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Alexander Schöll, Claus Braun and Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {wu,braun,schoell}@informatik.uni-stuttgart.de

Abstract—Iterative solvers like the Preconditioned Conjugate
Gradient (PCG) method are widely-used in compute-intensive
domains including science and engineering that often impose
tight accuracy demands on computational results. At the same
time, the error resilience of such solvers may change in the
course of the iterations, which requires careful adaption of the
induced approximation errors to reduce the energy demand while
avoiding unacceptable results.

A novel adaptive method is presented that enables iterative
Preconditioned Conjugate Gradient (PCG) solvers on Approxi-
mate Computing hardware with high energy efficiency while still
providing correct results. The method controls the underlying
precision at runtime using a highly efficient fault tolerance
technique that monitors the induced error and the quality of
intermediate computational results.
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I. INTRODUCTION

The approximate computing paradigm allows to trade-off

precision for efficiency gains and spans the whole system stack

from hardware up to software and algorithms [1]. Different

applications in multimedia and signal processing, for instance,

are often not expected to compute perfect inputs and outputs

and therefore exhibit an error resilience to certain numerical

errors. This inherent error resilience is successfully exploited

by different approximation techniques to achieve reductions in

runtime, area, and energy demand. The paper at hand extends

the application field of approximation techniques to the area

of scientific computing.

Energy-efficient and error-resilient computing techniques

are essential demands of compute-intensive domains like sci-

ence and engineering. With energy demands already being a

constraining factor, the approximate computing paradigm has

to be applied to applications in such domains to overcome

future energy challenges. At the same time, the applied

approximation techniques must be carefully controlled and

monitored at runtime to satisfy the tight accuracy demands

that are often imposed by these domains on the computed

results.

The Preconditioned Conjugate Gradient (PCG) method is

one of the most widely used iterative solvers for large linear

equations of the form Ax = b. Although such convergent tasks

are often considered to be error-resilient [2], iterative solvers

like the PCG solver can be highly sensitive to numerical

errors [3]. While some applications exhibit different degrees of

error resilience in different application parts, iterative solvers

like the PCG solver exhibit a changing error resilience during

runtime. Even single errors can significantly increase the

number of iterations required for convergence to a correct

result or corrupt the result without indication. This insight

renders approximation techniques relying on single degrees of

precision unsuitable. Instead, approximation techniques with

configurable degrees of precision like [4–6] must be applied

and adapted according to the changing error resilience at

runtime. To ensure energy-efficient and error-resilient PCG

executions with correct results, the error resilience must be

continuously evaluated with low runtime and energy overhead.

Different related works like [3] begin iterative methods at

the lowest available degree of precision which is increased

if certain solver properties are violated. However, these prop-

erties are evaluated using expensive matrix-vector operations

that may cancel the achieved energy reductions. In our previ-

ous work [7], we enabled the PCG method on approximate

hardware and showed possible reductions in the hardware

utilization.

In the work at hand, we present a method that enables

energy-efficient and error-resilient PCG executions on ap-

proximate computing hardware. An error resilience estimation

scheme monitors the accumulation of approximation errors in

the solver residual with low runtime and energy overhead

and triggers precision changes when required. At the same

time, the efficient fault tolerance technique from previous

work [8] ensures correct results and low iteration overheads.

In experimental results, we evaluate the achieved energy-

efficiency by quantifying the energy demand and show the

minimum precision required for convergence to correct results.

II. STATE OF THE ART

Different related works have applied the approximate com-

puting paradigm at different layers of the system stack [9].

The range of approximate hardware includes approximate

adders [10] and multipliers [11] as well as configurable

hardware [4–6] that allows to change the underlying precision

at runtime. On the software level, task skipping [12] and neural

networks [13] are exploited to compute approximate results.

The investigation of approximate computing schemes in

the scientific and engineering computing domain is an active

research area. In [14], an approximate Cholesky decomposition



for well-conditioned problems is presented that skips insignifi-

cant values in arithmetic computations. A method is presented

in [15] that enables the iterative Lanczos algorithm on ap-

proximate hardware by increasing the underlying precision

after periodic reorthogonalization steps. The error resilience

of computing the inverse matrix p-th roots using Newton iter-

ations was investigated in [16]. The technique in [3] proposes

to start the iterative solver at the lowest available degree of

precision, which is increased if the underlying optimization

function is violated. For the PCG solver, the underlying

optimization function is minx E(x) := 1

2
xTAx− xT b, which

has to be additionally computed to detect violations. However,

the introduced matrix operation can be expensive and is able

to cancel out potential energy savings.

III. THE PRECONDITIONED CONJUGATE GRADIENT

SOLVER ON APPROXIMATE COMPUTING HARDWARE

The PCG method solves linear equations of the form

Ax = b by computing improved intermediate results xk in

each iteration k that approach the solution x and minimize

the residual δk := ||b−Axk||2 over time. Solver iterations

are performed until the residual δk satisfies some result ac-

curacy (e.g. δk < ǫ) which allows to accept the intermediate

result xk as a result. Correct results are ensured, if the

inherent convergence invariants are satisfied for successive

PCG iterations. PCG represents the solution x as a linear

combination of search directions {p0, p1, p2, ..., pN} and x =
x0 +

∑
k≤N αkpk, which have to be A-orthogonal with

pkApi ≈ 0, k 6= i (1)

to achieve correct convergence. At the same time, the in-

ternally used residual variable δ′k must represent the actual

residual with

δ′k ≈ δk := ||b−Axk||2. (2)

Approximation errors can violate these invariants over time

which can cause additional iterations or wrong results despite

apparent convergence. For this reason, the induced approxi-

mation error must be limited to avoid canceling the achieved

energy reductions.

Our proposed method achieves correct results with reduced

energy demands by adapting the underlying precision to the

changing error resilience in PCG. The underlying idea is to

periodically estimate the error resilience and to evaluate these

estimations using the fault tolerance technique presented in

previous work [8]. This fault tolerance technique evaluates the

inherent convergence invariants efficiently to detect violations

with high coverage.

Based on the rounding error investigation for PCG in [17],

our proposed method estimates the error resilience with respect

to the accumulation of approximation errors. For each avail-

able degree of precision ε ∈ {ε0, ε1, ε2, ..., εN}, the method

estimates the minimum residual δε to which PCG can be

resilient at runtime. This estimation is performed at runtime

for each iteration k with

δε,k+1 := δε,k + 2αk||wk||2 · ε (3)

and δε,0 := 0 while wk denotes the result of wk := Apk that

is computed in each iteration [7]. The minimum residual is

found (i.e. δε := δε,k) when the residual δ′k drops below this

threshold [17] with

δ′k ≤ δε,k. (4)

For successive iterations l with smaller residuals δ′l < δε,

the precision is increased to ε′ and the estimation progress

is repeated. At the same time, the precision is decreased to

ε, if the residual exceeds the minimum residual threshold δε,

which can occur due to, for instance, residual oscillations.

This estimation procedure has to be performed only once

for any selected matrix A. The collected minimum residuals

for the different precisions can be applied to different solver

executions that are based on the same or highly similar

coefficient matrices A to save one inner product and to reduce

the energy demand.

IV. EXPERIMENTAL RESULTS

The proposed technique is evaluated with respect to re-

quired PCG iterations for correct convergence and energy

reductions in double-precision floating-point arithmetic. The

approximation was applied to the most energy-demanding

arithmetic operation in the dominant operation in PCG, namely

the floating-point multiplications [4] in sparse matrix-vector

multiplications. This approximate floating-point multiplication

truncates the k least significant bits in the operand mantissa

and fills the truncated part in the result mantissa with a random

pattern.

To evaluate the energy demand, the operations in PCG were

mapped to gate-level timing simulations that were accelerated

by the GPU simulator presented in [18]. The simulations were

performed for the gate-level descriptions of a double-precision

floating-point adder and multiplier that were synthesized using

the NanGate 45 nm library [19]. Using the energy informa-

tion provided with this standard cell library, the obtained

Weighted Switching Activity results were translated to power

and energy results. While the multiplier contains 20,812 two-

input gates and a critical path delay of 14.21 ns, the adder

contains 5,678 gates and a critical path delay of 14.98 ns.
The static power dissipation is 0.154mW and 0.033mW,

respectively. In this work, the term precise hardware refers

to an IEEE 754-compliant floating-point unit. As benchmarks,

26 matrices from the Florida Sparse Matrix Collection [20]

were evaluated that comprise 15,844 to 10,614,210 non-zero

elements. More than 500,000 experiments were performed to

derive the experimental results discussed below. All evaluated

experiments converged to a correct solution.

Figure 1 shows the number of iterations and the demanded

energy compared to the execution on precise hardware. The

evaluated matrices are ordered by the number of non-zero

elements. The increase in the number of iterations ranges from

0.0% to 25.4% and is on average only 4.9%. For 18 matrices,

the number of iterations is only increased by at most 4%.

At the same time, an energy reduction can be observed for

22 matrices compared to executing PCG on precise hardware.
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Fig. 1. Number of iterations and energy demand of PCG on approximate hardware compared to the execution on precise hardware.

For these matrices, the energy demand is on average reduced

by 22.5% and in total up to 62.3%. For 5 matrices, the

energy demand is reduced by at least 35%. These reductions

of hardware utilization can be explained by the efficiency of

the underlying fault tolerance technique that induces only low

runtime overhead to evaluate the inherent solver properties.

V. CONCLUSION

In this work, we presented a method that enables the

Preconditioned Conjugate Gradient (PCG) solver on approx-

imate computing hardware and ensures energy-efficient and

error resilient solver executions. Although such convergent

tasks are typically considered to be inherently error-resilient,

numerical approximation errors can cause additional iterations

or wrong results. Our proposed method controls the underlying

precision along the changing error resilience of the solver to

ensure correct results while reducing the error demand. This

method estimates the underlying error resilience by monitoring

the accumulation of approximation errors in the underlying

variables. An efficient fault tolerance technique evaluates

these estimations to detect violations of the inherent solver

invariants. Experimental results showed energy reductions in

22 out of 26 evaluated benchmark matrices. For these matrices,

the energy demand was reduced by up to 62.3% while the

iteration overhead is on average 4.9%.
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