.

Groups of mutually data-dependent and independent cells
are obtained after topological ordering of the netlist in the
levelization pre-processing. During levelization, the cells are
partially ordered and partitioned into so called levels based
on their topological distance (i.e., from primary and pseudo-
primary inputs). The levels have to be simulated sequentially
from inputs to outputs in order to satisfy the data dependencies
of all the cells. The evaluation is performed by invoking
the simulation kernel for each level. Cells within each level
are mutually data-independent and the parallelization of their
evaluation is arranged by starting threads for each of the cells
upon invoking the simulation kernel of the level. All threads
then simultaneously process the previously computed input
signals for their cells.

In order to keep the control flow of the simulation kernels
simple and uniform, the output waveforms of the cells have to
be stored in fixed positions in the memory. Since the number of
resulting signal switches in a waveform is not known a priori,
an overflow detection and memory calibration mechanism
is applied [33]. In case the assigned memory of a signal
waveform is not sufficient to store all transitions, an overflow
is reported. The simulation of the level is then repeated with
increased storage limitation of the culprit waveforms and
adjusted memory allocation until all overflows are resolved.

B. Fault-Parallelism

The parallel simulation of faults is organized by injecting
sets of output-independent faults into a single simulation
instance. The RRC-cell faults originate at the cell outputs
and eventually propagate along succeeding cells towards the
outputs of the circuit. Therefore, their impact is limited to
the output cone. For a parallel simulation of RRC-cell faults
it must be ensured that injected faults do not interfere by
adding or masking fault effects during propagation. For this,
fault sets are partitioned into fault groups of mutually output-
independent faults [24] for simultaneous injection by ensuring

mutual output-independence of their reachable outputs. The
underlying graph coloring problem to solve this problem
optimally is NP-hard [50]. Instead, the heuristic of [35], [34]
is used which is especially suitable for exhaustive fault sets.
The heuristic processes faults in reverse topological order from
circuit outputs towards inputs in a broad fashion. Each fault
is assigned an initial fault group index based on previously
processed topological successors. Upon identifying an output-
independent fault group the index is propagated to its predeces-
sor nodes. This way, grouping attempts and comparisons can
be reduced and suitable fault groups are found quickly. Once
all fault groups have been determined, the simulator processes
them in consecutive simulation runs one after another.

C. Stimuli-Parallelism

So far only structural aspects have been tackled by the
parallelization of cells and faults. In addition data-centric
aspects will be included as well in order to increase the
simulation throughput, by processing circuits not only for
single stimuli, but multiple stimuli at the same time. The
organization of the simulation kernels is therefore extended
as shown in Fig. 9, resulting in a two-dimensional array or
grid of threads [32], [33]. Each thread in the vertical dimension
simulates a different cell for a given stimuli. The set of threads
in this dimension will be referred to as a slot. All threads in
the horizontal dimension, on the other hand, simulate the same
cell of the circuit, but each with different stimuli.

The threads of the kernel grid are scheduled in fixed batches
for simultaneous execution on the GPU multi-processors by
the thread scheduler. The threads of all batches all handle the
same cell, but for different stimuli. Hence, the threads compute
the same function, but for different data, which is compliant
with the SIMD execution scheme of the GPU processors.
In addition, the waveforms are stored in the global memory
in a way, such that the accesses of the threads in a batch
are coalesced to connected address ranges. This way, the
utilization of each memory transaction is maximized and the
overall amount of transactions by the thread blocks is reduced.

The two-dimensional scheme is applied throughout the dif-
ferent simulation kernels, from test vector assignment, through
cell evaluation to fault detection. The amount of stimuli that
can be processed in parallel depends on the amount of global
memory on the GPU as well as the amount of memory required
for processing a single simulation instance. If more stimuli
are provided than able to fit on the GPU memory, the stimuli
set is split into chunks that are processed either serially on a
single GPU, or in parallel on multiple GPU devices on the
host system. Thus, larger memories and more GPUs allow for
a higher degree of parallelism. In contrast to the structural
parallelism from cells, the effective parallelism from data
remains constant throughout the simulations.

D. Instance-Parallelism

For parallel simulation of instances under variation, the con-
cept of slots is generalized for utilization with instances similar
to [34]. The extension is illustrated in Fig. 10 and shows
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Fig. 9. Two-dimensional parallel evaluation of multiple data-independent
cells and input stimuli in a topologically ordered netlist.

the basic multi-dimensional thread-organization of the GPU
kernels. Each thread of a row computes the same cell, while
within each column, the threads now compute a given stimuli
for a specific instance, whose arrangement can be arbitrarily
chosen. The thread organization maintains the control flow
uniformity of the underlying kernels, and also allows to fully
occupy the GPU memory resources.

The calculation of the instance specific parameters is sched-
uled at the beginning of each cell evaluation. The threads
access the instance information of their respective slot and
manipulate the cell parameters upon loading the cell descrip-
tion. An efficient implementation of a parallel pseudo random
number generator (PPRNG) is utilized in order to generate
the random numbers on the GPU [51], [39]. For incorpo-
rating systematic variation, the parameter space spanned by
given process corners is implemented as real functions. For
both, random and systematic variation, the calculation of the
instance-specific parameters only needs to be done once at
the beginning of the evaluation of a cell and therefore causes
negligible overhead [34]. Again, the parallelization scheme
allows to be distributed among multiple GPU devices to avoid
serialization due to insufficient device memory.

IX. EXPERIMENTAL RESULTS

All experiments (except where otherwise mentioned) were
conducted on a host system connected to a NVIDIA R�

GeForceTM GTX R� 1080 Ti device with 3584 cores clocked
at 1.6MHz and access to 11GB of global device memory.
The host system was equipped with two Intel R� Xeon R� E5-
2687W v2 processors clocked at 3.4GHz and 256GB of RAM.
As for the circuit description of our largest circuit p3881k, the
maximum memory occupied on the GPU for storing the entire
circuit with 3.7 million nodes was roughly 280MB, which is
less than 2.5% of the available global device memory.

The experimental section is split into four parts. The first
part is concerned about the general circuit statistics and the
fault grouping. In the second part, the runtime performance
of the simulation is investigated. The third part focuses on
the fault simulation experiments and the evaluation. In the last
part, parameter variation is investigated.

A. Overview

Table I summarizes the statistics of the circuits and their
fault grouping results. As sample circuits, synthetic bench-
marks from ISCAS’89, ITC’99 and industrial designs provided
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Fig. 10. Thread-grid organization for the evaluation of multiple circuit
instances in parallel. Each slot covers one instance for one stimuli [34].

by NXP have been synthesized using a 45nm standard cell
library. For the provided fault set to be grouped a high resistive
open was considered at each transistor in the circuit in addition
to a capacitive fault at each cell output. The node counts
(inputs, outputs and cells) of the respective circuits range from
18 thousand to over 3 million (Col. 2). The logic depth of
each circuit is shown in column 3. Column 4 contains the
number of pattern pairs that can be simulated concurrently in
a single pass on the GPU device when fully utilizing the global
device memory. Columns 5–9 provide the results from the
fault grouping given the initial number of faults (Col. 5). The
remaining faults after collapsing cell-internal faults is shown
in column 6, followed by the number of obtained fault groups
(Col. 7), the grouping efficiency (eff., Col. 8) and the runtime
required for the grouping process (Col. 9). The grouping
efficiency is defined as the fraction of initial faults divided
by the number of obtained fault groups and hence represents
the average number of faults simulated per simulation run. The
time for the fault grouping can be considered as negligible, as
the grouping provides a substantial reduction in the simulation
effort compared to the naı̈ve serial simulation. For example,
even in case of p469k with a low group efficiency of 1.3, the
achieved saving in simulation runs is about 25 percent.

Fig. 11 shows the distribution of the fault group sizes as well
as the cumulative fault count over all fault groups obtained
from the grouping in Table I. As shown, the leftmost groups
contain the most faults which are located directly or close to
the outputs of the circuit and thus have a high probability of
mutual output independence (e.g., each output itself is output-
independent of others). Roughly 90 percent of the total faults
in each circuit are processed in average after simulation of the
first 25 percent of the fault groups. As the grouping progresses
the groups get smaller at varying speed depending on the
circuit. The fault groups sustain a size of at least ten faults
or larger until 50 percent have been processed. After that,
the group sizes drop for most of the circuits to a few faults
only. These late faults usually lie on the structurally longest
paths and therefore have a high probability of mutually sharing
common outputs which prohibits from being grouped.

B. Runtime Performance

For the performance evaluation of SWIFT, the runtimes are
compared against time simulation at logic level in Table II.
A commercial ATPG tool was used to generate n-detect
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TABLE I. BASIC CIRCUIT AND FAULT GROUPING STATISTICS.

Circuit(1) Nodes(2) Depth(3)
Parallel Fault Grouping

Pattern-

Pairs(4)

Faults
Groups(7) eff.(8) Time(9)

init.(5) coll.(6)

s38417 19.0k 48 12.2k 68.7k 59.5k 2084 33.0 940ms
s38584 23.1k 70 10.2k 88.0k 75.4k 2610 33.7 1.35s

b17 42.8k 120 13.7k 178.3k 150.3k 18.5k 9.7 6.09s
b18 125.3k 195 4224 529.3k 445.9k 36.9k 14.3 38.22s
b19 250.2k 203 2208 1.06M 891.1k 39.6k 26.7 43.98s
b22 27.8k 88 14.4k 118.6k 99.5k 11.8k 10.1 3.61s

p77k 70.5k 466 5568 287.5k 242.7k 72.3k 4.0 2:02m
p141k 178.1k 79 1856 695.0k 592.8k 55.8k 12.4 3:15m
p267k 218.4k 55 1376 846.2k 716.8k 14.2k 59.8 31.50s
p330k 286.9k 61 1280 1.15M 969.2k 85.4k 13.4 5:10m
p418k 440.3k 174 768 1.68M 1.44M 22.7k 74.3 36.54s
p469k 104.4k 239 5664 451.1k 381.1k 337.2k 1.3 42.17s
p500k 527.0k 179 736 2.05M 1.76M 24.3k 84.6 44.09s
p533k 676.6k 112 512 2.77M 2.33M 10.7k 258.2 45.73s

p951k 1.09M 153 224 3.92M 3.40M 20.2k 194.1 1:12m
p1522k 1.09M 508 320 4.32M 3.65M 77.8k 55.5 24:47m
p2927k 1.67M 388 160 6.49M 5.56M 37.0k 175.2 5:10m
p3188k 2.85M 618 128 11.48M 9.72M 524.5k 21.9 6:05h
p3726k 3.56M 438 96 14.31M 12.19M 201.8k 70.9 1:11h
p3847k 2.96M 913 96 11.60M 9.88M 83.9k 138.2 1:26h
p3881k 3.69M 178 64 14.04M 12.02M 111.2k 126.3 24:41m
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Fig. 11. Sizes of obtained fault groups (left axis, log-scale) and cumulative
amount of processed faults (dotted, right axis) after simulation.

transition fault test pattern sets (n = 10) for the circuits with
a test coverage of over 98.7% in average. The circuit and
the number of pattern pairs obtained from ATPG are given
in columns 1 and 2. The runtimes of a timing simulation at
logic-level using a commercial event-driven simulator and the
GPU-accelerated simulator of [34] are given in columns 3
and 4 respectively for comparison. For the simulation with
SWIFT, thread-grid dimensions have been adjusted to the test
pattern set (cf. Table I, Col. 5). Column 5 to 7 show the
worst case runtime of SWIFT, the throughput performance in
million node evaluations per second (MEPS) and the respec-
tive speedup (Col. 7) compared to the event-driven approach.
The worst case runtimes refer to simulation runs without pre-
initialized waveform capacities, which can trigger an overflow
mechanism in the simulation [33]. The best case runtime
performance after initial calibration is given in column 8 to 10.

As shown, the speedups of the worst case simulation range
from 7 to 80⇥ when compared to the unparallelized logic level
event-driven simulation. While smaller to medium circuits
are still processed within seconds or few minutes, the larger
circuits take up to a few hours, as the overflow calibration
procedure is performed by the host system itself. In the

TABLE II. FAULT-FREE SIMULATION RUNTIME.

Circuit(1) Pattern-
Logic-Level Switch-Level

Pairs(2) Event- GPU Worst (GPU) Best (GPU)

Driven(3) [34](4) Time(5) MEPS(6) X(7) Time(8) MEPS(9) X(10)

s38417 348 5.00s 351ms 552ms 12.0 9 385ms 17.2 13
s38584 563 12.71s 458ms 742ms 17.5 17 455ms 28.5 28

b17 2135 1:03m 478ms 3.11s 29.3 20 1.19s 76.6 52
b18 3174 8:27m 1.12s 16.41s 24.2 31 4.95s 80.3 102
b19 4651 27:13m 2.50s 49.70s 23.4 33 13.77s 84.5 119
b22 1190 22.84s 403ms 2.16s 15.3 11 779ms 42.5 29

p77k 1979 3:27m 1.04s 13.28s 10.5 16 3.13s 44.6 66
p141k 2043 5:56m 1.38s 14.47s 25.1 25 4.85s 75.1 73
p267k 3181 13:32m 1.76s 19.51s 35.6 42 6.84s 101.6 119
p330k 5928 1:04h 3.90s 48.04s 35.4 80 15.63s 108.8 245
p418k 3676 29:09m 6.96s 58.97s 27.4 30 14.59s 110.9 120
p469k 347 3:01m 723ms 6.95s 5.2 26 2.13s 17.0 84
p500k 5012 1:12h 13.47s 1:59m 22.3 36 26.82s 98.5 160
p533k 3417 1:04h 7.62s 1:49m 21.3 35 26.12s 88.5 146

p951k 7063 3:12h 23.86s 9:12m 14.0 21 1:06m 118.2 176
p1522k 17980 7:42h 42.09s 28:55m 11.3 16 3:01m 108.3 153
p2927k 22107 19:12h 1:18m 1:15h 8.2 15 5:17m 116.9 218
p3188k 26502 41:16h 3:30m 3:45h 5.6 11 12:27m 101.2 199
p3726k 15512 43:09h 2:25m 2:36h 5.9 17 11:09m 82.7 232
p3847k 31653 49:11h 4:38m 7:06h 3.7 7 16:22m 95.4 180
p3881k 12092 22:57h 2:28m 2:47h 4.5 8 10:56m 68.1 126

best case, on the other hand, the simulation runs at full
speed since no calibration is necessary and the simulation
speedup increases up to 245⇥ (p330k). Circuits of medium
size require only a few seconds, and for the million cell designs
runtimes dropped to a few minutes. The achieved speedups
are typically higher for the larger circuits, since the relative
initialization and synchronization overhead between the host
diminishes, leaving a better utilization and occupancy of the
GPU computing resources with a throughput performance of
up to 118 MEPS (p951k). Thus, the parallel switch level sim-
ulation allows to outperform conventional logic level timing
simulation despite the more detailed abstraction level.

Fig. 12 compares signal waveforms extracted from SPICE,
logic level and switch level simulation [32]. For this experi-
ment a chain of two-input NAND cells has been synthesized
that enforces a multiple input switching effect (MIS) at all even
stages throughout the chain. A rising transition was used as
input stimuli, thus, at all even stages the cell output is charged
via parallel PMOS transistors, hence causing a faster switching
time for rising transitions. While the switch level simulation
is able to reflect this effect, it is completely ignored in logic
simulation, which introduces small errors at all stages. These
errors accumulate throughout the design up to a delay deviation
of roughly 30 percent of the reference delay. Again, this effect
is more severe for cells with three or four inputs.

C. Fault Simulation

For the fault set generation, the nominal clock period of
each circuit was extracted from the latest transition time and
an additional safety margin of 10 percent was added. All
outputs with a slack of less than 25 percent were selected and
traced back to the circuit inputs. The RRC cells in the traced
input cones were selected as possible fault locations. As fault
models, both resistive open transistor faults in the PMOS and
NMOS networks of the RRC-cells, as well as capacitive faults
at the cell outputs are considered. To observe the impact of
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a) Signal waveforms at stage 7: Falling transition without MIS.
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b) Signal waveforms at stage 16: Rising transition with MIS.

Fig. 12. Waveforms from electrical, logic and switch level simulation of a
signal transition propagating through a chain of two-input NAND cells.

each fault parameter on the fault detection, the fault locations
were investigated for multiple fault sizes.

Table III summarizes the simulation results for the resistive
open transistor faults. Out of the possible fault location can-
didates, a maximum of 1000 random RRC-cells were picked
for simulation assuming one fault at each transistor. The three
chosen fault sizes range between the conducting and blocking
resistances of the transistors in the cells, which have been
obtained from SPICE simulations of the transistor models
[52], [53]. The total number of faults simulated for each fault
size is shown in the second column. Column 3 shows the
total simulation for processing the three sets of faults for all
patterns and column 4 provides the average simulation time
per fault group. The number of detected (DT) and possibly
detected (PD) faults with a size of 10kΩ is given in column 5
and 6. The remaining faults are undetected (UD) by the pattern
set. Similarly, the simulation results for 100kΩ and 1MΩ are
given in columns 7 to 8 and 9 to 10 respectively.

As shown, with a fault size of 10kΩ only few faults were
detectable, as the effect is typically in the range of a few cell
delays, which is often covered by the clock margin but many
faults are possibly detected which indicates timing violations.
After shifting to 100kΩ, many possibly detected faults turn
detectable and further faults become visible. As expected, for

TABLE III. RESISTIVE OPEN FAULT SIMULATION (MAX. 1000 CELLS).

Circuit(1) Faults Runtime Fault Size (∆Rf )

(coll.)(2) 10kΩ 100kΩ 1MΩ

Total(3) Group(4) DT(5) PD(6) DT(7) PD(8) DT(9) PD(10)

b17 2543⇥3 56:55m 964ms 0 1 1020 77 2312 0
(0.0%) (0.0%) (40.1%) (3.0%) (90.9%) (0.0%)

b18 2616⇥3 6:33h 7.14s 0 0 972 50 2497 0
(0.0%) (0.0%) (37.2%) (1.9%) (95.5%) (0.0%)

p77k 2685⇥3 5:14h 2.58s 0 0 453 25 1678 6
(0.0%) (0.0%) (16.9%) (0.9%) (62.5%) (0.2%)

p141k 2313⇥3 2:37h 4.67s 0 0 1403 72 2202 0
(0.0%) (0.0%) (60.7%) (3.1%) (95.2%) (0.0%)

p267k 2275⇥3 2:24h 8.04s 6 4 1492 83 2198 0
(0.3%) (0.2%) (65.6%) (3.6%) (96.6%) (0.0%)

p330k 2573⇥3 9:01h 15.28s 9 8 2038 125 2560 0
(0.3%) (0.3%) (79.2%) (4.9%) (99.5%) (0.0%)

p418k 2460⇥3 13:05h 13.42s 0 1 1361 43 2378 0
(0.0%) (0.0%) (55.3%) (1.7%) (96.7%) (0.0%)

p533k 2615⇥3 8:16h 57.01s 0 0 1692 35 2548 0
(0.0%) (0.0%) (64.7%) (1.3%) (97.4%) (0.0%)

the 1MΩ fault set the detection ratio is the highest, since within
the clock interval the behavior of many faults is similar to those
of transition faults. Although in this case, the timing behavior
of the cells is severely impacted, the functional behavior is
still correct. The faults behave like weak stuck-open transistor
faults hindering charge from moving normally. Similar to a
transition fault, signal transitions are suspended within the
constrained clock interval. Hence, the high detection ratio. The
high spatial correlation of the faults unfortunately prohibits the
fault grouper from effectively grouping the fault set (efficiency
avg. 3.8, median 2.7). The runtime of the grouping itself took
less than a second for all cases and is negligible. While the
calibration of the waveform memory saturates quickly after the
first groups, the average runtimes per group gets close to the
best case simulation times. Sometimes, the fault simulation is
able to avoid the memory initialization overhead (transferring
stimuli, circuit data), since data it is already present in the
memory. This allows to amortize some calibration overhead
from fault injection and also can result in lower runtimes
compared to those reported in the full-speed runs of Table II.

To investigate the fault modeling of the SWIFT simulation
approach, signal changes after injecting and simulating faults
in RRC cells has been observed. Fig. 13 shows a visualization
of the effects of resistive open transistor faults in a two-
input NOR-cell. The fault-free transient response as well as the
simulation of discrete fault sizes have also been performed in
SPICE for comparison. Initially, the two inputs are set to (high,
low) causing an initial 0V output signal, before switching to
(low, low). The input change triggers a charging process at the
output load towards 1.1V. Eventually, the inputs switch to (low,
high), after which the output load starts to discharge again. In
the first case (a), resistive faults have been injected into the
parallel pull-down net, thus causing a slow falling transition
after the second input switch, as expected. For higher ohmic
resistances (10MΩ) the drain current of the affected transistor
is too small to discharge the load, thus the output level sustains
at a high level. Whereas in the second case (b), the faults
were injected into the serial pull-up net, that strongly affects
the rising transition of the output hazard. With increasing fault
size, the pull-up net becomes incapable of charging the output
load in time, before the second input transition arrives. As
shown, the behavior of the faults simulated in the SWIFT
simulator shows a fairly high similarity compared to SPICE.

For the capacitive fault simulation, 1000 fault locations were
investigated for three different fault sizes in each circuit. The
sizes have been chosen as multiples of the typical average
net load (i.e., 10fF for the circuits used) which were injected
into the output load capacitor of the cells. As opposed to
the resistive faults, no structural collapsing was performed.
The results are summarized in Table IV similar to Table III.
As shown, the fault detection gradually increases with the
fault size. In case of 1pF, most of the faults were either
detected (DT) or undetected. However, a few locations in b18
and p77k still showed possible detections (PD), due to the
comparably higher depth of the circuits and larger slacks at the
respective fault locations. For any (finite) fault size, capacitive
faults do not interfere with the functional behavior of cells, thus
eventually providing correct output values after some time.
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a) Injection at an NMOS-transistor in the parallel pull-down net.
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b) Injection at a PMOS-transistor in the serial pull-up net.

Fig. 13. Behavior of a resistive-open transistor fault in a) NMOS- and
b) PMOS-transistors of a NOR-cell in presence of an input hazard.

TABLE IV. CAPACITIVE FAULT SIMULATION (MAX. 1000 CELLS).

Circuit(1) Faults(2) Runtime Fault Size (∆Cf )

50fF 100fF 1pF

Total(3) Group(4) DT(5) PD(6) DT(7) PD(8) DT(9) PD(10)

b17 1000⇥3 26:52m 1.13s 17 6 82 15 939 0
(1.7%) (0.6%) (8.2%) (1.5%) (93.9%) (0.0%)

b18 1000⇥3 2:55h 8.39s 9 4 95 18 969 3
(0.9%) (0.4%) (9.5%) (1.8%) (96.9%) (0.3%)

p77k 1000⇥3 2:07h 2.81s 0 0 18 8 650 3
(0.0%) (0.0%) (1.8%) (0.8%) (65.0%) (0.3%)

p141k 1000⇥3 1:19h 5.40s 46 16 223 40 880 0
(4.6%) (1.6%) (22.3%) (4.0%) (88.0%) (0.0%)

p267k 1000⇥3 1:11h 9.26s 89 61 314 68 865 0
(8.9%) (6.1%) (31.4%) (6.8%) (86.5%) (0.0%)

p330k 1000⇥3 3:50h 17.45s 105 45 300 37 954 0
(10.5%) (4.5%) (30.0%) (3.7%) (95.4%) (0.0%)

p418k 1000⇥3 6:11h 15.07s 10 2 91 26 941 0
(1.0%) (0.2%) (9.1%) (2.6%) (94.1%) (0.0%)

p533k 1000⇥3 3:58h 1:10m 8 9 192 22 984 0
(0.8%) (0.9%) (19.2%) (2.2%) (98.4%) (0.0%)

The behavior of capacitive faults at the cell output are shown
in Fig. 14. In contrast to their resistive counterparts, capaci-
tive faults do not impact the functional behavior (stationary
voltage) of the cell, but only affect its timing. Eventually, the
capacitor gets charged and the cell delivers the correct output
level. The capacitive faults both impact rising and falling
transitions at the same time (Fig. 14b), similar to small delay
faults at logic level with rising and falling impact. Again, this
behavior was also observed in SWIFT. However, although the
capacitive fault has a discrete and fixed value, the delay impact
of the faults vary in presence of MIS. This cannot be captured
by logic level time simulation based on SDF descriptions
appropriately and thus needs evaluation at lower levels.
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a) Rising signal transition affected by capacitive faults.
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Fig. 14. Behavior of capacitive faults at the NOR-cell output affecting a) a
single rising transition, b) a hazard.

D. Variation Analysis

To demonstrate the effect of parametric variation at switch
level, Monte-Carlo experiments have been conducted for a
population of 100 random circuit instances. All resistances in
the circuits have been altered using a Gaussian normal distribu-
tion N (µ,σ2) with µ as the nominal parameters and σ = 0.2·µ
as standard deviation. Fig. 15a) shows the signal waveforms
obtained at an output in the nominal instance and the entire
population. As shown, the delay is strongly altered which
can result in faster and slower instances (inst 3 vs. inst 50).
Also, the later transitions show a wider spread throughout the
population, due to accumulation of the randomness over long
paths, which may eventually affect the detection of faults.

In Fig. 15b) the simulations were repeated with altered tran-
sistor threshold voltages. Again, a Gaussian normal distribution
with 20% standard deviation is assumed for each ∆V causing a
typical spread output behavior with faster and slower instances.
In a second scenario (+|N (0,σ2)|), a folded normal distri-
bution was assumed that increases threshold voltages of the
transistors relative to the bulk potential (VDD or GND). While
expecting a general increase in the circuit delay, many circuit
instances turned out to be faster. For higher threshold voltages
in PMOS transistors (∆V > 0), for example, the cell output
is delayed for falling input transitions at the gate terminal.
At the same time, the PMOS transistors switch off earlier for
rising input transitions, which is consistent with simulation
in SPICE (cf. Fig. 16). In a third case (�|N (0,σ2)|), the
folded distribution was applied to lower the threshold voltages
only (∆V < 0). In contrast to the high threshold scenario, the
reduction resulted mainly in slower circuit instances.
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b) Random variation in transistor threshold voltages.

Fig. 15. Signal waveforms (at output FD1 915 D) after simulation of 100
random instances of circuit s38417 for pattern #3.
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Fig. 16. Propagation of an input hazard at an inverter cell with the threshold
voltage of the PMOS transistor altered (∆V ).

X. CONCLUSIONS

This work presented SWIFT, an approach for fast and
accurate switch level fault simulation on data-parallel GPU
architectures. The fault simulation utilizes first-order electrical
parameters found in CMOS technology to model functional
and timing behavior of primitive or complex-cells, as well as
for fault modeling. Parametric and parasitic faults are modeled
and injected without the need of logical abstraction, thus avoid-
ing the general limitations faced in simulation at logic level.
During simulation the full switching history of signals is com-
puted, which allows for timing-accurate evaluation even in the
presence of signal slopes, hazards and glitches. Systematic and
random variation at device level is efficiently applied during
the evaluation of cells by modification of first-order parameters
in circuit instances during runtime. Due to the high runtime
complexity of general timing-accurate simulation, it is crucial
to exploit parallelism during fault simulation as much as
possible. In SWIFT, multiple dimensions of parallelism from
cells, waveforms, faults and circuit instances are exploited to
achieve high simulation throughput for acceleration with over
116 million cell evaluations per second with speedups of up
to 245⇥ compared to conventional timing simulation at logic
level, even for designs with millions of cells.
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