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Abstract—Runtime reconfigurable architectures based on Field-Programmable Gate Arrays (FPGAs) allow area- and power-efficient

acceleration of complex applications. However, being manufactured in latest semiconductor process technologies, FPGAs are

increasingly prone to aging effects, which reduce the reliability and lifetime of such systems. Aging mitigation and fault tolerance

techniques for the reconfigurable fabric become essential to realize dependable reconfigurable architectures.

This article presents an accelerator diversification method that creates multiple configurations for runtime reconfigurable accelerators

that are diversified in their usage of Configurable Logic Blocks (CLBs). In particular, it creates a minimal number of configurations

such that all single-CLB and some multi-CLB faults can be tolerated. For each fault we ensure that there is at least one configuration

that does not use that CLB.

Secondly, a novel runtime accelerator placement algorithm is presented that exploits the diversity in resource usage of these

configurations to balance the stress imposed by executions of the accelerators on the reconfigurable fabric. By tracking the stress due

to accelerator usage at runtime, the stress is balanced both within a reconfigurable region as well as over all reconfigurable regions of

the system. The accelerator placement algorithm also considers faulty CLBs in the regions and selects the appropriate configuration

such that the system maintains a high performance in presence of multiple permanent faults.

Experimental results demonstrate that our methods deliver up to 3.7× higher performance in presence of faults at marginal runtime

costs and 1.6× higher MTTF than state-of-the-art aging mitigation methods.

Index Terms—Runtime reconfiguration, aging mitigation, fault-tolerance, resilience, graceful degradation, FPGA

✦

1 Introduction

R untime reconfigurable architectures enable dynamic
adaptation to changing workloads, which allows to opti-

mize area, performance and power [1]. They find widespread
use in various fields from acceleration of web-page ranking in
data centers [2] to payload processing in space [3]. Typical
reconfigurable architectures such as Xilinx’ Zynq UltraScale+
MPSoC [4] and Intel Xeon+FPGA platforms [5] consist of
a general purpose processor and a reconfigurable fabric im-
plemented on an SRAM-based FPGA. For runtime recon-
figuration, the fabric is partitioned into multiple rectangular
regions into which hardware accelerators can be reconfigured
to improve application’s performance and efficiency.

The FPGA-based reconfigurable fabric, manufactured in
latest technology nodes, suffers from degradation due to aging
[6, 7]. The resilience of the reconfigurable fabric is essential
to the dependability of reconfigurable architectures, as most
of the application’s computations are offloaded to the recon-
figurable fabric. The manifestations of aging can range from
increased transistor switching delay up to permanent faults
that cause a transistor or interconnect wire to fail entirely.
Different aging mechanisms have been reported for the current
generation of CMOS designs, e.g. negative/positive biased
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temperature instability (NBTI/PBTI), time-dependent di-
electric breakdown (TDDB), hot carrier injection (HCI), or
electromigration (EM) [8].

The main causes of these effects are environmental and
electrical stress. Stress can be induced in different ways, e.g.
through the presence of strong electrical fields or high current
density [6, 9]. Due to the increasing susceptibility of ever-
shrinking nano-CMOS devices, these effects cannot be ignored
anymore [10]. Their consideration has become essential for
dependable and resilient designs [11], where aging mitigation,
detection of permanent faults and fault tolerance techniques
for the reconfigurable fabric need to be an integral part of
runtime reconfigurable architectures.

1.1 System overview

In this article we target a general reconfigurable processor
architecture together with applications that use application-
specific accelerators. Figure 1 shows the hardware and soft-
ware view of the system. The reconfigurable fabric consists
of multiple reconfigurable regions that can be reconfigured at
runtime to contain accelerators. A reconfigurable region is a
two dimensional array of Configurable Logic Blocks (CLBs).
Each accelerator may use any subset of these CLBs for its
implementation. All reconfigurable regions are of identical size
and shape, which allows any accelerator to be configured into
any region. Accelerator relocation techniques allow to use only
one implementation (i.e. partial bitstream) per accelerator,
regardless of the region into which the accelerator shall be
reconfigured at runtime [12, 13]. While it would be possible to
use the reconfigurable fabric in a more flexible manner (e.g.
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Fig. 1: System Overview showing how applications use acceler-
ators that are reconfigured into reconfigurable regions and how
these regions are coupled to the bus and processor pipeline

variable-sized regions), it would come with significant draw-
backs such as the demand to create different implementations
per accelerator (optimized for different region types), complex
management of available resources [14] and the difficult aspect
of establishing communication between variable-sized regions
[15]. Providing the required infrastructure and overhead may
pay off for systems that implement entire applications as
accelerators. For instance, an H.264 video encoder applica-
tion that is implemented as one big reconfigurable hardware
block has significantly different requirements than an AES
encryption application (needs much less resources), and thus
they might benefit from a more flexible fabric management.
However, we target applications that are mainly implemented
as software (due to the ease of developing and deploying
complex control as software), where only the computationally
intensive parts are accelerated by hardware.

The software view for the targeted system is shown in the
right half of Fig. 1. An application consists of one or multiple
computationally intensive kernels (loops) that may contain
computations that are worth being implemented by hardware
accelerators. The application informs about the upcoming
accelerators before entering the kernel (prefetching), which
triggers their reconfiguration into the reconfigurable regions.
An example for the computation inside a kernel is shown in the
middle of Fig. 1. It consists of a mixture of normal operations
(executed on the processor pipeline) and operations that
correspond to the accelerators. A required accelerator may not
be available (i.e. reconfigured) on the reconfigurable fabric,
e.g. because its reconfiguration did not finish yet or because it
could not be reconfigured due to too many permanent faults
in the reconfigurable fabric. In such a case, the execution
of an accelerated operation is emulated in software on the
processor pipeline by issuing an ‘unimplemented instruction’
trap [16]. This ensures that the application can be executed
as long as the processor pipeline is functional. We assume
that a hardened processor pipeline is used that may also be
implemented using more conservative cell libraries, as most
of the computation is offloaded to the reconfigurable fabric
anyway. Therefore, our article focuses on the aging resilience
and fault tolerance of the reconfigurable fabric.

1.2 Contributions of this Article

In this article we aim at improving the aging resilience and
fault tolerance in runtime reconfigurable architectures. At

first, we propose a design method called Accelerator Diver-

sification (see Fig. 2) that enables us to tolerate permanent
faults in the reconfigurable regions. For each accelerator, a
set of configurations is generated that is diversified in terms
of their CLB usages, such that for every CLB in a region, at
least one configuration of an accelerator does not require that
CLB. This article presents a generic algorithm to generate the
minimal set of configurations to tolerate arbitrary single-CLB
faults and to generate additional configurations to tolerate
multi-CLB faults in a reconfigurable region.
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Fig. 2: Overview of the proposed methods

At runtime, the Accelerator Placement (see Fig. 2) uses the
diversified configurations to tolerate faults. For a given set of
accelerators that the application requested and in presence of
multiple permanent faults in one or multiple regions, the ac-
celerator placement aims at finding a combination of acceler-
ator configurations and regions (into which the configurations
can be reconfigured), such that the application performance
remains relatively high in comparison to the system without
faults, i.e. many accelerators can still be placed.

In addition, to avoid the emergence of faults due to
aging effects, our accelerator placement uses the diversified
configurations to distribute stress. At runtime, it simulta-
neously considers the induced intra- and inter-region stress
distribution for the placement decision to mitigate aging
effects by reducing the maximum stress of transistors in
the reconfigurable fabric. We distinguish two types of stress:
static stress (e.g. BTI) or dynamic stress (e.g. HCI) and our
accelerator placement balances it among all resources in the
reconfigurable fabric instead of accumulating it in individual
transistors, which leads to aging mitigation and increased
system lifetime.

For prototyping purposes, we have integrated the Acceler-
ator Diversification into the Xilinx tool-chain and the fault-
tolerant and stress-aware Accelerator Placement method into
the runtime system of a reconfigurable architecture. Alto-
gether, the main novel contributions of this article are:

• The accelerator diversification design method that allows to
tolerate permanent faults and to mitigate the aging process.

• An algorithm that generates the minimal set of accelerator
configurations for tolerating any single-CLB fault in one re-
gion and that generates additional configurations for regions
with multi-CLB faults (i.e. multiple faulty CLBs).

• A runtime accelerator placement method that is fault-
tolerant and stress-aware:
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– Minimizes application performance degradation by plac-
ing critical accelerators first, i.e. those with the fewest
placement options due to faults in reconfigurable regions.

– Considers the intra- and inter-region distribution of stress
induced by accelerators to reduce the maximum stress and
mitigate aging. Achieves efficient search space pruning to
reduce the runtime overhead by calculating guaranteed
bounds of the achievable stress distribution.

Paper structure: Section 2 discusses related work and state-
of-the-art. Section 3 presents the background on aging and
how we represent it in our methods. Our novel accelerator
diversification and placement methods are presented in Sec-
tions 4 and 5. Section 6 shows the technical details of our
implementation flow. We evaluate our methods and compare
with state-of-the-art in Section 7 and conclude in Section 8.

2 Related Work

This section discusses related work for aging mitigation in
FPGA-based runtime reconfigurable architectures based on
diversified resource usage. If excessive stress is imposed on
the resources in the reconfigurable fabric, permanent faults
may emerge. Such faults can be detected and localized by
online test methods for FPGAs. Once located, fault tolerance
and recovery methods can be applied to avoid using faulty
resources. These methods are typically based on resource
remapping to spare resources by partial reconfiguration.

2.1 Aging Mitigation in Reconfigurable Architectures

Aging mitigation by wear-leveling in runtime reconfigurable
architectures can be achieved by using alternative logic map-
pings in CLBs, using spare resources in the fabric, or changing
placements of accelerators. The coarse-grained approach in [9]
uses only two different configurations, which are swapped only
once after a half-life period of the first failing component. A
similar idea is used in [17], where three strategies are discussed
for FPGA wear-leveling based on signal state inversion, use of
spare resources for timing critical functions, and alternative
placement. Since only two different configurations are used,
the effectiveness is limited. In [18], a combined process varia-
tion and NBTI-aware placement algorithm is proposed. While
the authors suggest that the logic placement and configuration
bitstream generation could be recomputed during runtime,
for most embedded systems such a computation would cause
too much overhead. In [19], aging in LUTs is mitigated by
manipulating the configuration bits of LUTs. This method
targets static systems in which the logic function of LUTs does
not change during runtime and not runtime reconfigurable
architectures.

Since typically not all CLBs in a region are actively used
by an accelerator configuration [9], it is possible to prepare
alternative placements and to reconfigure between them to
distribute stress. The CLBs that are unused in a particular
configuration can be configured to minimize stress [17]. This
reduces the maximum stress in the resources and increases
the system’s Mean Time to Failure (MTTF), as demonstrated
in [9, 20, 21]. The methods in [9, 20] only target systems with-
out runtime reconfiguration. They create alternative configu-
rations for the entire FPGA, i.e. placing one complete design
anywhere on the FPGA. In [21, 22], runtime reconfiguration

with multiple regions and accelerators is considered. However,
they only distribute the stress within a region, i.e. intra-
region stress distribution, whereas our method also performs
inter-region stress distribution in addition to providing fault
tolerance. In contrast to our work, the target system in [22]
implements the entire application in one region.

The online placement of accelerators in [23] extends the
KAMER placement algorithm [24] by considering the maxi-
mum stress in the regions at runtime. The accumulated stress
values of the resources in the candidate region are stored in a
degradation table and their algorithm performs a local opti-
mization that considers one accelerator after the other. The
stress-aware accelerator placement STRAP [25] distributes
the stress of accelerators among all reconfigurable regions.
The methods of [23] and [25] only use one configuration per
accelerator, whereas we use multiple diversified configurations
per accelerator, which allows for a higher stress-balancing
potential. Additionally, our method explicitly supports fault
tolerance and also aging mitigation by stress balancing in
presence of permanent faults, which is not targeted by [23,
25]. With regard to aging mitigation in reconfigurable archi-
tectures, the methods of [23, 25] represent the current state-
of-the-art approaches and we will compare with both in the
evaluation to show the advantages of our methods.

2.2 Online Test and Diagnosis of Reconfigurable Systems

Online test and diagnosis methods are a prerequisite for han-
dling faults in reconfigurable systems. Application dependent
and independent test methods for the reconfigurable FPGA
fabric can be distinguished. Application independent testing
targets the whole fault universe of the fabric and is not limited
to a specific use of the fabric. It typically employs multiple
special test configurations and corresponding test stimuli [26].
In contrast, application dependent tests target only the subset
of programmable resources of the FPGA fabric relevant for a
particular target application [27].

For an online test in the field, external equipment or cir-
cuitry for test pattern generation or output response analysis
is not available. Internal testing approaches based on built-in
self-test (BIST) principles include test pattern generation and
output response analysis in the circuit under test [28].

In FPGAs with partial dynamic reconfiguration, the re-
configurations during test application can be performed by
an external or embedded processor at runtime [29–32]. The
Roving STARs (Self Testing AReas) method for online test
partitions the FPGA into rows and columns, which can be
either used functionally or tested by an online BIST approach
[31, 32]. The transparent integration of online tests into run-
time reconfigurable architectures was presented in [33, 34]. It
was shown that online testing concurrent to system operation
causes a negligible performance impact of less than 1%.

In addition to testing, the homogeneous structure of an
FPGA allows the efficient diagnosis of faulty components.
High resolution is achieved by failure data analysis and ad-
ditional dedicated configurations to distinguish and localize
faults [35–37]. In [38], multiple faults are diagnosed and can
be tolerated using multiple diversified configurations with dis-
junct resource usage. The number of required configurations
quickly rises with the number of faults to be detected and
localized. Diagnosis techniques based on special configura-
tions, stimuli, and response evaluation can also be integrated
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into runtime reconfigurable architectures and controlled by an
embedded processor [30].

2.3 Fault Tolerance in Reconfigurable Systems

Once a fault is detected and localized, different methods can
be applied to ensure continued system operation despite of
the fault. Tile-based fault tolerance techniques partition the
reconfigurable fabric into a 2-dimensional array of rectangular
regions (tiles) [39, 40]. In [39], a tile consists of multiple
CLBs with one spare CLB. If a CLB in a tile is detected
to be faulty, an alternative configuration for that tile is
loaded to implement the same logic function but using the
spare rather than the faulty CLB. In [40] the circuit in the
faulty tile is entirely remapped to a spare tile. Column-based
approaches apply similar concepts to CLB columns [41, 42],
where the fabric is partitioned into a 1-dimensional array of
CLB columns, each of them can implement an accelerator. In
response to a fault, spare columns are used. Both tile- and
column-based approaches need complex customized routing
techniques, requiring fixed interfaces between adjacent ac-
celerators or online routing after accelerator remapping as
the accelerator locations change and the communication in-
between has to be re-established. The methods also do not
maximize the diversity in resource usage or exploit it to
balance the stress in the fabric.

The Roving STARs method [32] combines distributed CLB
spares and online compilation of configurations to replace
faulty CLBs with spares. For complex designs, this online
compilation or synthesis may cause unpredictable timing be-
havior. The Roving STARS also do not balance the stress.

The authors of [43] propose to use alternative configu-
rations for accelerators, each of which uses different CLBs
such that any single defective CLB can be tolerated. However,
they do not provide a method to automatically generate these
configurations. They neither investigate the possibility of
tolerating multiple CLB faults in general nor do they consider
mitigation of aging effects within the reconfigurable fabric. In-
stead, the diversified configurations in [21] are systematically
generated using standard tools so that all single-CLB faults
and some multi-CLB faults are tolerated. The approach in
[38] also generates diversified configurations similar to [21],
but it also tolerates all multi-CLB faults where up to k CLBs
in a region can be faulty. But none of these approaches use
their diversified configurations to distribute stress at runtime
across all reconfigurable regions, as we propose in this work.

3 Background

Before describing the details of our methods in Sections 4
and 5, we clarify basics about aging, explain the assumptions
we make for our method, and how we represent stress. A more
detailed study of stress and its relation to aging and mean
time to failure (MTTF) can be found in [25].

3.1 Basic Stress Properties

Aside from material constants, aging mainly depends on
three non-material factors: supply voltage, temperature, and
transistor activities. In the proposed method we use a simpli-
fication that focuses on the aging effects induced by transistor
activities. That is a reasonable approximation as reconfig-
urable accelerators are typically operated in a static voltage

domain (i.e. no dynamic voltage scaling) and do not show
high temperature variation because they are often optimized
for data-level parallelism and thus run at rather low frequency
[44] with correspondingly low power density [45, 46]. However,
for the evaluation we use a more accurate model that also
considers the influence of temperature.

The term stress is defined as the condition under which a
transistor is experiencing electrical and physical degradations.
An example for such a degradation is the threshold voltage
shift ∆Vth, which may eventually cause a failure of the circuit.

In the following, we distinguish two types of stress in nano-
scale CMOS circuits: static and dynamic stress. A transistor
is under static stress when an electric field is exerted across
its gate oxide to induce a conducting channel. It is under
dynamic stress when current flows between its source and
drain. Static stress is characterized by the stress duty cycle, i.e.
the fraction of operation time that a transistor is conducting.
Dynamic stress is characterized by the toggling rate, i.e. the
ratio of number of toggles and total operating time. Reducing
the stress time stressstat reduces the stress duty cycle, while
reducing the number of toggles stressdyn reduces the toggling
rate. Both reduce the transistor degradation, i.e. threshold
voltage shift. Static stress leads to aging effects like BTI, while
dynamic stress leads to aging effects like HCI.

Different models have been proposed for these aging ef-
fects, e.g. [6, 8, 9, 47, 48]. They all indicate that in the long
term the transistor degradation monotonically increases with
stressstat or stressdyn for static or dynamic stress, respec-
tively. For instance, ∆Vth(stressstat1) > ∆Vth(stressstat2)
when stressstat1 > stressstat2 under the same supply voltage
and temperature [47, 48]. In other words, the aging effects are
reduced when stressstat or stressdyn is reduced.

In addition, stressdyn is generally considered as additive.
For instance, the dynamic stress of two different workloads
corresponds to the number of toggles that these workloads
impose on a transistor. Intuitively, the combined dynamic
stress is the sum of these toggles, which is proportional to
the amount of charge transported between drain and source
[48, 49]. In general, the total stress experienced by a transistor
under different workloads (stressdyn(work1 + work2)) is the
sum of stress experienced under the individual workloads
(stressdyn(work1) + stressdyn(work2)). In the long term,
this argument also holds for stressstat. Actually, BTI aging
may experience a recovery effect, but that requires complex
conditions or long relaxation periods [7] and will thus hardly
affect the additive property.

The monotonic and additive properties of stressstat and
stressdyn allow a simplified consideration of CLB stress dur-
ing accelerator placement (see Section 5) rather than evalu-
ating complex aging models at runtime. The proposed stress-
aware accelerator placement applies to both types of stress
and we will refer to “stress” when we do not need to explicitly
differentiate between static and dynamic stress. Note that it
optimizes either for dynamic or for static stress.

3.2 Stress Representation

The transistors of a reconfigurable region are stressed by the
reconfigured accelerator in a way that is determined by its
logic functionality and input signal patterns. As the number
of transistors in a region may be huge, we combine the stress
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experienced by individual transistors to CLB granularity for
our accelerator placement method. We define CLB stress

as the sum of the stress experienced by all its transistors.
With this definition, CLB stress preserves the monotonic and
additive property of transistor stress, i.e. the total stress a
CLB experienced from different accelerators is the sum of the
induced stress from individual accelerators.

With the established stress properties, we can describe
the stress in the reconfigurable fabric in a formal way. The
stress state of a reconfigurable region is denoted as matrix
S, where each entry represents the stress experienced by the
corresponding CLB in the region. The stress that a particular
accelerator configuration induces per clock cycle is obtained
from offline stress estimation and called unit stress, denoted
by a matrix of the same size as S. In general, the induced
stress due to the work done by an accelerator configuration is
shown in Eq. (1), where scalars τexec and τidle are the number
of clock cycles when the accelerator is in execution or idle,
while matrices sunit

exec and sunit
idle denote the unit stress induced

by the accelerator during execution or idle time.

s := τexecsunit
exec + τidlesunit

idle (1)

During idle time, we assume all inputs to the accelerator are
hold at constant values. In this case, the accelerator exhibits
a different stress pattern from when it performs an execution.
The stress estimation flow to obtain the unit stress of an
accelerator is described in Section 6. During synthesis time,
the values for τexec and τidle are obtained from application
profiling to construct the stress matrices (Eq. (1)) for every
accelerator. The runtime system uses them to determine how
much stress an accelerator would induce to a region before

actually placing it. It also uses online monitoring information
(see Fig. 2) that provides the actual number of accelerator ex-
ecutions and idle times for each region after a computational
kernel finished execution. This allows to keep track of the
actual stress that a region experienced, which is the starting
point for the next placement decision.

Note that the stress matrix S can also be used to in-
corporate process variation. Instead of initializing S to the
zero matrix, its initial values can be used to represent process
variation. They can be determined by measuring the delay of
each individual LUT after manufacturing, as proposed in [6].

4 Accelerator Diversification for Fault Tolerance

and Aging Mitigation

An accelerator defines the logic functions to be implemented
in a region, while a configuration of the accelerator determines
which CLBs in the region are used to implement the function-
ality. We use a Boolean matrix, called configuration matrix,
with the same dimension as a region to describe the CLB
usage of a configuration. If a CLB is used, the corresponding
matrix element is 1, otherwise 0. For example, an accelerator
configuration using five CLBs implemented in a 3×3 region
can be represented in a configuration matrix A:

A =





1 1 1
1 1 0
0 0 0



 (2)

The accelerator diversification method generates a set of
configurations, each of which implements the same acceler-

ator, but uses different CLB resources, such that any single
faulty CLB in a region can be tolerated by one of the diversi-
fied configurations. Formally, we search a set of configurations
C for an accelerator implemented in an X×Y region:

C = {A1, · · · , Aw}, Ai : X×Y Boolean matrix (3)

Assume that all of these configurations utilize the same
amount of CLBs U and there is at least one free CLB, i.e.
∀Ai ∈ C :

∑

x,y
[Ai]xy = U < XY . To be able to tolerate any

single faulty CLB, this set of configurations must satisfy the
completeness condition:

∀x, y, 1 ≤ x ≤ X, 1 ≤ y ≤ Y :

∃Ai ∈ C such that [Ai]x,y = 0
(4)

The completeness condition guarantees that if any CLB is
detected to contain faults, there always exists a diversified
configuration Ai that does not require the faulty CLB. For
an accelerator requiring U CLBs to be implemented in an
X × Y region, at least Wmin configurations are required for
the completeness condition:

wmin = ⌈ XY
XY −U

⌉ (5)

In each configuration, exactly XY − U CLBs are spare. For a
configuration Ai, at most XY − U CLBs that were not spare
in any of the configurations Aj, j < i can be spare in Ai,
which directly results in this lower bound.

In order to minimize the number of diversified configu-
rations for satisfying the completeness condition, we require
that the generated set of configurations also satisfies the max

diversification condition:

∀i, 1 ≤ i ≤ w : ∃Aj ∈ C, j 6= i such that
∑

x,y

(

[Ai]xy · [Aj]xy

)

=

{
2U − XY if U > 1

2 XY

0 else
(6)

We define that two configurations are maximally diversi-
fied if the difference between them is maximized. The mini-
mum number of common CLBs between two configurations
is either 0, if the accelerator requires at most half of the
available CLB resources, or 2U − XY , whenever all unused
CLBs (XY − U) in one configuration are used in the other
configuration. In the latter case, the number of common CLBs
is U − (XY − U). The max diversification condition states
that for every configuration Ai ∈ C there is at least one other
configuration Aj which differs from Ai as much as possible
w.r.t. the used CLB resources.

Enumerating all possible configurations to find a max-
imally diversified set of configurations is computationally
intractable. For instance, if an accelerator requires 50 CLBs in
a region with 80 CLBs, then there are ( 80

50 ) ≈ 9×1021 possible
configurations. Alg. 1 presents the generation of a given
number of configurations that satisfy the completeness condi-
tion and maximizes their diversity. It incrementally generates
diversified configurations from an initial configuration A1.

In Line 1, the set of diversified configurations C is ini-
tialized with the initial configuration. The score matrix G,
which has the same dimension as the configuration matrix,
stores for each CLB the number of diversified configurations
which use that CLB. The score matrix is simply the sum of all
configuration matrices in C. In Line 2, G is initialized to A1,
the only element in C at the moment. In Line 3, the next new
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Algorithm 1 Generation of diversified configurations C

1. C := {A1} // A1 is the initial configuration
2. G := A1 // Score matrix G stores swapping priority of

CLBs
3. Anew := A1

4. loop
5. zero elem list := {(x, y) | [Anew]xy = 0} // unused

CLBs
6. candidate list := {(x, y) | [Anew]xy = 1}
7. sort candidate list according to the value of Gxy in

descending order // first element has the highest score
8. for all (x, y) in zero elem list do
9. swap candidates := {(p, q) | (p, q) ∈

candidate list and Gpq = Gcandidate list[0]} // all
CLBs with the highest score

10. farthest swap candidate := (p, q) ∈
swap candidates with max. Manhattan distance
between (x, y) and (p, q) // farthest elements are
swapped first so that CLBs are located near each other
and better timing is achieved

11. swap([Anew]xy, [Anew]farthest swap candidate)
12. candidate list.pop(farthest swap candidate)
13. if candidate list = ∅ then
14. break
15. end if
16. end for
17. while Anew ∈ C do
18. swap a random zero- with random one-element in

Anew

19. end while
20. G := G + Anew // update CLB score
21. C := C ∪ {Anew}
22. if |C| = desired number of config. ∨ |C| =

(
XY
U

)
then

23. break
24. end if
25. end loop

configuration matrix Anew is initialized to the initial config-
uration matrix. In the inner loop (Lines 8 to 16), it is further
modified by swapping zero- and one-elements. The inner loop
iterates through all zero-elements in Anew and swaps zero-
elements with one-elements in Anew in an order determined
by the score matrix (Line 7). If a CLB has a higher score (i.e.
it is used more often in the diversified configurations), its cor-
responding one-element in Anew will be first swapped. If there
are several CLBs with the same score, the farthest one from
the current zero-element is swapped first (Lines 9 to 11) so
that in the resulting configuration, the used CLBs are located
near each other. The first generated ⌈ X·Y

X·Y −U
⌉ configurations

correspond to the minimal set of configurations that satisfies
both the completeness and max diversification condition. It
is guaranteed that the random swapping (Line 18) does not
occur while generating the minimal set.

If the user requires more configurations for higher relia-
bility (i.e. tolerate more multi-CLB faults) or to have more
alternatives for aging mitigation by stress balancing, further
possible configurations can be generated (this might use the
random swapping in Line 18 at some time). The algorithm
terminates when either the desired number of configurations
or all possible configurations have been generated. In both
cases, the generated set of configurations always satisfies the
completeness condition but may violate the max diversifica-
tion condition due to the while loop from Lines 17 to 19, where
random changes are made to Anew to generate a new unique

configuration matrix.
The proposed accelerator diversification design method is

in principle applicable for all regularly distributed resources
of the fabric. In Xilinx FPGAs, the routing resources are
regularly distributed: One programmable switching matrix is
attached to each CLB. Thus, the resource usage patterns for
target configurations computed by the proposed method can
also diversify the use of programmable routing resources.

5 Stress-Aware and Fault-Tolerant Runtime Ac-

celerator Placement

The reconfigurable fabric consists of N equally sized rect-
angular regions. During runtime, the application requests to
configure M (M ≤ N) accelerators to speed up its computa-
tional kernels. The runtime system has to decide to which
regions the M accelerators shall be configured and which
diversified configurations shall be used. When faulty CLBs
are detected in a reconfigurable region, then only those ac-
celerator configurations can be placed into the region that do
not require them. The application performance will experience
degradation when not all requested accelerators can be placed.

We propose a placement algorithm that follows these rules:
1) place as many as possible accelerators to minimize the ap-
plication performance degradation when faults are detected in
the reconfigurable regions, 2) distribute stress evenly among
different CLBs within the region (intra-region distribution)
by maximally utilizing under-stressed CLBs within the re-
gion, and 3) avoid placing high-stress accelerators into highly
stressed regions, i.e. the stress shall be evenly distributed
among different regions (inter-region distribution). In the
following, regions are indexed with letter k, accelerators with
j and diversified configurations of an accelerator with w.

5.1 Placement Algorithm

We show the pseudo-code of our fault-tolerant and stress-
aware placement algorithm (Alg. 2) and give a brief expla-
nation of it. Algorithmic details are presented in Sections 5.2
to 5.4. Our algorithm determines the diversified configuration
and region to be configured for all requested accelerators, one
after the other. The placeability of an accelerator configura-
tion, i.e. into which regions the accelerator configuration can
be reconfigured, is determined after a new fault has been
detected and localized. It is then stored in a lookup table
and used in Alg. 2 (see Line 14). The actual reconfigurations
are just started after all accelerator placements are decided,
because under the presence of permanent faults, an initially
considered placement may be changed at a later phase of the
algorithm, if that allows to place more accelerators.

Before the placement starts, the required accelerators are
sorted according to their placement freedom in ascending
order (see Line 2). The placement freedom of an accelerator
corresponds to the number of regions for which the accelerator
has at least one diversified configuration that can be placed
into that region (i.e. that tolerates the permanent faults in
that region). Such a region is called a compatible region.
The runtime accelerator placement then iterates over all
accelerators j that shall be placed (Lines 3 to 46). In each
iteration, it first determines those regions where accelerator j

is placeable (Line 7), i.e. where the faulty CLBs can be avoided
by one of its diversified configurations. Then, it prunes out
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Algorithm 2 Runtime accelerator placement

Input: List of accelerators Acc and list of regions Reg that shall
be reconfigured

1. occupied := array of length len(Reg) initialized to zeros
2. Acc.sort(key=#compatible regions, order=ascending)
3. for j := 1 to len(Acc) do
4. max profit := −∞
5. sel reg := null // Selected region
6. sel conf := null // Selected configuration
7. Reg tmp := regions in Reg compatible with Acc[j]
8. Reg tmp := Reg tmp pruned based on bounds of place-

ment profits (see Section 5.4)
9. for k := 1 to len(Reg tmp) do

10. if occupied[k] == 1 then
11. continue
12. end if
13. for w := 1 to len(Acc[j]) do
14. if Acc[j][w] not placeable in Reg tmp[k] then
15. continue
16. end if
17. profit := CalcProfit(Acc[j][w], Reg tmp[k])

based on Eq. (9)
18. if profit > max profit then
19. max profit := profit
20. sel reg := k
21. sel conf := w
22. end if
23. end for
24. end for
25. if sel reg != null then
26. Place Acc[j] with sel conf into region sel reg
27. occupied[sel reg] := 1
28. continue // Successful placement
29. end if
30. is placed := false
31. for i := 1 to j-1 do
32. if Acc[j] placeable in Acc[i].reg then
33. for k := 1 to len(Reg) do
34. if occupied[k] == 0 and

Acc[i] placeable in Reg[k] then
35. Place Acc[j] into Acc[i].reg
36. Place Acc[i] into Reg[k]
37. is placed := true
38. break
39. end if
40. end for
41. end if
42. if is placed then
43. break
44. end if
45. end for
46. end for

those regions that are guaranteed to result in worse stress
distribution than other regions after placing accelerator j into
them (Line 8, details in Section 5.4). Afterwards, it calculates
for all remaining regions k and for all diversified configurations
w that are placeable into k the profit (details in Section 5.3)
of placing w into k (Lines 9 to 24) and places the accelerator
configuration into the region that provides the highest profit
(Line 26). If no configuration is placeable in any of the remain-
ing regions, then the algorithm tries to exchange some already
placed accelerators (Lines 31 to 45; details in Section 5.2).
The complexity of this algorithm is O(M2WXY ), where M

denotes the number of required accelerators, W the maximum
number of diversified configurations of the accelerators, and

XY the number of CLBs (width×height) of a region.
If the application keeps using an accelerator for a longer

time, then its region is not reconfigured and thus our place-
ment algorithm cannot evenly distribute the stress to all
regions. The region where this accelerator resides would be
constantly stressed by one accelerator without stress redis-
tribution. As a solution, our runtime accelerator placement
forces that region to be reconfigured after a user-defined time
period. This time period should not be too short to prevent
increased reconfiguration overhead, but also not too long to
avoid stress accumulation. For instance, a time period of
20 million cycles (0.2 s at 100 MHz) is short enough to avoid
aging accumulation and the induced application performance
degradation is only 0.51% (see results).

5.2 Fault-Tolerant Placement

When faults are detected in the reconfigurable fabric, the
placement freedom of accelerators is reduced. An accelerator
j can only be placed into a region, when at least one of its
diversified configurations does not require the CLBs that are
faulty in that region. If the available regions (i.e. those into
which no accelerators are placed by the placement algorithm
so far) have rather many permanent faults, it can happen
that no configuration of accelerator j can be placed into
any of them. If an accelerator cannot be placed, then its
hardware functionality has to be emulated in software on
the processor pipeline (see Section 1.1). This actually reduces
the stress for the regions, as they are not used to execute
the accelerator, however, it comes at the cost of significantly
degraded performance (i.e. less acceleration for that kernel).

Alg. 2 tries to avoid such situations by placing accelerators
one after the other in ascending order of their number of
compatible regions (Line 2). If it still comes to the situation
that some accelerator j cannot be placed into the available
regions, then the algorithm re-evaluates some of its previous
placement decisions (note that the actual reconfigurations are
just started after all placements are finally decided). It tries
whether it can swap one of the already placed accelerators into
one of the still available regions such that accelerator j can
be placed into the region that became free due to swapping
(Lines 31 to 45).

Permanent faults also reduces the freedom of selecting
diversified configurations for stress distribution. While our
algorithm aims at achieving a uniform stress distribution, its
highest priority is to place as many accelerators as possible to
minimize the performance degradation due to faults.

5.3 Stress-Aware Placement Profits

Each region contains X × Y CLBs with an (x, y) coordinate
relative to the top-leftmost CLB in the region. The stress
experienced so far by the CLBs in region k is denoted as [Sk]xy

(with 1 ≤ k ≤ N, 1 ≤ x ≤ X, 1 ≤ y ≤ Y ). The stress that will
be induced by a configuration w of accelerator j (1 ≤ j ≤ M)
is denoted as [sjw]xy (see Eq. (1)). It depends on how often
the accelerator will be executed, as determined by offline
profiling (see Section 1.1). If an accelerator configuration jw is
placed into region k, then the accelerator executions increase
the stress state of the region to S′

k = Sk + sjw. Diversified
configurations of an accelerator use the CLBs in a region in
different ways. The total amount of induced stress is equal
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for all diversified configurations since they perform the same
computation. In the following, when we need to calculate the
total stress induced by accelerator j, we omit the index w that
is used to indicate a particular diversified configuration:

∀w :
∑

x,y

[sjw]xy =
∑

x,y

[sj]xy (7)

The goal of stress-aware placement is to place each accelerator
to a region, such that upon completion of the application ker-
nel the maximum CLB stress over the N regions is minimized,
i.e. maxk,x,y[S′

k]xy is minimized. It can be easily seen that the
strict lower bound of the maximum CLB stress is:

1

NXY

(
N∑

k

∑

x,y

[Sk]xy +

M∑

j

∑

x,y

[sj]xy

)

(8)

It is reached if and only if the stress is uniformly distributed
over all CLBs. Therefore, to minimize the maximum CLB
stress in the reconfigurable fabric, the CLB stress from the
accelerators that are to be placed needs to be distributed
evenly. We define the profit function of placing accelerator
j with configuration w into region k as

Profitjkw = Profitintra
jkw + Profitinter

jk (9)

where Profitintra
jkw and Profitinter

jk represent the profit from the
stress distribution within one region (intra-region) and across
all regions (inter-region), respectively:

Profitintra
jkw =

∑

x,y

∣
∣
∣[Sk]xy −λk

∣
∣
∣−
∑

x,y

∣
∣
∣[Sk+sjw]xy −λ′

k,j

∣
∣
∣

λk =
1

XY

∑

x,y

[Sk]xy λ′

k,j =
1

XY

∑

x,y

[Sk+sj]xy

(10)

Profitinter
jk =

∣
∣
∣
∣
∣

∑

x,y

[Sk]xy − Λ

∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣

∑

x,y

[Sk + sj]xy − Λ′

∣
∣
∣
∣
∣

Λ =
1

N

∑

k,x,y

[Sk]xy Λ′ =
1

N

(
∑

k,x,y

[Sk]xy +
∑

j,x,y

[sj]xy

) (11)

The two summation operations in the intra-region profit
function (Eq. (10)) express the sum of the CLB stress de-
viation from the average stress value before and after placing
accelerator configuration j into region k, respectively. A larger
sum of deviation implies that more CLBs are over- or under-

stressed. This profit function thus describes the improvement
of stress distribution within region k after placing accelerator
configuration j into it. In a similar manner, the inter-region
profit function in Eq. (11) describes the deviation from perfect
even stress distribution evaluated at the level of reconfigurable
regions, i.e. the deviation of the total stress in a region from
the average total stress per region. It is independent of which
diversified configurations are used for the accelerators, since
only the total stress of an accelerator is concerned in Eq. (11).

5.4 Bounds of Placement Profits

The exact computation of Profitintra
jkw requires the summation

of stress deviation of XY CLBs (second term of Eq. (10)),
which is unique for every combination of j, k, and w. The
XY CLB-level computations have to be performed for each
configuration-region combination and thus represents the
most compute-intensive part during the placement. Instead of

an exhaustive profit computation of all configuration-region
combinations, we propose a two-step maximum profit search
algorithm. For a given accelerator j, we first compute the
ranges of Profitjkw, which is independent of w as shown later,
for 1 ≤ k ≤ N without computing the exact values of intra-
region profit. If a region has an upper bound of profit that is
less than the lower bound of profit of any other region, placing
the accelerator into this region would not result in maximum
profit. This region is therefore excluded in the second step,
where the exact profits of other regions are computed and
compared to find the region with the maximum profit. In this
way, the runtime overhead of the algorithm is reduced by early
pruning of unnecessary CLB-level computations.

The range of Profitintra
jkw is determined as follows. By sub-

stituting λ′

k,j into the equation, the second term of Eq. (10),
i.e. the sum of CLB stress deviation after placement, can be
rewritten as
∑

x,y

∣
∣
∣
∣
[Sk]xy −

1

XY

∑

x,y

[Sk]xy

︸ ︷︷ ︸

Dkxy

+ [sjw]xy −
1

XY

∑

x,y

[sj]xy

︸ ︷︷ ︸

djwxy

∣
∣
∣
∣

(12)

where Dkxy denotes the stress deviation of the CLB at lo-
cation (x, y) in region k from the average value, while djwxy

denotes the stress deviation of the CLB at location (x, y) of
accelerator j with configuration w from the average value. The
sum of stress deviation

∑

x,y
|djwxy| for different diversified

configurations of accelerator j is the same, since diversified
configurations have the same average stress and differ only
in the used CLB locations. Similar to Eq. (7), we omit the
w index in the following by defining ∀w :

∑

x,y
|djwxy| =

∑

x,y
|djxy|. With triangle inequalities, it can be shown that

∑

x,y

|Dkxy + djxy| ≥

∣
∣
∣
∣
∣

∑

x,y

|Dkxy| −
∑

x,y

|djxy|

∣
∣
∣
∣
∣

(13)

∑

x,y

|Dkxy + djxy| ≤
∑

x,y

|Dkxy| +
∑

x,y

|djxy| (14)

Based on Eq. (10) and (12) to (14), we obtain the lower and
upper bound of the intra-region profit of placing accelerator j

into region k:

−
∑

x,y

|djxy| ≤ Profitintra
jk

≤
∑

x,y

|Dkxy| −

∣
∣
∣
∣
∣

∑

x,y

|Dkxy| −
∑

x,y

|djxy|

∣
∣
∣
∣
∣

(15)

Depending on the stress distribution of region k and ac-
celerator j, following scenarios may occur. When the stress
in region k is already uniformly distributed, i.e. very small
∑

x,y
|Dkxy|, placing any accelerator into it will only bring

marginal (when
∑

x,y
|djxy| ≈

∑

x,y
|Dkxy|) or even negative

(when
∑

x,y
|djxy| ≫

∑

x,y
|Dkxy|) intra-region profit. When

the stress of accelerator j is already uniformly distributed,
i.e. very small

∑

x,y
|djxy|, placing this accelerator into any

region can bring at most marginal intra-region profit. A large
intra-region profit can only be realized when both region k

and accelerator j have very nonuniform stress distribution,
i.e.
∑

x,y
|Dkxy| ≫ 0 and

∑

x,y
|djxy| ≫ 0. A positive intra-

region profit is produced when the high stress and low stress
CLB locations in the region overlap with the low stress and
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high stress CLB locations in the accelerator, respectively.
In the best case, the non-uniformity of stress in the re-
gion is completely canceled by placing the accelerator when
∑

x,y
|Dkxy| =

∑

x,y
|djxy|, which leads to a intra-region profit

of
∑

x,y
|Dkxy|. However, when the high stress and low stress

CLBs of the region and the accelerator overlap at the same
locations, the nonuniform stress distribution in the region
would be further worsened, which leads to −

∑

x,y
|djxy| intra-

region profit in the worst case.
The range of total profit is obtained by adding the exact

value of inter-region profit to the range of intra-region profit.
Figure 3 shows an example of profit ranges of an accelerator
j to be placed in five different regions. The upper bound of
Profitj1 and Profitj3 is less than the lower bounds of Profitj2

and Profitj4. It is therefore not necessary to compute to
the exact values of Profitj1 and Profitj3 to determine the
maximum profit. In contrast, the profit ranges of Profitj2 and
Profitj4 overlap and their exact values for different diversified
configurations of accelerator j need to be computed to deter-
mine which configuration-region combination leads to a more
uniform stress distribution.

-300 -200 -100 0 100 200 300

Profitj1

Profitj2

Profitj3 Profitj4

Fig. 3: Ranges of placement profit of an accelerator j in five
different regions

6 Implementation Flow

This section explains the overall flow of the generation of
diversified configurations, tool integration and computation
of stress matrices using the Xilinx tool flow. The Xilinx
tools support the PROHIBIT placement constraint [50], which
prevents the place-and-route tool to use specific resources
such as CLBs or BlockRAMs at specified locations1. In the
following, we employ this constraint to implement diversified
configurations for accelerators.

Acc. Diversification

PROHIBIT Constraints

Place & Route

Design files

Place & Route for each 

Diversified Configuration

Configuration 1

Diversified Configs

CLB Usage Extraction

, ,...
2 3 w
A A A

1
A

Fig. 4: Generation of diversified configurations using our accel-
erator diversification method

As shown in Fig. 4, an initial configuration is generated
for the accelerator by synthesis and place-and-route of the
original design file. From this configuration, the used CLBs
are extracted and stored in the matrix A1. Using Alg. 1,
we compute diversified configuration matrices Ai that specify

1. Currently the PROHIBIT constraint is not effective/supported
for routing resources.

the diversified CLB usage. They are exported as PROHIBIT
placement constraints and then provided to the Xilinx place-
and-route tools. The result is the set of diversified configu-
rations for which finally the stress of transistors in CLBs is
estimated to construct the stress matrices.

Fig. 5 shows the stress estimation flow for accelerator
configurations. To obtain the unit stress of an accelerator
configuration, the placed-and-routed configuration and its
input signal activities (toggle rate and average duty cycle)
are fed to Xilinx XPower that computes the signal activity of
every wire in the accelerator. The wires are then matched to
the CLB inputs to obtain the input signal activities of every
look-up table (LUT) in the CLBs used by the accelerator con-
figuration. Based on the signal activity propagation through
a transistor-level LUT model, the toggle rate and stress duty
cycle of the LUT transistors are calculated.

Xilinx XPower analysis

Place & routed accel-

erator configurations

1 2, ,..., wA A A

CLB Transistor level 

model construction
Switching

activity
Signal

probability

Unit stress matrices 

,
unit unit

exec idles s

Estimation of avg. 

transistor stress in CLBs

Accelerator

input activity

Fig. 5: Stress Estimation Flow

Out of several prospects [9, 51, 52], we model the LUTs in
CLBs as 2-input multiplexer (MUX) cells. The configuration
SRAM cells are not on the critical path of accelerators during
logic operations, because logic transitions in SRAM cells
only happen when they are reconfigured. Therefore, aging in
configuration SRAM cells is not explicitly targeted here. Our
LUT model considers 6-input LUTs that consist of trees of
2-input multiplexers similar to [51]. All SRAM configuration
cells of a LUT are connected to MUX data inputs and the
LUT inputs are connected to the select signals of MUXes
in their respective level of the tree. The evaluation is then
performed for each LUT in a two-stage approach by a level-
by-level probabilistic analysis given the LUT configuration bit
string and the LUT input activities.

For the calculation of the internal signal probabilities, the
signal values at the MUX data inputs are weighted according
to the duty time of the corresponding select input. Hence,
for a MUX with input values v0, v1 and select signal sel, the
output value is calculated by: vout := v0 · P [sel] + v1 · P [sel],
where P [sel] is the probability that sel = 1. Once the output
values of all multiplexers (and hence the inputs of each suc-
ceeding MUX) are determined, the calculation of the toggle
propagation is performed.

In the toggle analysis, we distinguish two types of switch-
ing sources as shown in Fig. 6: (a) propagated toggles that
are fed in through the MUX data inputs, and (b) generated

toggles that spawn by changing the select signal. In our LUT
model, the data inputs of the multiplexers on the first level of
the tree are connected to the configuration bits. Thus, upon a
select signal switch, toggles can only be generated (if the two
configuration bits have different values), but not propagated.
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On succeeding stages, the propagation of generated toggles
then takes into account the switching activity at all of the in-
put signals: Again, all sources of the toggles to be propagated
from data inputs are weighted according to the signal proba-
bility at the MUX select input: tprop := t0 · P [sel] + t1 · P [sel],
where t0 and t1 are the toggle counts of the data inputs.
As for the generated toggles, we consider the likelihood of
spawning a toggle after a select input switch as the XOR of
the two data inputs multiplied by the toggle frequency fsel as
tgen := fsel · (v0 ⊕ v1). The total toggle count at each MUX
output is the sum of the propagated toggles and the toggles
generated in its instance: ttot := tprop + tgen.
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�
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� �

�

�
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�

a) b)

Fig. 6: Toggle propagation (a) and generation (b) in MUXes.

We assume that each MUX is composed of pass transistors,
i.e. the input signals can be directly mapped to the respective
transistor terminals to obtain static stress [25]. Similarly,
the number of switches at each transistor was derived from
the toggle activity to obtain the unit stress matrices of the
dynamic stress [25].

7 Experimental Evaluation

The presented methods are evaluated in a reconfigurable
architecture with eight reconfigurable regions implemented
on a Xilinx Virtex-5 LX110T FPGA. Our method performs
optimizations on CLB granularity. To evaluate the actual
stress for each transistor, we use a transistor-level model of
LUTs similar to [6, 53] by representing them as trees of two-
input multiplexers (see Section 6). A complex H.264 video
encoder (with nine distinct accelerators), an ADPCM audio
encoder (one accelerator), an AES encryption (one acceler-
ator) and a JPEG image decoder (three accelerators) were
chosen as target applications to represent different computa-
tional requirements. Table 1 shows all accelerators along with
their logic utilizations (2nd column) and bitstream sizes (3rd
column). The total bitstream size of all configurations that
need to be stored in the system memory is about 1636 KB.
To accommodate the accelerator resource requirement, each
reconfigurable region has a size of 4×20 CLBs with eight 6-
input LUTs per CLB. The only exceptions are the JPEG
accelerators that use 8×20 CLBs for their reconfigurable
regions. They would have fit into 4×20 CLB regions when
using DSP blocks. But as the transistor-level structure of DSP
blocks is not known to us we cannot evaluate stress balancing
for DSP blocks and thus we decided to implement JPEG
using CLBs only. A minimal set of diversified configurations to
tolerate any single-CLB fault is generated for each accelerator
(4th column).

For our proposed method we assume a fault model at CLB
granularity. A CLB is considered faulty if any faulty behavior
in its internal structure makes it unusable for functional oper-
ation. We are not limited to a specific fault model (e.g. stuck-
at faults), but we assume that the position of faulty CLBs is

TABLE 1: Properties of reconfigurable accelerators and their
change in maximum frequency of diversified configurations

Accelerator
CLB utili- Bitstream #Divers. Original AccDiv Worstcase
zation [%] [KByte] Config. [MHz] [MHz] ∆ [%]

Clip3 66 30 3 133 119–133 10.5
CollapseAdd 23 30 2 158 142–158 10.1
LF BS4 48 30 2 121 117–121 3.3
LF Cond 23 30 2 146 139–146 4.8
PointFilter 65 30 3 89 81–89 9.0
QuadSub 9 30 2 257 217–257 15.6
SADrow 4 38 30 4 100 99–103 1.0
SAV 33 30 2 139 122–139 12.2
Transform 45 30 2 167 160–167 4.2

AdpcmEncDec 84 30 7 67 63–67 5.6

AesLutEnc 53 30 3 269 258–269 3.7

JpegTransform 59 52 3 108 98–108 8.8
Jpegidcte 69 52 4 156 135–156 13.1
Jpegidcto 83 52 6 158 149–160 5.5

System freq. 67 63 5.6

detected and diagnosed (as for instance done in [31]) and given
as input to our method. To investigate the system behavior
under the presence of faulty CLBs, we randomly select 1 up to
80 CLBs (from all CLBs of all regions) to be faulty. To ensure
correct operation, any accelerator configuration that requires
at least one of the faulty CLBs is not allowed to be configured
anymore. For a given number of faulty CLBs, 100 simulation
runs are executed with randomly selected faulty CLBs.

A SystemC-based cycle-accurate architectural simulator
is used to evaluate the system behavior in the presence of
different number of detected permanent faults and using dif-
ferent runtime strategies. It accurately models the hardware
implementation of the reconfigurable architecture including
the bus arbitration in the reconfigurable fabric, the duration
of reconfiguration, and the application behavior including
request arbitration for accelerator configuration and software-
emulation of unavailable accelerators. The proposed acceler-
ator placement method is integrated into the runtime system
and the stress distribution is optimized for dynamic stress.
For comparison, a baseline and two state-of-the-art strategies
(summarized in Table 2) are evaluated:

• The baseline strategy does not perform fault-tolerant and
stress-aware placement and each accelerator has only one
configuration, i.e. without diversified configurations. When
the algorithm decides to place an accelerator into a region
where one of the required CLBs is faulty, then the accel-
erator will not be configured and its functionality will be
emulated in software.

• The stress-aware accelerator placement method STRAP
[25] distributes the stress of accelerators uniformly into all
reconfigurable resources, where accelerators do not have
diversified configurations. We integrated our proposed fault-
tolerant placement method (see Section 5.2) into it to
evaluate the effectiveness of fault tolerance and stress dis-
tribution when no accelerator diversification is employed.

TABLE 2: Compared strategies in the experiments

Strategy Fault-tolerance Stress-aware Acc. Div.

Baseline No No No
STRAP [25] Yes Yes No

Angermeier [23] No Yes No
This work Yes Yes Yes
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• Angermeier et al. [23] proposed another state-of-the-art
stress distribution method which considered the peak stress
of regions to place an accelerator (see Section 2), but it is
not capable to tolerate faults.

As proposed for our methods, we also extended [23, 25] to
replace an accelerator if its reconfigurable region has not been
reconfigured for 20 million cycles to provide a fair comparison
(see Section 5.1).

7.1 Accelerator Diversification

Since the accelerator diversification method applies additional
constraints to prohibit certain CLB location during place-and-
route, the maximally achievable frequency of an accelerator
may be affected. Table 1 reports the maximal frequency of the
diversified configurations of each accelerator (6th column) and
of the original configuration (5th column) that is place-and-
routed without prohibit constraints. The worst-case frequency
impact (7th column) compares the slowest configuration of
the accelerator to the original configuration. The place-and-
route tool is given a target frequency of 250 MHz as timing
constraint to obtain the maximum operating frequency of each
accelerator. The frequency of one of the diversified configura-
tion may actually be better than the original configuration,
e.g. in the case of SADrow 4 and Jpegidcto, because the addi-
tional placement constraints may actually help the place-and-
route tool to explore new placement and routing possibilities
that are undiscovered during the generation of the original
configuration. The maximum system frequency is however
limited by the accelerator with the longest critical path, i.e.
AdpcmEncDec, which runs at 67.2 MHz with the original
configuration and at 63.4 MHz with the slowest configuration,
which leads to 5.6% decrease of the system frequency. The
original configuration is one of the diversified configurations
and thus can be used when full performance is required.

7.2 Aging Resilience and Fault Tolerance

To evaluate the mean-time-to-failure (MTTF) improvement
due to stress reduction, we employ a state-of-the-art physics-
based HCI aging model. It is adopted from [48, 49] and its
details (e.g. aging and temperature parameters) can be found
in the Appendix of Ref. [25]. Table 3 reports the dynamic
stress reduction for different benchmark applications in a
fault-free system and Table 4 reports the resulting MTTF
increase. On average, our methods achieve 6.8× higher MTTF
than the baseline and 1.6× higher than the closest competitor.

We investigated in detail the impact of faults in the fabric
to the application performance and the peak stress. We chose
H.264 video encoder as the target application since it stands
as a complex application for reconfigurable architectures.

Fig. 7 shows the application performance in the presence of
faults in the reconfigurable fabric when different strategies are
applied. The box plots (whose values refer to the left Y-axis)
show the statistical distribution of the performance degrada-
tion w.r.t. a fault-free baseline system, which is measured by

Execution time in the presence of n faulty CLBs

Execution time in a fault-free baseline system
(16)

It represents how many times slower the application runs than
it would run in a fault-free system. If only one or two CLBs

TABLE 3: Reduction of maximum transistor toggle rate [%]

Strategy H.264 ADPCM JPEG AES Avg.

Angermeier [23] 49.5 87.3 63.9 49.7 62.6
STRAP [25] 66.0 87.3 73.6 49.7 69.2
This work 78.5 90.8 87.3 73.5 82.5

TABLE 4: MTTF improvement [×] (e.g. 2× improvement
means the MTTF is doubled)

Strategy H.264 ADPCM JPEG AES Avg.

Angermeier [23] 2.0 7.9 2.8 2.0 3.7
STRAP [25] 2.9 7.9 3.8 2.0 4.1
This work 4.7 10.9 7.9 3.8 6.8

are detected faulty, the application performance is typically
not affected, as these faulty CLBs are not required by the
accelerators. When the number of faulty CLBs increases in
the baseline system, fewer accelerators can be placed and
computationally intensive parts of the application have to
be executed in software, which significantly degrades the
performance. In extreme cases, e.g. with 80 faulty CLBs, the
application is completely executed in software without accel-
eration, which leads to more than 22× degraded performance.

With accelerator diversification and fault-tolerant accel-
erator placement methods, the application experiences less
than 8% performance degradation with 1 to 8 faulty CLBs,
since these faulty CLBs are avoided by using diversified con-
figurations. As faults accumulate (e.g. more than 25 faulty
CLBs), they are not tolerable any more by the diversified
configurations, which leads to the increased performance
degradation. Without accelerator diversification, STRAP [25]
delivers limited capability of fault tolerance. The application
performance degrades in a similar rate to the baseline system
after the number of faulty CLBs exceeds 7.

The line plots in Fig. 7 (with values referring to the
right Y-axis) show the average performance gain of a runtime
strategy w.r.t. the baseline system, given the same number of
faulty CLBs. It is measured by

Avg. Exec. time in baseline with n faulty CLBs

Avg. Exec. time in other strategy with n faulty CLBs
(17)

where the average is over all simulation runs for a given
number of faulty CLBs. This metric measures the ability
of a strategy to provide fault-tolerance. With our proposed
methods, the application is able to deliver 1.9–3.7× the per-
formance of a baseline system in the presence of 4 to 40 faulty
CLBs. As the number of faulty CLBs increases, our methods
gracefully degrades the system performance until it converges
to the baseline system. Without accelerator diversification,
the stress-aware placement method [25] delivers up to 1.5×
performance gain for fewer than 10 faulty CLBs. Angermeier
et al. [23] optimize for stress reduction and do not consider
fault-tolerance during accelerator placement. They place an
accelerator into a region that results in the lowest peak stress.
However, this may prevent the successful placement of other
accelerators, which leads to lower application performance.

The box plots (left Y-axis) in Fig. 8 shows the statistical
distribution of peak dynamic stress in the reconfigurable
fabric in the presence of different number of CLB faults. When
there are only a few (e.g. fewer than 6) faulty CLBs in the
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Fig. 7: Application performance in the presence of faults under different strategies. Left Y-axis (box plots): performance
degradation w.r.t. a fault-free baseline system. Right Y-axis (line plots): performance gain w.r.t. to the faulty baseline system
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Fig. 8: Peak stress and utilization in the reconfigurable fabric in the presence of faults. Left Y-axis (box plots): maximum transistor
toggle rate. Right Y-axis (line plots): utilization of the reconfigurable fabric for acceleration w.r.t. a fault-free baseline system

reconfigurable fabric, accelerators have a higher placement
freedom. The runtime system can freely choose into which
region an accelerator shall be placed such that the maximum
stress is minimized. All stress-aware strategies including [23,
25] and our proposed methods avoid the stress accumulation
in individual CLBs and result in a lower peak stress than the
baseline system. Angermeier et al. [23] performs only inter-
region stress distribution and thus produces higher peak stress
than other stress-aware strategies in systems with less faults
(e.g. 1 to 3 faulty CLBs), i.e. high placement freedom.

Combining accelerator diversification and intra- and inter-
region stress distribution, our methods produce the most uni-
form stress distribution in the fabric, which leads to the lowest
peak stress compared to other approaches. The placement
freedom diminishes as more CLBs become faulty and the
stress distribution becomes ineffective. As can be seen from
the resulting peak stress, STRAP [25] does not have clear
advantage over the baseline system when the fabric has 6
to 10 faulty CLBs. As the number of faulty CLBs increases
further (e.g. 15 to 60 faulty CLBs), the resulting peak stress
from our proposed methods is higher than that from other
strategies. The reason behind that is, that other strategies are
not capable to tolerate these faults and are not able to find

feasible placements of accelerators into the faulty regions, i.e.
the resources in the reconfigurable fabric are less stressed by
the execution of accelerators. This can be seen by looking at
the performance degradation in Fig. 7, where computations
are more frequently emulated in software instead of being
executed on the reconfigurable fabric.

The line plots (right Y-axis) in Fig. 8 show the utilization
of the reconfigurable fabric for acceleration w.r.t. a fault-free
baseline system. The fabric utilization is defined as follows:

Exec. time in the reconfigurable fabric (accelerated)

Total execution time
(18)

The values plotted are

Average utilization in the presence of faults

Utilization in the fault-free baseline system
(19)

The average is over all simulation runs for a given number
of faulty CLBs. The fault-free baseline system has a fabric
utilization value of 75.0%. It means that 75% of the total
execution time is spent in the execution of accelerators in the
reconfigurable fabric while the rest 25% is on the processor
pipeline. Since the fault-free baseline system is optimized for
performance which fully utilizes the reconfigurable fabric, 75%
is the maximum utilization value that can be achieved. In the
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presence of faults, requested accelerators may not be placed
into the reconfigurable fabric due to faults, which leads to
a reduced fabric utilization and less CLB stress. In extreme
case (e.g. with 60 or 80 faulty CLBs) the reconfigurable fabric
is not used at all as almost all accelerator functions are
emulated in software. With our fault tolerance with diversified
configurations, nearly full fabric utilization is achieved for less
than 7 faulty CLBs. Even at a high amount of faults (e.g. 15
to 35 faulty CLBs), the reconfigurable fabric is still used for
acceleration, as can be seen from the induced stress. At around
25% full fabric utilization, the application delivers more than
2× higher performance than other strategies (see Fig. 7).

For the evaluated systems, the worst-case overhead of the
accelerator placement algorithm occurs when 8 accelerators
need to be placed into 8 regions and the exact values of intra-
region profits of all configuration-region combinations are
calculated. These calculations only take 1.3 ms on a SPARC
V8 LEON3 processor running at 100 MHz.

8 Conclusion

The dependable operation of runtime reconfigurable archi-
tectures is threatened by aging. This article presented novel
methods to mitigate aging and tolerate emerging faults in the
reconfigurable fabric, by combining 1) diversified accelerator
configurations so that CLB faults can be tolerated by at
least one configuration per accelerators, and 2) an accelerator
placement algorithm to balance application-induced stress
both within a reconfigurable region as well as across all
reconfigurable regions in the system. The runtime placement
algorithm takes the faulty resources into account.

With our accelerator diversification and fault-tolerant ac-
celerator placement, the application experiences less than 8%
performance degradation with 1 to 8 faulty CLBs, since these
faulty CLBs are avoided by using diversified configurations.
Using the proposed methods, an H.264 video application
delivers from 1.9× up to 3.7× the performance of a baseline
system in presence of 4 to 40 faulty CLBs. For a set of
benchmark applications in a fault-free system, the reduction
in dynamic stress by aging mitigation leads to 6.8× higher
MTTF than the baseline system on average and 1.6× higher
MTTF than the closest competitor.
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