
Fault Tolerance of Approximate Compute

Algorithms

Wunderlich, Hans-Joachim; Braun, Claus; Schöll, Alexander

Proceedings of the 34th VLSI Test Symposium (VTS’16) Caesars Palace, Las Vegas,

Nevada, USA, 25-27 April 2016

doi: http://dx.doi.org/10.1109/VTS.2016.7477307

Abstract: Approximate computing algorithms cover a wide range of different applications and the boundaries
to domains like variable-precision computing, where the precision of the computations can be online adapted
to the needs of the application [1, 2], as well as probabilistic and stochastic computing [3], which incorporate
stochastic processes and probability distributions in the target computations, are sometimes blurred. The
central idea of purely algorithm-based approximate computing is to transform algorithms, without necessarily
requiring approximate hardware, to trade-off accuracy against energy. Early termination of algorithms that
exhibit incremental refinement [4] reduces iterations at the cost of accuracy. Loop perforation [5] approximates
iteratively-computed results by identifying and reducing loops that contribute only insignificantly to the so-
lution. Another group of approximate algorithms is represented by neural networks, which can be trained to
mimic certain algorithms and to compute approximate results [6]. Today, approximate computing is predom-
inantly proposed for applications in multimedia and signal processing with a certain degree of inherent error
tolerance. However, in order to fully utilize the benefits of these architectures, the scope of applications has
to be significantly extended to other computeintensive tasks, for instance, in science and engineering. Such an
extension requires that the allowed error or the required minimum precision of the application is either known
beforehand or reliably determined online to deliver trustworthy and useful results. Errors outside the allowed
range have to be reliably detected and tackled by appropriate fault tolerance measures.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/VTS.2016.7477307


Fault Tolerance of
Approximate Compute Algorithms

Hans-Joachim Wunderlich, Claus Braun, Alexander Schöll

Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {wu,braun,schoell}@informatik.uni-stuttgart.de

I. APPROXIMATE COMPUTING ALGORITHMS

Approximate computing algorithms cover a wide range of

different applications and the boundaries to domains like

variable-precision computing, where the precision of the com-

putations can be online adapted to the needs of the application

[1, 2], as well as probabilistic and stochastic computing

[3], which incorporate stochastic processes and probability

distributions in the target computations, are sometimes blurred.

The central idea of purely algorithm-based approximate com-

puting is to transform algorithms, without necessarily requiring

approximate hardware, to trade-off accuracy against energy.

Early termination of algorithms that exhibit incremental refine-

ment [4] reduces iterations at the cost of accuracy. Loop perfo-

ration [5] approximates iteratively-computed results by iden-

tifying and reducing loops that contribute only insignificantly

to the solution. Another group of approximate algorithms is

represented by neural networks, which can be trained to mimic

certain algorithms and to compute approximate results [6].

Today, approximate computing is predominantly proposed

for applications in multimedia and signal processing with a

certain degree of inherent error tolerance. However, in order

to fully utilize the benefits of these architectures, the scope of

applications has to be significantly extended to other compute-

intensive tasks, for instance, in science and engineering. Such

an extension requires that the allowed error or the required

minimum precision of the application is either known before-

hand or reliably determined online to deliver trustworthy and

useful results. Errors outside the allowed range have to be

reliably detected and tackled by appropriate fault tolerance

measures.

II. TEST AND ONLINE TEST

Conventional test methods which are intended to validate

the full functionality of circuits by evaluating the absence of

faults are often not directly applicable to approximate hard-

ware. Existing test methods must be extended by appropriate

metrics and characterization procedures which assess whether

the circuit is either critical, marginal, or non-critical. Moreover,

new monitoring and online test methods are required to cover

the entire lifecycle of approximate circuits. Regardless of

whether such online tests will be performed in a concurrent

or non-concurrent manner, some of the underlying metrics

will be very similar to those metrics required for the online

determination of the required minimum precision and hence

for the detection of critical errors [7]. This enables synergies

between the required online test and fault tolerance measures.

III. FAULT TOLERANCE

For approximate computations, the algorithm and applica-

tion level is an attractive insertion point for flexible fault

tolerance measures, specifically designed for the target ap-

plication. The minimum required precision is an essential

criterion for the assessment of approximate computational

results. In science and engineering, many applications rely on

floating-point arithmetic. Hence, the inevitable rounding error

that affects computed results can be used to determine the

minimum required precision since there is typically no need

to compute more accurately than what rounding allows.

Probabilistic error functions enable the derivation of round-

ing error bounds based on the performed arithmetic operations

and the processed data. The basic idea is to determine a

confidence interval for the rounding error based on its ex-

pectation value and variance. Errors which are larger than the

probabilistic rounding error bound are harmful and have to be

tackled. Probabilistic error functions can be applied for the

offline characterization of applications, as well as the online

monitoring and checking of approximate results.

Many iterative numerical methods (e.g. solvers) seem to be

well-suited for approximate hardware since they impose an

inherent resilience to certain numerical errors [8]. However,

appropriate fault tolerance techniques are required to further

increase their resilience and to allow their execution on

approximate computing structures with even increased low-

power constraints.

BIBLIOGRAPHY

[1] M. Schulte and E. Swartzlander, “A Family of Variable-Precision Interval
Arithmetic Processors”, IEEE Transactions on Computers, vol. 49, no. 5,
pp. 387–397, May 2000.

[2] C.-C. Hsiao, S.-L. Chu, and C.-Y. Chen, “Energy-aware Hybrid Precision
Selection Framework for Mobile GPUs”, Computers & Graphics, vol. 37,
no. 5, pp. 431 – 444, 2013.

[3] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing”, ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2, pp. 92:1–92:19, May 2013.

[4] S. H. Nawab et al., “Approximate Signal Processing”, Journal of VLSI
Signal Processing Systems For Signal, Image and Video Technology,
vol. 15, no. 1-2, pp. 177–200, 1997.

[5] S. Sidiroglou-Douskos et al., “Managing Performance vs. Accuracy
Trade-offs with Loop Perforation”, in Proc. of the 13th Europ. Conf.
on Foundations of Software Engineering, 2011, pp. 124–134.

[6] T. Moreau et al., “SNNAP: Approximate Computing on Programmable
SoCs via Neural Acceleration”, in IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2015, pp. 603–614.

[7] M. Ringenburg et al., “Monitoring and Debugging the Quality of Results
in Approximate Programs”, in Proc. Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, 2015, pp. 399–411.

[8] Q. Zhang et al., “ApproxIt: An Approximate Computing Framework for
Iterative Methods”, in Proc. 51st ACM/EDAC/IEEE Design Automation
Conference (DAC’14), 2014, pp. 1–6.


