
Efficient Algorithm-Based Fault Tolerance for

Sparse Matrix Operations

Schöll, Alexander; Braun, Claus; Kochte, Michael A.; Wunderlich,

Hans-Joachim

Proceedings of the 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN’16) Toulouse, France, 28 June-1 July 2016

doi: http://dx.doi.org/10.1109/DSN.2016.31

Abstract: We propose a fault tolerance approach for sparse matrix operations that detects and implicitly

locates errors in the results for efficient local correction. This approach reduces the runtime overhead for

fault tolerance and provides high error coverage. Existing algorithm-based fault tolerance approaches for

sparse matrix operations detect and correct errors, but they often rely on expensive error localization steps.

General checkpointing schemes can induce large recovery cost for high error rates. For sparse matrix-vector

multiplications, experimental results show an average reduction in runtime overhead of 43.8%, while the

error coverage is on average improved by 52.2% compared to related work. The practical applicability is

demonstrated in a case study using the iterative Preconditioned Conjugate Gradient solver. When scaling the

error rate by four orders of magnitude, the average runtime overhead increases only by 31.3% compared to

low error rates.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic

reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form

to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dx.doi.org/10.1109/DSN.2016.31

Efficient Algorithm-Based Fault Tolerance

for Sparse Matrix Operations

Alexander Schöll, Claus Braun, Michael A. Kochte and Hans-Joachim Wunderlich
Institute of Computer Architecture and Computer Engineering, University of Stuttgart

Pfaffenwaldring 47, D-70569, Germany, Email: {schoell,braun,kochte,wu}@informatik.uni-stuttgart.de

Abstract—We propose a fault tolerance approach for sparse
matrix operations that detects and implicitly locates errors in
the results for efficient local correction. This approach reduces
the runtime overhead for fault tolerance and provides high error
coverage. Existing algorithm-based fault tolerance approaches for
sparse matrix operations detect and correct errors, but they often
rely on expensive error localization steps. General checkpointing
schemes can induce large recovery cost for high error rates. For
sparse matrix-vector multiplications, experimental results show
an average reduction in runtime overhead of 43.8%, while the
error coverage is on average improved by 52.2% compared to
related work. The practical applicability is demonstrated in a
case study using the iterative Preconditioned Conjugate Gradient
solver. When scaling the error rate by four orders of magnitude,
the average runtime overhead increases only by 31.3% compared
to low error rates.

Keywords—Fault Tolerance, Sparse Linear Algebra, ABFT,
Online Error Localization

I. INTRODUCTION

Large-scale applications in science and engineering ben-
efit from the increasing compute power of heterogeneous
computing systems comprising multi-core CPUs and many-
core GPUs. Such systems became widespread in the high
performance computing domain as they allow to substantially
accelerate compute-intensive tasks from different fields like
molecular biology [1, 2], electronic design automation [3],
thermodynamics [4], as well as data analysis and machine
learning [5, 6].

However, such modern nano-scaled CMOS devices become
increasingly vulnerable to a growing spectrum of reliability
threats including transient events, latent defects, stress and
aging mechanisms, as well as marginal hardware due to pro-
cess variations [7, 8]. Transient effects that are exposed to the
applications on these systems may cause crashes or Silent Data
Corruptions (SDC). SDCs are commonly considered more
severe, as there is no indication that errors corrupted the result
[9]. Future manufacturing processes will allow even smaller
chip feature sizes resulting in an increased vulnerability, which
makes the integration of fault tolerance mandatory. For ex-
ample, foreseeable high-performance computing systems are
predicted to encounter errors every couple of minutes [10].

Different hardware-based fault tolerance approaches such
as redundancy or guard banding are applied to mask errors.
However, such techniques dissipate much power and are not
suitable for highly integrated solutions [11]. Therefore, a grow-
ing number of transient effects will be exposed to the software
which has to tolerate them. Future software applications must
therefore be capable of detecting errors and recovering from
them [12, 13].

Traditional checkpointing techniques are a mature approach
to tolerate errors in such applications. These techniques write
the state of an application periodically to a reliable storage and
restart the application from a prior state if an error is detected.
However, this approach can induce high costs in both trans-
ferring checkpoint data and recomputing lost results. These
costs might be acceptable when errors are rare, but become
infeasible in the near future when error rates increase with
smaller chip feature sizes. Therefore, checkpointing techniques
will become increasingly impractical as they induce significant
bottlenecks for the execution of applications [10, 14].

Algorithmic error detection and correction approaches
have been proposed which correct erroneous application out-
puts. Such approaches avoid the cost induced by rolling
back to a prior state. Typically, only a small portion of the
output is corrupted by errors, even under high error rates.
Therefore, the error correction cost can be reduced, if only
the erroneous part is corrected. This partial recomputation
approach, however, requires the localization of errors in the
output to avoid unnecessary correction cost. Different error
detection techniques, such as assertions [15], check for the
presence of errors in application outputs. However, if only the
error presence is known, then either a complete recomputation
has to be performed or the location of the errors has to
be identified to allow partial recomputation. Additional error
localization costs may be acceptable for small outputs, but
become unacceptable for large output sizes.

We propose a fault tolerance approach that allows the
efficient algorithmic detection and correction of erroneous
application outputs with high error coverage. Instead of only
detecting errors, our approach instruments error detection
steps to implicitly provide error locations. This enables par-
tial recomputations just for erroneous outputs directly after
error detection, which avoids both expensive error localization
steps as well as repeating entire computations. The proposed
fault tolerance technique is algorithm-based and exploits the
properties of specific algorithms to identify error locations
during error detection steps. Since our approach avoids both
redundant recomputations and expensive error localization
steps, it significantly reduces the runtime overhead for fault
tolerance.

In this work, we apply this scheme to sparse matrix
operations on heterogeneous computing systems under high
error rates. We evaluate our scheme for the sparse matrix-
vector multiplication (SpMV) and present a case study for it-
erative linear solvers in which SpMV constitutes a dominating
subroutine. Both the SpMV operation as well as iterative linear
solvers are crucial tasks in many high performance computing
applications in science and engineering [16–18]. As the SpMV

operation is a numerical task, which is typically performed
using floating point arithmetic, additional challenges arise to
detect errors reliably due to rounding errors. We address this
issue and present a novel analytical error function that provides
suitable rounding error bounds for the SpMV operation. This
paper presents the following contributions:

• A fault tolerance approach that allows the efficient
algorithmic detection and correction of corrupted ap-
plication outputs, i.e. the result vector of SpMV op-
erations. This approach instruments error detection
steps to identify corrupted output parts. Therefore,
this approach is more favorable for high error rates
compared to related works that perform error detection
and localization separately.

• An analytical error function for SpMV operations that
provides suitable rounding error bounds to distinguish
errors in the magnitude of the rounding error and
errors that may be harmful to the application.

• Evaluation of our fault tolerance approach and presen-
tation of experimental results for the SpMV operation
in terms of runtime overhead for both error detec-
tion and error correction as well as achievable error
coverage. Experimental results show that the runtime
overhead for fault tolerance (i.e. error detection and
correction) ranges from 13.6% to 155.7%. While the
runtime overhead is reduced by 43.8% compared to
related work approaches, the error coverage is on
average improved by 52.2% (cf. Section V).

• A case study, in which our fault tolerance approach
for the SpMV operation is evaluated for a widely-
used iterative solver, the Preconditioned Conjugate
Gradient method [19]. In this case study, we evaluate
runtime overheads required for finding correct results
as well as the error coverage. Experimental results are
presented for different error scenarios ranging from
low to high error rates. Under high error rates, our
approach reduces the runtime overhead on average
by 40.1% compared to related work. At the same
time, the number of successful solver runs (i.e. that
provided a correct result) is on average increased by
61.6%. Compared to traditional checkpoint-rollback
techniques, our approach allows on average 3.6 times
more successful solver runs.

The remainder of this paper is organized as follows. Section
II presents an overview of related work and discusses prior
fault tolerance techniques. Section III explains our proposed
fault tolerance approach for sparse matrix operations. The ex-
perimental setup is presented in Section IV. Section V presents
the results for the evaluation of the SpMV operation. The case
study in Section VI demonstrates the practical applicability of
our approach.

II. RELATED WORK

Traditional fault tolerance techniques like modular redun-
dancy and checkpointing are widely used in the scientific
computing domain [20]. Redundant execution techniques such
as triple modular redundancy (TMR) are applied to provide
fault tolerance for highly critical applications [21]. However,
duplication or even triplication of procedures induce high costs
in power, energy, and throughput.

Over the past decades, different checkpointing and rollback
approaches were proposed and are nowadays commonly used
to provide fault tolerance in high-performance computing
systems [10, 14, 22]. These approaches periodically write the
application state to a storage that is considered to be reliable
[23]. If an error is detected within a checkpointing interval,
then the system restarts the application and restores the prior
application state. However, such checkpointing approaches can
induce large runtime overheads under high error rates since the
recomputation of lost results has to be performed frequently.
If such errors persist in the application and become detectable
in succeeding checkpointing intervals, then restarts from prior
corrupted checkpoints may lead to endless loops [24]. In [25],
shortening of checkpointing intervals is proposed to reduce
recomputation cost under high error rates. However, this leads
to increasing checkpointing overheads, as additional runtime
and bandwidth is required to store the application state more
frequently.

Different algorithm-based fault tolerance approaches
(ABFT) were proposed for dense linear algebra operations
such as matrix multiplications or decompositions [26–28].
ABFT techniques encode input data by adding checksums
before performing a linear operation and calculate new check-
sums for the results. The results are checked for errors by
evaluating invariants between checksums that were processed
by the operation and the checksums computed for the results.

For the matrix-vector multiplication Ab = r, the checksum
invariant can be expressed as

wT (Ab) = (wTA)b (1)

which is based on the associative property for matrix multipli-
cation. Here, wT is a weight vector, A is the input matrix and
b is the operand vector. In case of errors, equation 1 will most
likely no longer hold. This dense check can be divided into two
parts. The first part comprises the setup which is executed once
for each matrix A to obtain a dense column checksum vector
(i.e. c = (wTA)). The second part comprises the operations for
error checking, which requires two inner products. With matrix
size n, O(n2) computations are required for setup, but only
O(n) computations must be performed to check for errors.
This is efficient for dense matrices since O(n2) computations
are induced by the multiplication itself.

Besides dense linear operations, sparse systems and sparse
linear algebra are important operations for many applications
in scientific computing and in engineering [16–18]. The direct
use of such dense checks for sparse operations induces signif-
icant runtime overheads as, for instance, the SpMV operation
requires only O(n) computations. Since the SpMV operation
and the dense error check are in same order of time complexity
(i.e. O(n)), the runtime overhead for error detection may
exceed the runtime of the original operation.

Nonetheless, this dense check is applied in different related
works to detect errors in sparse linear operations such as the
SpMV operation [29, 30] or triangular solvers [31]. Different
approaches were proposed to reduce the overhead for sparse
linear operations. A checksum encoding is proposed in [32] for
the SpMV operation that omits a fraction of the matrix columns
in the checksum generation. This approach reduces the runtime
overhead for error detection, but also reduces the error cov-
erage. In [30], an error localization scheme is proposed for
the SpMV operation that reduces the runtime overhead for

error correction by avoiding complete recomputations. After
an error is detected by the dense check, errors are located by
an iterative bisection technique, which repeatedly divides the
matrix and checks for errors in the submatrices. However, the
runtime overhead to provide fault tolerance still depends on the
dense ABFT check, since the result of this check is required
before any error localization steps can be performed.

Since sparse linear operations are typically performed using
floating-point arithmetic, rounding errors occur. Therefore,
error checking approaches need to check invariants under
consideration of a threshold τ (i.e. the rounding error bound) to
avoid false positive error detections. Rounding errors typically
cause small differences in these checksums which makes a
direct comparison of checksums impossible. One approach is
to let the user determine such thresholds manually [26]. How-
ever, this approach requires both deep knowledge of the input
data and re-calibration for each new problem set. Different
approaches were proposed that determine such rounding error
bounds with respect to the input data at runtime. Analytical
bounds for rounding errors were derived for different linear
operations [33, 34]. These were used in [35] to obtain an
analytical rounding error bound to protect dense matrix vec-
tor multiplications. For dense matrix operations, probabilistic
rounding error functions were proposed in [28].

In summary, traditional checkpointing approaches induce
large runtime overheads since recomputation of lost results is
performed frequently under high error rates. For sparse linear
operations, the direct application of traditional dense checks
is highly inefficient. The approaches [30–32] reduce runtime
overheads for error detection and correction steps separately.
However, the utilized error detection schemes only indicate
the existence of errors and not their location. Therefore, either
complete recomputations or additional error localization steps
need to be performed to correct errors.

III. EFFICIENT ALGORITHM-BASED FAULT TOLERANCE

FOR SPARSE MATRIX OPERATIONS

In this work, we propose an efficient fault tolerance ap-
proach that detects and corrects erroneous application outputs
with low runtime overhead. This approach is based on the
observation that even under high error rates, errors typically do
not affect complete application outputs, but only small parts.
Instead of performing expensive error localization steps, we
propose novel error detection steps that implicitly and highly
efficiently provide the error locations. This approach allows to
correct erroneous outputs directly, which reduces the overall
runtime overhead to provide fault tolerance. At the same time,
this approach does not rely on checkpointing techniques, which
makes it favorable for high error rates.

We explore this approach with respect to matrix operations,
focusing on the sparse matrix-vector multiplication (SpMV).
SpMV operations are crucial parts for many compute-intensive
tasks in the high-performance computing domain (cf. Section
III-E).

A. Algorithm-Based Fault Tolerance for
Sparse Matrix-Vector Multiplications

Our fault tolerance scheme divides the SpMV operation
into small blocks and performs checksum-based error detection
for each block separately. This technique was evaluated for
dense matrix multiplications in [36]. Instead of locating the

affected result element exactly, our approach delimits error
locations to blocks of result elements. Errors are corrected
by recomputing the SpMV operation partially for erroneous
blocks. Therefore, both complete recomputation and error
localization steps are avoided since error locations are already
determined during error detection. At the same time, the
runtime overhead to detect and locate errors is significantly
reduced since this block-based approach exploits the sparsity
of the underlying input matrix.

Our approach encodes the input matrix A to obtain a sparse
checksum matrix C. The checksum matrix C inherits the
sparsity of the input matrix A. Each row of a checksum matrix
C contains the column checksums for a specific block of the
input matrix A. By exploiting this sparsity, our block-based
approach reduces the runtime overhead to detect errors com-
pared to prior approaches [30–32] that apply dense checksum
vectors. To detect errors in the results of a SpMV operation,
new checksums are computed for the results and compared to
the checksums that where processed by the SpMV operation.
Our error detection approach also determines analytical error
bounds for each SpMV operation to distinguish errors in the
magnitude of the rounding error and errors that may be harmful
to the application. Therefore, we significantly increase the error
coverage compared to dense checks.

Figure 1 shows the overview of the algorithmic steps
that are performed for each fault-tolerant sparse matrix-vector
multiplication. This figure indicates operations that can be
executed in parallel to each other by depicting such operations
in common rows. In the first step, the SpMV operation Ab = r
itself is computed to obtain the result vector r. Parallel to the
SpMV operation, the operand checksum vector t1 is computed
as Cb = t1.

The second and third steps calculate error detection criteria
that are required to check the results. In the second step, the
operand norm β is computed which is required to determine
the rounding error bounds for error detection. Parallel to this
step, new checksums are obtained for the results by computing
the result checksum vector t2 as t2k = wT

k
rk. As explained

below, wk and rk correspond to the k-th block in weight vector
w and in result vector r. In the third step, the syndrome vector
is computed by calculating the differences between the result
checksum vector t1 and the operand checksum vector t2. Errors
are detected in the fourth step by comparing each element of
the syndrome vector s against the rounding error bound. The
location of errors is provided during this error detection step
by determining the portion of blocks for which the syndrome
exceeds rounding error bounds. Such result blocks contain
at least one erroneous element and are therefore separately
recomputed in the fifth step to correct these errors. Therefore,
the SpMV operation is recomputed only partially in case of
errors.

B. Error Detection

The SpMV operation is divided into blocks of size bs and
error detection steps are performed for each block separately.
To divide the SpMV operation into blocks, the underlying input
matrix A is decomposed into rows of block matrices Ak (i.e.
the k-th row block in A). After decomposition, each block
matrix Ak comprises at most bs rows. In the example below,
the 6 × 6 sparse matrix A is decomposed into three block

Compute

operand’s norm

Sparse Matrix-Vector operation (SpMV)

Compute

result checksums 𝛽 = 𝑏 ଶ

Compute operand

checksum vector

Compute

result vector

 𝐶𝑏 = ଵ 𝐴𝑏ݐ = ݎ

Error Detection

Error Correction

Compute syndrome vector

ݏ = ଵݐ − ଶݐ

Recompute SpMV for corrupted blocks 𝑘

ଶ𝑘ݐ = 𝑤𝑘𝑇ݎ𝑘

true:

Error detected

1a

2a

3

4

5

Error Localization

𝑘ݏ > 𝜏ሺ𝛽ሻ ?

1b

2b

Preprocessing

Compute sparse checksum matrix 𝐶 O
n
ce

 f
o
r

e
a
ch

 m
a
tr

ix
 A

Fig. 1: Overview of the proposed fault-tolerant sparse matrix-
vector multiplication.

matrices A1, A2 and A3 with block size bs = 2. 1

1

5

3

4

2

9

2

5

1

2

5

1

2

2

𝐴

1

5 2

2

𝐴𝑘

3

4

2

9

2

5

1

5

1

2

𝐴ଵ

𝐴ଶ

𝐴ଷ

To detect errors in the result of SpMV operations, the
following checksum invariant is evaluated for each block k:

wT

k (Akb) ≈ (wT

k Ak)b (2)

The right-hand side of the equation encodes the block matrices
Ak using weight vectors wk to obtain column checksums (i.e.
ck = wT

k
Ak) for each block. Checksums are computed for

the SpMV operation by multiplying the column checksums ck
by the original operand b. In our error detection scheme, we
combine those vectors to obtain the sparse checksum matrix
C. Instead of multiplying each column checksum vector ck by
the original operand b separately, we multiply the checksum
matrix C with b to obtain the operand checksum vector t1.

The left-hand side of the equation decomposes the result
vector r into row blocks rk (i.e. rk = Akb) with block size bs

1The example uses integer values for illustration, but typically floating-point
values are used in SpMV operations.

and computes new checksums for the results using the weight
vectors wk. The resulting checksums are combined in the
result checksum vector t2. In the error-free case, the checksum
invariant holds for all blocks, i.e. the checksum vectors t1 and
t2 are equal aside from rounding errors. Errors are detected
by evaluating the difference in the invariant against a certain
rounding error threshold τ .

Parallel to the detection of errors, the locations of errors
in the result vector are delimited by such blocks for which the
checksum invariant does not hold. For example, consider the
6× 6 sparse matrix A that is multiplied by the operand vector
b to obtain the result vector r.

2

4

3

5

4

1

4

26

42

36

8

18

⋅ =

1

5

3

4

2

9

2

5

1

2

5

1

2

2

𝐴 𝑏 𝑟

To detect errors in this SpMV operation, the matrix A is
decomposed into three row blocks of block size bs = 2 and
encoded by weight vectors wk for each block. In this example,
the weight vectors are set to (1, 1).

1

5 2

2
1 5 2 2

𝐴𝑘

1 1 ⋅ =

2 1 2 9

3

4

2

9

2

5

1

5

1

2

2 8 9 1 =

=

⋅ ⋅
𝑤𝑘

1 1

1 1

𝑐𝑘

The resulting three column checksum vectors ck have to
be computed once for each input matrix A. For weight vectors
(1, 1), each element of the checksum vectors ck contains the
sum of a column of Ak. The checksum matrix C is obtained by
combining the checksum vectors ck. The sparsity of the input
matrix A is passed to the checksum matrix C. To compute
the operand checksum vector t1, the checksum matrix C is
multiplied by the operand b.

1 5 2 2

2 1 2 9

2 8 9 1

𝐶

2

4

3

5

4

1

⋅ =

𝑏

26

30

78

𝑡1

New checksums are computed for the results by decom-
posing the result vector r into row blocks rk of block size
bs = 2 and encoding those blocks using the weight vectors

wk. For each block, one checksum wT

k
rk is computed. The

different result checksums are combined in the result checksum
vector t2 which is compared to the operand checksum vector
t1 to detect errors. In this example, no error occurred, and the
checksum invariant holds for all blocks.

4

26

8

18

30

𝑟𝑘 𝑤𝑘𝑇𝑟𝑘

78

26

42

36

1 1 ⋅ ⋅ ⋅
𝑤𝑘

1 1

1 1

𝑡ଶ = = =

30

78

26 26

30

78

𝑡ଵ

= = =

=
?

Assume an error corrupted the fourth element in the result
vector r. Here, the corruption induced an offset of 2. This
error is both detected and located by evaluating the checksum
invariant for the second block A2. The result checksum for the
second block t22 differs to the operand checksum t12 .

4

26

42

8

18

𝑟

34
76 1 1 78

42

34
= ⋅ ≠

𝑟ଶ 𝑤ଶ 𝑡ଶ2 𝑡ଵ2 =
?

Errors are not only detected by our error detection scheme
but also located. In this example, the error location is delimited
to the second block since the checksum invariant does not hold
for this block. To correct this error, only the results for the
second block have to be recomputed by performing an SpMV
operation partially for rows 3 and 4 of input matrix A.

As mentioned above, by exploiting the sparsity of the
checksum matrix C on heterogeneous computing systems the
runtime overhead to detect and locate errors is significantly
reduced compared to prior approaches that utilize dense check-
sum vectors to protect the SpMV operation [30–32] .

The sparse checksum matrix C needs to be computed for
each matrix A only once. Before any checksum values can be
derived, the data structure for matrix C needs to be derived
from the data structure of input matrix A. Figure 2 presents
the necessary steps to derive the data structure at the example
of an input matrix A of size 20× 20.

In the first step, the data structure of A is decomposed into
row blocks Ak. In this example, the block size bs is chosen to
be 5. For each row block, non-empty columns are identified in
the second step. Checksum elements are stored in a row of C,
only if the corresponding column of A contains at least one
element. The resulting data structure for the checksum matrix
C is depicted in the third step.

The size of the blocks bs determines the runtime overhead
to detect and correct errors. For the error detection steps, the
block size bs trades-off the runtime for computing the operand

1

2

3

𝐴:

𝐶:

bS=5

Fig. 2: Decomposition of a sparse matrix A to obtain the data
structure of the sparse checksum matrix C.

checksum vector t1 against the runtime for the computing the
result checksum vector t2. For large blocks, the checksum
matrix C contains fewer rows which reduces the runtime
for computing t1 (i.e. t1 = Cb). However, the number of
elements that have to be processed for each element of t2
increases. Each element is computed as an inner product which
is typically implemented as a reduction on parallel computer

architectures [37]. With increasing number of elements in
each inner product, the number of sequential reduction steps
increases. Smaller blocks result in larger checksum matrices
C but reduce the runtime for computing the result checksum
vector t2.

C. Rounding Error Bounds

The SpMV operation is typically performed using floating
point arithmetic which is prone to rounding errors. Error detec-
tion schemes need to consider the impact of rounding errors
as they typically cause small differences in the checksums.
Therefore, direct comparisons of checksums can cause false
positives. Instead, suitable rounding error bounds τ have to
be determined that cope with differences caused by rounding
errors. Error bounds that were chosen smaller than the actual
rounding error lead to false positive error detections, which
will trigger unnecessary corrections. Too large bounds increase
the number of undetected errors (false negatives) that may
propagate to the final result in the application. For instance,
in the case of iterative solvers, such errors may significantly
increase execution times or lead to silent data corruption
[29, 38].

In [35], an analytical rounding error bound is presented to
protect dense matrix vector multiplications:

|t1 − t2| < τ(β) :=

(

(n+ 2m− 2) ·

m
∑

i=1

||ai||2+

n · ||c||2
)

· ǫM · β

with β := ||b||2. This bound estimates the maximum difference
between the operand and result checksums for a dense matrix
A with m rows and n columns with a machine precision of ǫM
(i.e. ǫM = 2−53 for double precision floating-point values).
Such maximum differences are constituted by the norms of
operand b, checksum vector c as well as the rows in input
matrix A (i.e. ||ai||2). Sparse matrices contain a large portion
of zero elements which do not contribute to the rounding error.
Therefore, the maximum difference between the operand and
result checksums is typically smaller and the error bounds
derived by this approach are too loose for sparse problems.

We propose the following analytical rounding error bound
for sparse matrix-vector multiplications:

|t1k − t2k | < τ(β) :=

(

(nk + 2bs − 2) ·

k·bs
∑

i=(k−1)·bs+1

||ai||2+

nk · ||ck||2
)

· ǫM · β

with β := ||b||2. Instead of assuming each block Ak to cover
all n columns, the actual number of non-empty columns nk

is utilized to estimate the maximum difference between the
operand and result checksums. Since nk < n for sparse
matrices, this estimation provides tighter error bounds since
it considers the actual number of elements that contribute
to the rounding error. Therefore, our approach provides a
significantly increased error coverage (cf. Section V).

D. Parallel Implementation

Our proposed fault-tolerant SpMV operation relies on
SpMV operations itself and on inner products. Such linear al-
gebra operations are parallelizable, which allows the execution
of such operations on heterogeneous systems with multi-core
CPUs and many-core GPUs. Different parallelization tech-
niques exist for both inner products and the SpMV operation
[37]. Typically, inner products are implemented as parallel
reductions which have a runtime complexity of O(log2(N)).
Different operations of our approach can be parallelized to
each other. As explained before, Figure 1 shows such opera-
tions that are independent and therefore parallelizable (e.g. by
using task parallel programming techniques).

The computation of the checksum matrix C requires ad-
ditional operations that are not covered by inner products or
the SpMV operation. To compute the checksum matrix C, two
steps are required as depicted in Figure 3.

Compute sparse data structure

of checksum matrix

Compute checksums

Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ

For each block

For each block

1

2

Fig. 3: Computation of data structure and checksums for each
block in the checksum matrix C.

In the first step, the sparse data structure of matrix C has
to be determined. For each block, the data structure of input
matrix A to obtain the number and the indexes of non-zero
columns. This step can be parallelized for each row in input
matrix A.

After this step, the data structure of matrix C is used to
compute the checksums for each block and each checksum
element. The checksums are computed by multiplying the
elements in row block Ak with the corresponding elements
in the weight vector wk. The computation of checksums can
be parallelized for each column in Ak.

E. Generality

Both the SpMV operation as well as iterative linear solvers
are important tasks for many large-scale applications in science
and engineering such as structural mechanics [16], computa-
tional fluid dynamics [17], or the study of electromagnetic
fields [18]. Our proposed fault tolerance technique exploits
both the associativity of the SpMV operation as well as its

decomposability into suboperations to apply online error lo-
calization. For this reason, our approach can be applied to any
application that relies on associative linear operations which
are decomposable and comprise multiple result elements. Since
many different applications in science and engineering include
such linear operations, this approach can be widely adopted to
exploit its benefits.

Applications that reuse data repeatedly achieve even larger
benefits since preprocessing only needs to be performed once
for each input data (i.e. computation of checksum matrices).
An important class of such applications are iterative solvers
that typically dominate the runtime for many scientific ap-
plications. Such iterative solvers are also used in different
computing domains besides high-performance computing, for
instance, to process video streams in real time [39]. We eval-
uate such benefits for the iterative PCG solver in Section VI.

A different important class of applications which heavily
rely on both linear systems and linear operations are data
analysis and machine learning applications. In machine learn-
ing, support vector machines utilize linear operations such as
the SpMV operation for classification and regression analysis
[6]. Different graph-based applications such as PageRank and
Random Walk with Restart rely on linear operations as well
[40]. Since these applications use linear operations at their
core, our approach can be directly applied to provide efficient
fault tolerance.

IV. EXPERIMENTAL SETUP

The proposed fault tolerance technique was evaluated for
the SpMV operation itself and for iterative linear solvers
which use SpMV as an internal subroutine. The experimental
setup including the error model, utilized benchmarks and the
system setup are presented below. Section V presents the
experimental results with respect to the SpMV operation. A
case study is presented in Section VI, in which our fault
tolerance approach for the SpMV operation is evaluated for
one of the most important iterative solvers, the Preconditioned
Conjugate Gradient method (PCG) [19].

A. Error Model

The experimental evaluation focuses on transient events
that constitute errors in outputs of arithmetic computations.
Erroneous arithmetic outputs may lead to Silent Data Cor-
ruptions (SDC) if they remain undetected. Such corruptions
of outputs may occur in the arithmetic components of a
processor due to the manifestation of faults in form of soft
errors. We do not consider errors in memory elements since
hardware fault tolerance techniques like ECC [20] are typically
used in high-performance systems to protect main memories,
caches and register files. We also do not consider errors in the
control logic or in the encoding of instructions as we assume
them to be protected by appropriate measures (e.g. error-
detecting/correcting codes, signature monitoring, or assertion
techniques [41–43]).

Different implementations of floating-point units exist that
may have different error propagation patterns for transient
events. In accordance to related works [24, 30–32], errors
are injected into computations at runtime by instrumenting
the application to determine random error injections. During
execution, errors are injected into a randomly selected element
within the result vector of the SpMV operation. The results

of the underlying floating point instructions are modified by
randomized bursts of bidirectional bit flips. The position of a
burst is randomly chosen from a uniform distribution within
the 64 bits of the floating-point values. The number of bits
affected by such bursts are randomly chosen from a normal
distribution with mean = 3 and variance = 2. Bit flips were
also injected into operations that perform error detection.

B. Benchmarks

As benchmarks, 25 matrices from the Florida Sparse Ma-
trix Collection [44] were evaluated which are shown in Table
I. Besides the names and sizes of the matrices (N × N), the
number of nonzero elements (NNZ) is presented. As a side
information, the portion of 0s within the matrices is shown.
The matrices have the following properties: square, symmetric,
real and positive definite. The evaluated matrices were stored
in the compressed sparse row storage format [45].

TABLE I: Overview of evaluated matrices from the Florida
Sparse Matrix Collection [44].

Name N NNZ Portion of 0s
nos3 960 15844 98.28%
bcsstk21 3600 26600 99.79%
bcsstk11 1473 34241 98.42%
ex3 2410 54840 99.06%
ex10hs 2548 57308 99.12%
nasa2146 2146 72250 98.43%
sts4098 4098 72356 99.57%
bcsstk13 2003 83883 97.91%
msc04515 4515 97707 99.52%
ex9 3363 99471 99.12%
aft01 8205 125567 99.81%
bodyy6 19366 134208 99.96%
Muu 7102 170134 99.66%
s3rmt3m3 5357 207123 99.28%
s3rmt3m1 5489 217669 99.28%
bcsstk28 4410 219024 98.87%
s3rmq4m1 5489 262943 99.13%
bcsstk16 4884 290378 98.78%
bcsstk38 8032 355460 99.45%
msc23052 23052 1142686 99.78%
msc10848 10848 1229776 98.95%
nd3k 9000 3279690 95.95%
ship 001 34920 3896496 99.68%
hood 220542 9895422 99.98%
crankseg 1 52804 10614210 99.62%

For the experiments, both the SpMV operation and the
PCG algorithm were tailored to a heterogeneous computing
system comprising multi-core CPUs and many-core GPUs.
All parallelizable linear algebra operations were mapped to a
GPU architecture and GPU-accelerated linear algebra libraries
were utilized. All experiments have been performed in double
precision.

The hardware platform consists of two Intel Xeon E5-2623
with 3.00 GHz and 128 GB RAM. The system hosts three
Nvidia Tesla K80 GPUs with 2×2496 processing cores at
745MHz and 24 GB GDDR5 RAM per device. ECC protection
was enabled for all experiments protecting the register files,
cache and DRAM. The machine runs a linux operating system

with CUDA version 7.5 and a GNU GCC 4.4.7 compiler tool
chain. Each experiment was executed using a combination of
a single CPU core and a single GPU.

V. RESULTS

We evaluated our fault tolerance approach for the SpMV
operation with respect to the runtime overhead for both er-
ror detection and correction as well as the achievable error
coverage. Our error detection scheme is compared to the
dense check approach as proposed in [30, 31]. Our error
correction scheme is compared to complete [31] and partial
recomputation approaches [30]. For the partial recomputation
approach, we adopted the error localization steps described in
[30] (i.e. iterative bisection technique with early stop at 40%
of complete localization traversal).

A. Runtime Overhead

To investigate the runtime overheads induced by the dif-
ferent methods, we compared the runtime of protected SpMV
operations to the runtime of original SpMV operations:

Runtime overhead =
Runtime for protected SpMV

Runtime for original SpMV
− 1

The runtime overhead for error detection that is induced
by our method depends on the block size bs. We evaluated
the runtime overhead for different block sizes ranging from
1 to 512. Figure 4 shows the results of this investigation.
Each data point represents a result for a specific matrix.
The red graph depicts the average runtime overhead over
all evaluated matrices. For each matrix, 100,000 experiments
were performed. The average runtime overhead is ranging
from 43.0% for block size 32 to 83.7% for block size 1. For
block size 1, the checksum matrix C is equal to the input
matrix A. Therefore, the computation of both the original
SpMV (Ab) and the checksums (Cb) have equal complexity.
Runtime overheads below 100% can be explained by the
parallel execution of those two operations. All evaluations
below were performed using block size 32 since this block
size provides the minimum error detection overhead.

0%

20%

40%

60%

80%

100%

120%

140%

1 2 4 8 16 32 64 128 256 512

R
u
n
t
im

e
 O

v
e
r
h
e
a
d

Block Size

Fig. 4: Runtime overhead of SpMV for different block sizes
compared to unprotected executions.

The error detection overhead is shown for each matrix in
Figure 5. We compare the error detection overhead of our
method using block size 32 against the dense check approach

[30, 31]. For fair comparison, the generation of checksums
in the dense technique (cT b) was also parallelized with the
original SpMV operation (Ab). The matrices are ordered by
increasing size of NNZ (cf. Table I). With increasing matrix
sizes, the overhead of all methods decreases. The error detec-
tion overhead for our method ranges from 12.1% to 109.6%.
Compared to dense checks, the runtime overhead is on average
reduced by 50.79%. The minimum reduction is 19.3% with
matrix s3rmq4m1 and the maximum reduction is 82.1% with
matrix msc10848.

We evaluated the runtime overhead for both detecting and
correcting errors by injecting errors into SpMV operation
and comparing the runtime to the unprotected SpMV opera-
tion. We compare our method to complete [31] and partial
recomputation approaches [30] which both rely on dense
checks to detect errors. For each matrix and each evaluated
method, 100,000 error injection experiments were performed
which triggered error corrections in all evaluated methods.
Figure 6 shows the results of this investigation. The overhead
for both error detection and correction ranges from 13.6% to
155.7% for our method. The runtime overhead is on average
reduced by 43.8% compared to the error localization and
partial recomputation technique [30] and by 55.7% compared
to complete recomputations [31]. The minimum reduction is
19.9% with matrix Muu and the maximum reduction is 69.9%
with matrix ship 001 compared to the related work methods.

B. Error Coverage

The error coverage of a method is constituted by the
number of successfully detected errors (true positives), the
number of undetected errors (false negatives) and the number
of mistakenly identified errors (false positives). To evaluate and
compare the effectiveness of our method against dense checks,
we performed 100,000 error injection experiments for each
matrix and method. In each injection experiment, a random
result element was selected and errors were injected into the
underlying floating-point value as described in Section IV-A.
We apply the rounding error bound as presented in Section
III-C. For the dense check approach, the norm-based rounding
error bound τ = ||b||2 is applied as proposed in [30] (i.e.
|wT r − wTAb| < ||b||2). From the experiment results, we
compute the balanced F1-score [46]:

F1 =
2 · true positives

2 · true positives + false negatives + false positives

Figure 7 shows the F1-Scores for the different methods dis-
tinguished by different minimal error significances σ (i.e. 1e-8,
1e-10, and 1e-12). Only errors were injected that corrupted a
result element rk to become rkERR with

|rkERR| > |rk|(1 + σ) ∨ |rkERR| < |rk|(1− σ)

where σ is the minimal error significance. For a minimal error
significance σ = 1e-12, the F1-Score for our method ranges
from 0.68 for matrix nos3 to 0.88 for matrix ex3. The average
F1-Score is 0.81. The F1-Score is on average improved by
52.2% compared to dense checks. The minimum improvement
is 2.9% with matrix bcsstk13. The maximum improvement is
reported with matrix Muu, for which the F1-Score is 17.6 times
larger compared to dense checks. With increasing minimal
error significance σ, the average F1-Score is 0.88 for σ =
1e-10 and 0.95 for σ = 1e-8.

0%

20%

40%

60%

80%

100%

120%

140%

160%

R
u
n
t
im

e
 O

v
e
r
h
e
a
d

This Work Dense Check

Fig. 5: Runtime overhead for error detection.

0%

50%

100%

150%

200%

250%

R
u
n
ti

m
e
 O

v
e
rh

e
a
d

This Work Dense Check + Partial Recomputation Dense Check + Complete Recomputation

Fig. 6: Runtime overhead for error detection and correction.

VI. CASE STUDY:
PRECONDITIONED CONJUGATE GRADIENT SOLVER

We evaluate the runtime overhead and success rates for
our proposed fault tolerance approach by focusing one of the
most common solvers, the Preconditioned Conjugate Gradient
(PCG) method [19], which is an iterative solver. The solution
of linear systems is an important task in many large-scale
applications in science and engineering including structural
mechanics [16] and computational fluid dynamics [17]. We
compare our approach with both a traditional checkpointing
(i.e. error detection and rollback) approach and the error
detection, localization and partial recomputation approach
from related work [30]. More than 200,000 error injection
experiments were performed to obtain the results below. Each
experiment comprises both a complete run of the PCG solver
and a number of error injections with respect to different error
rates λ. The runtime overhead corresponds to the runtime of
protected PCG executions compared to the runtime of original
unprotected PCG executions. The success rate is defined as
the portion of error injection experiments in which the PCG
solver provided a correct solution after a maximum limit of
10 ·N iterations.

We evaluate runtime overheads and success rates for dif-
ferent error rate scenarios. Typically, the timing of occurring

errors is assumed to be independent. Therefore, we determine
the error events from an exponential distribution with an
error rate λ. We define 1

λ
to be the expected number of

arithmetic operations between two consecutive error events. In
particular, the error rate λ corresponds to the probability that an
arbitrary arithmetic operation will return an erroneous result.
We consider different error rates in our experiments that range
from low to high error rates. Low error rates may correspond to
natural phenomena such as charged particle strikes that occur
a couple of times per day (i.e. λ = 1e-8). The error rate is
scaled up to λ = 1e-4 which may correspond to specially
designed hardware that trades off accuracy against power
consumption and might therefore induce multiple errors per
second [12, 13]. Error injections are performed in sparse matrix
vector multiplications according to the error model described
in Section IV-A. Errors were also injected into operations that
perform error detection.

We apply the block size bs = 32 that was determined in
Section V-A as well as the analytical rounding error bound
described in Section III-C to our method. Dense checks are
performed using the norm-based error bound (cf. Section
V-B). The partial recomputation approach utilizes the error
localization steps that were also utilized for the evaluation of
the SpMV itself (cf. Section V). The checkpointing approach

0.0

0.2

0.4

0.6

0.8

1.0

F
1
-S

c
o
re

0.0

0.2

0.4

0.6

0.8

1.0

F
1
-S

c
o
re

0.0

0.2

0.4

0.6

0.8

1.0

F
1
-S

c
o
re

This Work Dense Check

E
rr

o
r

S
ig

n
if

ic
a
n
c
e

≥1
e
-
8

E
rr

o
r

S
ig

n
if

ic
a
n
c
e

≥
1
e
-
1
0

E
rr

o
r

S
ig

n
if

ic
a
n
c
e

≥
1
e
-
1
2

Fig. 7: Comparison of error coverage (F1-Score) between our approach and dense checks.

relies on dense checks to detect errors. This approach samples
the application state periodically and writes it to a ECC-
protected memory after every 20 iterations of the solver.

A. The Preconditioned Conjugate Gradient Solver

The Preconditioned Conjugate Gradient method
(PCG)[19] is commonly used to solve linear systems
Ax = b, when the underlying matrix A is symmetric and
positive-definite. Beginning with the approximation x0,
PCG computes new approximations (x1, x2, x3, ...) for every
successive iteration k. Each successive iteration of PCG
provides an improved approximation xk with respect to
the exact solution x. PCG composes the solution x as a
linear combination of search directions p0, p1, p2, ..., pN and
x = x0 +

∑

k≤N
αkpk. Iterations are performed until the

approximation error falls below a predefined threshold ǫ,
which corresponds to the comparison between the euclidean
norm of the residual rk and ǫ (i.e. ‖rk‖ = rT

k
rk < ǫ).

The time complexity of PCG depends on both the size
and the condition number of the matrix A [19]. A suitable
preconditioner M is able to diminish the condition number
of the matrix A, which improves the rate of convergence.

The Jacobi-Preconditioner was applied for preconditioning
[19] in the experiments. In addition to these results, we
conducted experiments with other preconditioners such as

SSOR and Incomplete Cholesky [19]. The results do not show
significant differences. For all experiments, a random vector
was generated for the initial guess x0, If the right-hand side b
was not available for a matrix, then a random solution x was
generated. Using x, the right-hand side b was computed with
Ax = b. We set the the error tolerance ǫ in our experiments
to 10−6 as proposed in [30].

B. Runtime Overhead

The runtime overhead is obtained by comparing the run-
time of protected PCG executions for a given error rate λ to
the runtime of original unprotected PCG executions:

Runtime overhead =
Runtime for protected PCG

Runtime for unprotected PCG
− 1

For this evaluation, only runtimes of PCG executions were
considered that provided a correct result. Figure 8 shows the
average runtime overhead for all evaluated matrices under error
rates ranging from λ = 1e-8 to λ = 1e-12. For low error rates
λ = 1e-8, the runtime overhead of our method is 39.8%. The
runtime overhead for the partial recomputation approach [30]
is 58.4% and the runtime overhead for checkpointing is 62.9%.
In [30], the reported overhead for the partial recomputation
approach is roughly 55% under low error rates. This small
difference (i.e. 3.4%) between the reported results can be

explained by the different systems setups, i.e. many-core GPU
system versus multi-core HPC system. For low error rates
λ = 1e-8, our method reduces the average runtime overhead by
31.7% compared to the partial recomputation approach [30]
and by 36.7% compared to the checkpointing approach.

When the error rate is increased from λ=1e-8 to λ=1e-6,
the average runtime overhead of our method increases by only
0.6%. At the same time, the runtime overhead for the partial
recomputation approach increases by 6.7% and by 4.3% for
the checkpointing approach.

For high error rates, i.e. λ=1e-4, the runtime overhead of
our method is 52.3%. At the same time, the runtime overhead
for the partial recomputation approach is 87.4%, while the
average runtime overhead for checkpointing is 162.9%. For
such high error rates, our method reduces the average runtime
overhead by 40.1% with respect to the partial recomputation
approach [30] and by 67.6% with respect to the checkpointing
approach. While the error rate is increased by four orders
of magnitude, i.e. from 1e-8 to 1e-4, the average runtime
overhead induced by our method only increases by 31.3%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1E-08 1E-07 1E-06 1E-05 1E-04

S
u
c
c
e
s
s
fu

l
P
C

G
 e

x
e
c
u
t
io

n
s

Error Rate

This Work Dense Check+Partial Recomputation Checkpointing

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1E-08 1E-07 1E-06 1E-05 1E-04

R
u
n
t
im

e
 O

v
e
r
h
e
a
d

Error Rate

This Work Dense Check+Partial Recomputation Checkpointing

Fig. 8: Runtime overhead under different error rates compared
to unprotected PCG execution.

C. Error Coverage

We evaluate the error coverage by identifying the success
rates for the different fault tolerance techniques. As mentioned
above, we define the success rate by the portion of error
injection experiments in which PCG converged to a correct
result within 10 ·N iterations. Figure 9 shows the portion of
successful PCG executions for different error rates λ ranging
from λ=1e-8 to λ=1e-6. Under low error rates (i.e. λ = 1e-
8), all considered methods achieve roughly 100% success
rates. With increasing error rates, the number of successful
PCG executions decreases. For the error scenario λ = 1e-8,
our method achieves a success rate of 88.4%. The partial
recomputation approach achieves a success rate of 84.8%
while the checkpointing approach achieves 81.3%. Differences
between the different methods significantly increase for higher
error rates. For the error scenario λ = 1e-4, our method
achieves a success rate of 55.5%. Compared to the partial
recomputation and checkpointing approaches, the success rate
is improved by 1.61x and 3.6x respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1E-08 1E-07 1E-06 1E-05 1E-04

S
u
c
c
e
s
s
fu

l
P
C

G
 e

x
e
c
u
t
io

n
s

Error Rate

This Work Dense Check+Partial Recomputation Checkpointing

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1E-08 1E-07 1E-06 1E-05 1E-04

R
u
n
t
im

e
 O

v
e
r
h
e
a
d

Error Rate

This Work Dense Check+Partial Recomputation Checkpointing

Fig. 9: Successful PCG executions under different error rates.

VII. CONCLUSION

In this work, we presented a fault tolerance approach for
sparse matrix operations that allows the efficient algorithmic
detection and correction of erroneous application outputs.
Instead of only detecting errors, our approach instruments
error detection steps to provide error locations. This enables
partial recomputations just for erroneous results directly after
error detection. Therefore, both expensive error localization
steps as well as repeating entire recomputations are avoided.
Existing algorithm-based fault tolerance approaches for sparse
matrix operations often rely on expensive error localization
steps. General checkpointing techniques restart the application
from periodically saved states to correct errors. However, such
techniques can induce large recovery cost for high error rates.

We evaluated our approach for sparse matrix-vector mul-
tiplications (SpMV) and for iterative linear solvers which use
SpMV as an internal subroutine. While the runtime overhead
to provide fault tolerance for SpMV is on average reduced by
43.8%, the error coverage is on average improved by 52.2%
compared to related work approaches that apply dense checks
to detect errors. The runtime overhead scales very well with
increasing problem sizes.

In a case study, we evaluated our approach for the Pre-
conditioned Conjugate Gradient Solver (PCG). For low error
rates, our method reduces the average runtime overhead to
provide fault tolerance for PCG by 31.7% compared to related
algorithmic detection and correction approaches and by 36.7%
compared to checkpointing. Under high error rates, experi-
mental results show an average reduction in runtime overhead
for fault tolerance of 40.1% and 67.6% respectively. At the
same time, the number of successful PCG solver runs is on
average increased by 61.6% with respect to related algorithmic
detection and correction approaches. Compared to traditional
checkpointing techniques, the average number of successful
solver executions is increased by 3.6 times. Our method scales
favorably with increasing error rates since the average runtime
overhead increases by only 31.3% while the error rate is scaled
by four orders of magnitude.

ACKNOWLEDGMENT

The authors thank the German Research Foundation (DFG) for financial
support of the project within the Cluster of Excellence in Simulation Tech-
nology (EXC 310/2) at the University of Stuttgart.

BIBLIOGRAPHY

[1] M. Orobitg et al., “High Performance Computing Improvements on
Bioinformatics consistency-based Multiple Sequence Alignment Tools”,
Parallel Computing, vol. 42, pp. 18–34, 2015.

[2] A. Schöll et al., “Adaptive Parallel Simulation of a Two-Timescale-
Model for Apoptotic Receptor-Clustering on GPUs”, in Proc. of the
IEEE Intl. Conference on Bioinformatics and Biomedicine (BIBM’14),
Belfast, UK, Nov. 2014, pp. 424–432.

[3] E. Schneider et al., “GPU-Accelerated Small Delay Fault Simulation”,
in Proc. of the ACM/IEEE Conference on Design, Automation Test in
Europe (DATE’15), Grenoble, France, Mar. 2015, pp. 1174–1179.

[4] C. Braun et al., “Acceleration of Monte-Carlo Molecular Simulations
on Hybrid Computing Architectures”, in IEEE Intl. Conference on
Computer Design (ICCD), Montreal, Canada, Oct. 2012, pp. 207–212.

[5] D. A. Reed and J. Dongarra, “Exascale Computing and Big Data”,
Communications of the ACM, vol. 58, no. 7, pp. 56–68, Jul. 2015.

[6] E. Nurvitadhi, A. Mishra, and D. Marr, “A Sparse Matrix Vector Multiply
Accelerator for Support Vector Machine”, in Proc. Intl. Conference
on Compilers, Architecture and Synthesis for Embedded Systems, ser.
CASES ’15, Amsterdam, The Netherlands, Oct. 2015, pp. 109–116.

[7] I. Haque and V. Pande, “Hard Data on Soft Errors: A Large-Scale
Assessment of Real-World Error Rates in GPGPU”, in Proc. of the
IEEE/ACM Intl. Conference on Cluster, Cloud and Grid Computing
(CCGrid’10), Melbourne, Australia, May 2010, pp. 691–696.

[8] “The International Technology Roadmap for Semi-
conductors 2013 Edition”. [Online]. Available:
http://www.itrs.net/Links/2013ITRS/Home2013.htm

[9] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-Cost Program-
Level Detectors for Reducing Silent Data Corruptions”, in Proc. of the
42nd IEEE/IFIP Intl. Conference on Dependable Systems and Networks
(DSN’12), Boston, MA, USA, Jun. 2012, pp. 1–12.

[10] T. Z. Islam et al., “McrEngine: A Scalable Checkpointing System using
Data-Aware Aggregation and Compression”, in Intl. Conference for High
Performance Computing, Networking, Storage and Analysis (SC’12), Salt
Lake City, UT, USA, Nov. 2012, pp. 1–11.

[11] H. Esmaeilzadeh et al., “Dark Silicon and the End of Multicore Scaling”,
IEEE Micro, no. 3, pp. 122–134, 2012.

[12] A. Sampson et al., “EnerJ: Approximate Data Types for Safe and
General Low-power Computation”, in Proc. 32nd ACM Conference on
Programming Language Design and Implementation (PLDI’11), San
Jose, CA, USA, Jun., pp. 164–174.

[13] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying Quantitative
Reliability for Programs That Execute on Unreliable Hardware”, in Proc.
Intl. Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’13), Indianapolis, IA, USA, Oct. 2013, pp.
33–52.

[14] M. P. R. Suraana and N. Thoutam, “A Review on Evaluation of Multi-
level Checkpointing System in Distributed Environment”, Intl. Journal of
Electronics, Communication and Soft Computing Science & Engineering
(IJECSCSE), vol. 3, no. 7, pp. 25–32, 2014.

[15] R. Vemu and J. Abraham, “CEDA: Control-flow Error Detection using
Assertions”, IEEE Transactions on Computers, vol. 60, no. 9, pp. 1233–
1245, 2011.

[16] I. Smith, D. Griffiths, and L. Margetts, Programming the Finite Element
Method, 4th ed. Wiley, Oct 2013.

[17] D. Yuen et al., GPU Solutions to Multi-scale Problems in Science and
Engineering, 8th ed., ser. In Earth System Sciences. Springer, 2013.

[18] A. Peixoto de Camargos et al., “Efficient Parallel Preconditioned Conju-
gate Gradient Solver on GPU for FE Modeling of Electromagnetic Fields
in Highly Dissipative Media”, IEEE Trans. on Magnetics, vol. 50, no. 2,
pp. 569–572, Feb. 2014.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems. Siam, 2003.
[20] I. Koren and C. M. Krishna, Fault-Tolerant Systems, M. Kaufmann, Ed.

Elsevier, 2010.
[21] C. Engelmann, H. Ong, and S. L. Scott, “The Case for Modular Redun-

dancy in Large-Scale High-Performance Computing Systems”, in Proc.
8th IASTED Intl. Conference on Parallel and Distributed Computing and
Networks (PDCN’09), Innsbruck, Austria, Feb. 2009, pp. 189–194.

[22] D. Ibtesham et al., “Coarse-Grained Energy Modeling of Roll-
back/Recovery Mechanisms”, in Proc. of the 44th Annual IEEE/IFIP
Intl. Conference on Dependable Systems and Networks (DSN’14), At-
lanta, GA, USA, Jun. 2014, pp. 708–713.

[23] D. Hakkarinen and Z. Chen, “Multilevel Diskless Checkpointing”, IEEE
Transactions on Computers, vol. 62, no. 4, pp. 772–783, 2013.

[24] A. Schöll et al., “Low-Overhead Fault-Tolerance for the Preconditioned
Conjugate Gradient Solver”, in Proc. of the Intl. Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’15),
Amherst, MA, Oct. 2015, pp. 60–66.

[25] J. T. Daly, “A Higher Order Estimate of the Optimum Checkpoint
Interval for Restart Dumps”, Future Generation Computer Systems,
vol. 22, no. 3, pp. 303–312, 2006.

[26] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations”, IEEE Trans. on Computers, vol. 33, no. 6, pp. 518–
528, Jun. 1984.

[27] A. Bouteiller et al., “Algorithm-Based Fault Tolerance for Dense Matrix
Factorizations, Multiple Failures and Accuracy”, ACM Trans. Parallel
Computing, vol. 1, no. 2, pp. 10:1–10:28, Feb. 2015.

[28] C. Braun, S. Halder, and H.-J. Wunderlich, “A-ABFT: Autonomous
Algorithm-Based Fault Tolerance for Matrix Multiplications on Graphics
Processing Units”, in Proc. of The 44th IEEE/IFIP Intl. Conference on
Dependable Systems and Networks (DSN’14), Atlanta, GA, USA, Jun.
2014, pp. 443–454.

[29] G. Bronevetsky and B. de Supinski, “Soft Error Vulnerability of Iterative
Linear Algebra Methods”, in Proc. of the Intl. Conference on Supercom-
puting, Island of Kos, Greece, Nov. 2008, pp. 155–164.

[30] J. Sloan, R. Kumar, and G. Bronevetsky, “An Algorithmic Approach
to Error Localization and Partial Recomputation for Low-Overhead
Fault Tolerance”, in Proc. of the 43rd IEEE/IFIP Intl. Conference on
Dependable Systems and Networks (DSN’13), Budapest, Hungary, Jun.
2013, pp. 1–12.

[31] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Fault Tolerant
Preconditioned Conjugate Gradient for Sparse Linear System Solution”,
in Proc. of the ACM Intl. Conference on Supercomputing, Venice, Italy,
Jun. 2012, pp. 69–78.

[32] J. Sloan, R. Kumar, and G. Bronevetsky, “Algorithmic Approaches to
Low Overhead Fault Detection for Sparse Linear Algebra”, in Proc.
of the 42nd IEEE/IFIP Intl. Conference on Dependable Systems and
Networks (DSN’12), Boston, MA, USA, 2012, pp. 1–12.

[33] N. J. Higham, Accuracy and Stability of Numerical Algorithms. Siam,
1996, no. 48.

[34] Å. Björck, Numerical Methods in Matrix Computations, ser. Texts in
Applied Mathematics. Springer International Publishing, 2014.

[35] A. Roy-Chowdhury and P. Banerjee, “Tolerance Determination for
Algorithm-Based Checks Using Simplified Error Analysis Techniques”,
in Proc. of the Intl. Symposium on Fault-Tolerant Computing, Toulouse,
France, Jun. 1993, pp. 290–298.

[36] J. Rexford and N. Jha, “Partitioned Encoding Schemes for Algorithm-
Based Fault Tolerance in Massively Parallel Systems”, IEEE Trans. on
Parallel and Distributed Systems, vol. 5, no. 6, pp. 649–653, 1994.

[37] E. Gallopoulos, B. Philippe, and A. Sameh, Parallelism in Matrix
Computations, ser. Scientific Computation. Springer, 2015.

[38] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the
Impact of Soft Errors on Iterative Methods in Scientific Computing”, in
Proc. of the Intl. Conference on Supercomputing, Seattle, WA, USA,
Nov. 2011, pp. 152–161.

[39] P. Greisen et al., “Evaluation and FPGA implementation of sparse
linear solvers for video processing applications”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 23, no. 8, pp. 1402–
1407, 2013.

[40] A. Ashari et al., “Fast Sparse Matrix-Vector Multiplication on GPUs
for Graph Applications”, in The Intl. Conference for High Performance
Computing, Networking, Storage and Analysis (SC’14), New Orleans,
LA, USA, Nov. 2014, pp. 781–792.

[41] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-Flow Checking
by Software Signatures”, IEEE Trans. on Reliability, vol. 51, no. 1, pp.
111–122, Aug. 2002.

[42] K. Wilken and J. P. Shen, “Continuous Signature Monitoring: Low-
cost Concurrent Detection of Processor Control Errors”, IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, vol. 9,
no. 6, pp. 629–641, Jun. 1990.

[43] A. Sanchez-Macian, P. Reviriego, and J. A. Maestro, “Hamming SEC-
DAED and Extended Hamming SEC-DED-TAED Codes Through Selec-
tive Shortening and Bit Placement”, IEEE Transactions on Device and
Materials Reliability, vol. 14, no. 1, pp. 574–576, 2014.

[44] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection”, ACM Trans. on Mathematical Software, vol. 38, no. 1, pp.
1:1–1:25, Nov. 2011.

[45] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized Sparse Ma-
trix Multiply for Compressed Row Storage Format”, in Computational
Science, ser. Lecture Notes in Computer Science, 2005, vol. 3514, pp.
99–106.

[46] C. Van Rijsbergen, Information Retrieval. Butterworths, 1979.

