
Adaptive Multi-Layer Techniques for

Increased System Dependability

Bauer, Lars; Henkel, Jörg; Herkersdorf, Andreas; Kochte,

Michael A.; Kühn, Johannes M.; Rosenstiel, Wolfgang;

Schweizer, Thomas; Wallentowitz, Stefan; Wenzel, Volker; Wild,

Thomas; Wunderlich, Hans-Joachim; Zhang, Hongyan

it - Information Technology Vol. 57(3) 8 June 2015

doi: http://dx.doi.org/10.1515/itit-2014-1082

Abstract: Achieving system-level dependability is a demanding task. The manifold requirements and
dependability threats can no longer be statically addressed at individual abstraction layers. Instead, all
components of future multi-processor systems-on-chip (MPSoCs) have to contribute to this common goal
in an adaptive manner. In this paper we target a generic heterogeneous MPSoC that combines general
purpose processors along with dedicated application-specific hard-wired accelerators, fine-grained recon-
figurable processors, and coarse-grained reconfigurable architectures. We present different reactive and
proactive measures at the layers of the runtime system (online resource management), system architec-
ture (global communication), micro architecture (individual tiles), and gate netlist (tile-internal circuits)
to address dependability threats.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by
DE GRUYTER.

c©2015 DE GRUYTER

http://dx.doi.org/10.1515/itit-2014-1082

it 1/15

Adaptive Multi-Layer Techniques for

Increased System Dependability

Lars Bauer, Jörg Henkel, Andreas Herkersdorf, Michael A. Kochte, Johannes Maximilian Kühn, Wolfgang

Rosenstiel, Thomas Schweizer, Stefan Wallentowitz, Volker Wenzel, Thomas Wild, Hans-Joachim Wunderlich,

Hongyan Zhang

Abstract: Achieving system-level dependability is a demanding task. The manifold
requirements and dependability threats can no longer be statically addressed at individual
abstraction layers. Instead, all components of future multi-processor systems-on-chip
(MPSoCs) have to contribute to this common goal in an adaptive manner.
In this paper we target a generic heterogeneous MPSoC that combines general purpose
processors along with dedicated application-specific hard-wired accelerators, fine-grained
reconfigurable processors, and coarse-grained reconfigurable architectures. We present
different reactive and proactive measures at the layers of the runtime system (online
resource management), system architecture (global communication), micro architecture
(individual tiles), and gate netlist (tile-internal circuits) to address dependability threats.

ACM CCS: Computer systems organization → Dependable and fault-tolerant systems
and networks → Processors and memory architectures

Keywords: dependability, fault tolerance, graceful degradation, aging mitigation, online
test and error detection, thermal management, multi-core architecture, reconfigurable
architecture

1 Introduction

Achieving dependability by “building dependable sy-

stems with non-dependable components” already was a
design goal for early computer systems [1] and it is
currently pushed into new dimensions since the last de-
cade [2]. The term dependability denotes a general con-
cept comprising among others reliability, availability,
and performability (i.e. the ability of the system to gra-
cefully degrade in presence of faults) [3]. About a decade
ago, dependability became a major design constraint af-
ter the ongoing technology scaling to nano-scale CMOS
structures provided evidence that certain atomic-level
effects – some of them known and measured for a long
time – would start significantly impacting circuit func-
tionality. These dependability threats comprise aging ef-
fects, thermal density, device variability, and increased
susceptibility to soft errors. A comprehensive survey of
different reliability threats and dependability approa-
ches can be found in [4, 5].

In this paper, we target faults caused by aging effects.
Aging is a change of the physical properties of structu-

res on a chip, which leads to parametric degradations,
performance variability over time, and eventually mal-
functions [5]. Typical aging effects comprise Hot-Carrier
Injection (HCI) and Negative Bias Temperature Insta-

bility (NBTI), detailed for instance in [4]. They affect
individual transistors and typically lead to timing faults
(lower transistor switching speed) and eventually to per-
manent faults (transistor not functional any more).

Additionally, thermal effects (like very high tempera-
tures or thermal cycling) have a significant impact on
how fast the chip structures age. Therefore, achieving
high dependability is especially challenging for multi-
processor systems-on-chip (MPSoCs). Their combinati-
on of cutting edge manufacturing technology and the
resulting high integration and power density [6] exacer-
bate thermal effects and susceptibility to aging effects.

Figure 1 shows a typical heterogeneous MPSoC. Dif-
ferent components (so-called tiles) are connected via a
network on chip (NoC). Applications executed on such
architectures are typically composed of multiple tasks,
where each task may be mapped on any of the ti-
les (not all tasks might be suitable for all tile types).

it – Information Technology 57 (2015) 1 c� de Gruyter Oldenbourg 1

GPP

Legend:

Fine-Grained
Reconfigurable
Processor (FGRP)

CGRA FGRP

I/O +

Memory
GPP

GPP

I/O +

Memory
GPP

CGRA

GPP

ASIC GPP

GPP

GPP

FGRP CGRA

ASIC

GPP

I/O +
Memory

General Purpose
Processor (GPP)

Off-chip I/O and
memory connection ASIC

Application-specific
Integrated Circuit (ASIC),
e.g. for FFT, DCT

Coarse-Grained Re-
configurable Archi-
tecture (CGRA)

Network on
Chip (NoC)
Router

Runtime System / Reconfiguration Manager

Test

Manager

Accelerator
configurations

Test vectors &
signatures

...

P
ro

ce
ss

o
r

P
ip

e
li

n
e

PE

PE

PE

PE

PE

PE

PE

Processing Element

Communication Infrastructure

FGRP

Runtime reconfigurable
Containers for accelerators

register set

data / status
register-set

data / state

FU

context-

memory

FSM

CLK

Figure 1: System Overview, showing an example how GPPs, FGRPs, and CGRAs are connected via a NoC; a zoom-out of a FGRP
is shown on the right; a 2D array of processing elements (PEs) and a zoom-out of one PE is shown on the left

The MPSoC contains general purpose processors (GPP
tiles) and access to peripherals and off-chip memory
(I/O+Memory tiles). For some computationally com-
plex kernels that are known to be demanded frequently
(e.g. FFT, DCT), dedicated application-specific hard-
wired accelerators (ASICs in Figure 1) are provided. To
accelerate applications that were not targeted initial-
ly, runtime reconfigurable tiles are integrated. In parti-
cular, the MPSoC contains fine-grained reconfigurable
processors (FGRPs) and coarse-grained reconfigurable
architectures (CGRAs) [7, 8].

FGRPs are processors along with a fine-grained reconfi-
gurable fabric (like an embedded FPGA) that can be re-
configured with application-specific accelerators on de-
mand. The right half of Figure 1 shows a zoom-out of
a FGRP, where multiple runtime reconfigurable Contai-
ners are connected via a communication infrastructure
to the processor pipeline and test facilities. A runtime
system determines which accelerators are reconfigured
into which containers, depending on applications’ requi-
rements. CGRAs are tightly coupled arrays of proces-
sing elements (PEs) that can be configured to implement
application-specific accelerators (e.g. as replacement for
an ASIC tile or like an additional ASIC tile). The left
half of Figure 1 shows a 2D array of PEs (composing the
CGRA) and a zoom-out of one PE. Each PE contains
a functional unit (FU) along with a finite-state-machine
(FSM) and context memory to control its operation and
a register set to store temporary data.

To achieve dependability, all components have to contri-
bute. For instance, the individual tiles can be optimized
for dependability. But also the resource management
and inter-tile communication need to consider depen-
dability as optimization goal. The term multi-layer de-

pendability denotes concepts, where dependability is not
only treated at separate layers individually, but where
additionally the layers interact to improve system-level
dependability [9, 10, 11]. Typical layers in an MPSoC are
the runtime system (online resource management), sy-
stem architecture (global communication), micro archi-

tecture (individual tiles), and gate netlist (tile-internal
circuits). Additionally, dependability can be treated at
application layer, compiler/synthesis layer, or at physi-
cal device layer, but these layers are not in the focus of
this paper.

Certain layers may allow more or less efficient handling
of faults and in this paper we propose different reacti-

ve and proactive measures at different layers to address
them. Reactive measures are meant to handle detected
faults or errors in the MPSoC after detection. For in-
stance, the FGRP and CGRA perform online test and
online error detection of their reconfigurable fabric and
the ASIC tiles to detect errors and to monitor the sta-
tus of the hardware. Once a permanent fault was de-
tected, they react and reconfigure themselves to avoid
using the faulty resource or to replace it. Proactive mea-
sures are meant to control the MPSoC in a way that
aims at avoiding faults before they occur, or masking
resulting errors. For instance, the FGRP performs pe-
riodic online tests of all its reconfigurable resources, in-
cluding those that are temporary unused, to ensure that
the reconfigurable fabric is fault-free. Additionally, the
FGRP performs aging mitigation and stress balancing
by switching between different behaviorally equivalent
configurations. At the system layer, tasks are proactive-
ly (re-)assigned to tiles in a way that avoids thermal
hotspots before they appear. Correspondingly, commu-
nication channels are migrated in a way that makes task
migration transparent to the application.

This work is part of the DFG funded priority pro-
gram SPP 1500 “Dependable Embedded Systems”1.
The paper covers three projects related to system- and
hardware-architecture, namely VirTherm-3D (system-
level task mapping and communication) [12, 13, 14],
OTERA (FGRP) [15, 16, 17], and ARES (CGRA)
[18, 19, 20, 21]. It is part of the IT special issue on “Em-
bedded Systems”. Other papers from SPP 1500 in this
issue are: “Multi-layer software reliability for unreliable
hardware” [22] and “Application-aware Cross-Layer Re-

1
http://spp1500.itec.kit.edu/

2

…

…

VNA

CoreMemI/O

NoC

Communication-

Virtualization

VNA

CoreMemMAC

Processing-Virtualization

System-Services / Thermal Mgmt.

User Apps T1 T2 T1‘T5

3D Tiles

VNIC

Hypervisor (XEN), VT-X

OS Agent OSAgent

T3

T4
A

B

Figure 2: Thermal System Management and Communication
Virtualization

liability Analysis and Optimization” [23].

Paper structure: Proactive and reactive measures for
system-layer, FGRP, and CGRAs are presented in Sec-
tions 2 to 4, respectively. The feasibility of the concepts
at the different layers is presented in the respective sec-
tions, and conclusions are drawn in Section 5.

2 Reliability at the system level

One critical dependability issue is thermal stress. Such
stress can lead to transient faults in the short term or
to accelerated aging in the long term. Thermal challen-
ges worsen with the inception of 3D-integrated circuits,
since the ratio of energy per surface area significantly
increases. In the following we will discuss methods to
tackle this issue on system level, either proactively by
avoiding thermal hotspots or reactively on error occur-
rence [24, 25].

2.1 Proactive system level management: Agent
system and communication virtualization

We propose to avoid thermal hotspots proactively
through thermal management. The goal is to assign
tasks to processing resources depending on their esti-
mated impact on power dissipation and the actual mo-
nitored heat. If one part of the system is estimated to
become too hot in the near future, then new tasks are
started in other regions of the system or existing tasks
are re-assigned at runtime.

We target platforms for applications with mixed critica-
lity. The platforms have to cope different real-time de-
mands and each application consists of a varying number
of tasks as sketched in Figure 2. The tasks communica-
te explicitly via channels, such as in Kahn Process Net-
works or other data flow-oriented programming models.

Agent systems are a promising approach for the sy-
stem management of future manycore platforms due
to their superior scalability [12]. Our proposed hierar-
chical agent-based thermal management system initia-
tes proactive task migration onto cooler processing re-
sources. Every processing element is managed by one

agent and these negotiate for power and tasks in a de-
centralized manner. The negotiation is inspired by a
market-based economy.

The scope of our proposed system management goes
beyond the avoidance and mitigation of thermal hots-
pots. Various aging effects also contribute to faults and
must therefore be considered. Aging models are usual-
ly formulated on a very low level, e.g. transistor level,
and need to be abstracted to be able to derive useful
information, e.g. mean time to failure (MTTF), at the
system level. We have done that and propose agents that
mitigate aging at run time by keeping track of an aging
budget and balancing the stress between different com-
ponents at the microarchitecture to prevent premature
failure of the system.

While dependable task migration is one important
aspect, we identified the migration of the communica-
tion channels as an important performance and depen-
dability factor. This involves both the communication
to the outside world (see [13]) and inter-task communi-
cation (see [14]).

For our proposed communication migration we divided
the migration into three phases: pre-migration, switcho-
ver and post-migration. While the switchover is a syn-
chronization point between the task migration and com-
munication migration, we propose to handle the commu-
nication migration separately from the task migration
and transparently to the application.

This method is known as protection switching in the
context of communication networks [26] and we propo-
se to adapt this technique to on-chip communication to
keep the downtime during task migration low and reduce
the effects of the migration on the real-time behavior of
the system. Instead of stopping the communication du-
ring all three phases, we instead forward messages from
the old to the new task location or send the messages to
both destinations during migration.

This communication migration actually reduces the
peak latencies added by migration. Nevertheless we
found that a pure software implementation creates ad-
ditional stress on the processing elements, so that in the
next steps we will integrate this in the communication
hardware structure.

2.2 Reactive system level management: online
testing and error detection

For many components, monitoring their utilization or al-
locating dedicated hardware to improve reliability is not
economically feasible or sensible due to their low criti-
cality. Instead, existing components in a MPSoC such
as CGRAs can be used to periodically check such com-
ponents and migrate their functionality once errors oc-
curred. CGRAs realize functionality on a coarse, word-
level granularity and thus achieve greater energy effi-
ciency for most word-level accelerator functionality as
for example FPGAs. With only as little information as

3

the component functionality, error free operation can
be ascertained through online testing or error detecti-
on. To monitor components such as accelerator ASICs
(cf. Figure 1) in an MPSoC, an online testing and error
detection scheme has been developed to be used with
a hardened CGRA [18]. The nomenclature used in this
part is based on Gao et al. [27]. Both online testing
and error detection are executed in a round robin time-
multiplexed fashion. For online testing, input samples of
the monitored components are recomputed on a shared,
triple modular redundancy (TMR) secured CGRA. For
online error detection, error detection is executed on the
CGRA. Sharing the CGRA allows significant resource
savings opposed to dedicated testing or error detection
hardware.

The same test inputs are provided to the monitored
component and the CGRA. If their results differ, it is
assumed that an error occurred in the monitored com-
ponent, as the CGRA is more reliable [19]. To do online
checking or testing on the CGRA, it is reconfigured to
implement the component’s functionality or error detec-
tion algorithm. As typical for CGRAs, functionality can
be mapped spatially and temporally. This means that
individual operations that implement the functionality
can be mapped to distinct PEs of the CGRA (spati-
al), or some operations can be mapped to the same PE
(temporal) by using fast runtime reconfiguration (each
PE can switch between multiple configuration contexts),
or a combination of both. Thus, if the functionality does
not fit spatially or if its implementation should occupy
less PEs, then it can be mapped into the temporal do-
main. Thereby, throughput is traded for area, i.e. its im-
plementation uses less resources, but requires more time
steps to complete. This is expressed by the slow-down
factor s. For instance, s = 2 means that area require-
ments are cut by half at the cost of typically increased
execution time. For each of these online checks or tests, a
time slot TTW [s] is allocated. From each of these TTW ,
a reconfiguration overhead TOV [s] is subtracted. If an
error occurred, it is detectable with probability q which
may require several iterations of the check or test. Thus,
for a certain fault in a component, we expect a specific
temporal behavior, i.e. detection latency DL, probabi-
listic behavior, and confidence δ with which DL can be
guaranteed. The spatial CGRA utilization can be redu-
ced through s until the specified detection latency and
confidence is just met.

Figure 3 depicts DL with δ error bars for four com-
ponents sharing the CGRA running at 100MHz with
slow-down factors ranging from 2 to 16. In this experi-
ment each component is assigned a TTW from 1ms to
1.55ms and TOV of 1ms. The occurred error is detec-
table with a probability of q = 10−5. DL and δ steeply
decrease with increasing TTW . If more checks or tests
can be conducted in a TTW , the likelihood of detecting
an error in the latter increases, reducing both DL and δ.
If an error occurred, it can be ignored, noted or the af-

Time window size T
TW

 [s] ×10
-3

1 1.1 1.2 1.3 1.4 1.5 1.6

D
e
te

c
ti
o
n
 L

a
te

n
c
y
 [
s
]

0

0.5

1

1.5
DL Comparison for different CGRA slow-down factors s

s=2
s=8
s=16

Figure 3: Online testing: Detection Latencies (DL) for various
s, and TTW with TOV = 1ms at 100MHz CGRA frequency

fected functionality can be migrated to another instance
of the component type or the CGRA.

3 Reliability at the level of fine-grained

reconfigurable processors

Aging in fine-grained reconfigurable fabrics can be mit-
igated by balancing the stress induced by accelerators
over the available resources. First approaches executed
a simple schedule of two accelerator configurations that
use different logic resources of the fabric [28].

If the degradation due to aging progresses, intermittent
and permanent faults may result. In fine-grained recon-
figurable fabrics, these faults can be efficiently detected
by online test and localized by online diagnosis [29] be-
cause of the highly regular structure of the fabric. In
tile-based architectures supporting graceful degradati-
on, the tile diagnosed faulty is not used for functional
configurations any more [30].

To address aging-induced faults in fine-grained reconfi-
gurable fabrics (the ‘runtime reconfigurable Containers’
in the FGRPs in Figure 1) and to increase system de-
pendability, we employ a novel combined approach that
comprises pro-active online tests at gate level and reac-

tive architecture-level adaptation.

The online test methods consist of structural and func-
tional tests of the fine-grained reconfigurable fabric befo-
re and after reconfiguration to detect emergent faults in
cores as early as possible. In addition, the tests validate
the error-free completion of the reconfiguration process.
Periodic and on-demand functional tests are also con-
ducted during normal system operation.

When a fault is detected and diagnosed, the architec-
ture-level adaptation reacts accordingly. For instance, it
avoids using the faulty region, triggers further tests of
the region where the fault occurred (scheduled to execu-
te during normal system operation), or it aims to use the
partially faulty Container by reconfiguring those accele-
rator configurations to it that do not require the faulty
parts for operation. This allows graceful degradation of
the system with minimal performance impact.

4

Altogether, this combination of online testing and archi-
tecture-level adaptation allows for the first time reliable

runtime reconfiguration, which is the foundation for sy-
stem adaptation in FGRPs.

The dependability improvements in lifetime and relia-
bility are achieved at very low hardware and perfor-
mance cost by (i) evaluating online knowledge obtained
from the runtime system and testing, (ii) flexible system
adaptation (determining the accelerator configurations
and dynamically rescheduling test runs and accelerator
reconfigurations), (iii) utilizing partially faulty regions,
and (iv) efficiently utilizing the combined infrastructure
for test, runtime system, and application operation.

3.1 Proactive online tests

Two online test methods are combined to achieve relia-
ble reconfiguration and high system dependability [15].

The Pre-Reconfiguration Test (PRET) checks for per-
manent faults in the fine-grained reconfigurable fabric
by structurally testing regions of the fabric (called Con-

tainers, see Figure 1). The structural tests are partitio-
ned in a set of test configurations, whereas each test con-
figuration targets specific resources of the fabric, such
as Lookup-Tables, Carry-Chains, or sequential elements.
The hardware overhead for the generation and analysis
of test patterns and responses is negligible. The test ac-
cess and data transport is performed by reusing the exi-
sting communication infrastructure for Containers (cf.
Figure 1). The test configurations for a Container are
independent of each other and can be scheduled by the
runtime system analog to functional configurations.

The Post-Reconfiguration Test (PORT) performs a
functional test of the configured accelerators. The ap-
plied test stimuli are deterministically generated and
application specific, i.e. they examine only the structu-
res used by the respective accelerator. The sequence of
applied stimuli can be partitioned into disjunct subsets
of stimuli as long as the test response of each subset is
independent of the accelerator’s sequential state. These
subsets are then scheduled by the runtime system. The
communication infrastructure for Containers is used for
test access and test data transport.

To ensure reliable reconfiguration of the hardware ac-
celerators with minimal impact on performance, PRET
and PORT have been tightly integrated into the run-
time system and configuration scheduler. PRET tests
exhaustively for structural faults in the fabric prior to
the configuration of the desired hardware accelerator.
After the configuration, PORT is applied periodically
to test for faults in the Container interfaces and er-
rors in its configuration bits that might have occurred
after the configuration process. Periodic application of
PRET and PORT by the runtime system provides dif-
ferent user-selectable trade-offs between fault detection
latency and performance impact [15]. For instance, at
a desired test latency of 3.8 seconds, only a marginal

performance impact of at most 4.4% is induced. Once a
fault is detected, it can be efficiently located by online
diagnosis because of the regular structure of the fabric.

3.2 Reactive adaption for graceful degradation

Module Diversification [16] is a novel design method that
enables fault tolerance to permanent and intermittent
faults and to mitigate aging. For each hardware accele-
rator, multiple diversified configurations, which differ in
their CLB usage, are created such that any single and a
subset of multiple CLB faults in the containers can be
tolerated by using an alternative accelerator configura-
tion with identical function.

After a fault is detected in a Container, diagnosis will
be performed on the faulty Container to determine the
location of the fault(s). Knowledge about the required
resources of the accelerator configurations and the spe-
cifically generated diversified configurations allow grace-
ful system degradation in presence of single and multiple
faults in the fabric: After selecting the accelerators to be
configured, the runtime system selects and determines
the placement of the respective diversified configurati-
ons. The configurations that do not require the faulty
parts of the Container can still be configured into par-
tially faulty Containers. In this way, the system perfor-
mance is preserved.

3.3 Proactive stress mitigation

The diversified configurations exhibit different stress dis-
tributions among CLBs. This stress diversity is exploi-
ted to balance the stress among CLBs by optimally
scheduling the operation time of each configuration [16].
Thus, stress is not concentrated on individual CLBs, and
CLB aging is mitigated to increase lifetime.

0 7
CLBX

0 7
CLBX

0

1e7

2e7

3e7

4e7

5e7

6e7

7e7

0 7
CLBX

0

5

10

15

20

C
L
B

Y

0 7
CLBX

a) b) c) d) e)

0 7
CLBX

avg. toggle rate per transistor in used CLBs [Hz] high
stress

low
stress

Figure 4: Switching activities of a), b) 2 max. diversified con-
figurations, c) an alternating schedule thereof, d) a balanced
scheduled with 4 configurations and e) 8 configurations [16]

The stress distributions in the CLBs of an accelerator
using different configurations are shown in Figure 4. Fi-
gure 4a shows the switching activity, i.e. Hot-Carrier
Injection (HCI) stress, in the CLBs used in the configu-
ration without module diversification, with red values

5

for higher and blue values for lower activity, respective-
ly. Figure 4b shows the switching activity for another
configuration which is maximally diversified [16] w.r.t.
a). Although configuration a) and b) use many different
CLBs, there is still significant overlap between them. If
both configurations are scheduled in a simple alterna-
ting manner, i.e. 50% time with configuration a) and
50% time with configuration b), the stress is not well
balanced and the maximum stress is hardly reduced at
all, as shown in Figure 4c. Figure 4d illustrates the signi-
ficant reduction of the stress maxima when using four
configurations and the optimal scheduling for stress ba-
lancing. With eight configurations the maxima can be
reduced even further as shown in Figure 4e.

4 Reliability at the level of coarse-grained

reconfigurable processors

CGRAs already contain many structures that allow rea-
lizing the paradigm shift towards high reliability embed-
ded systems: reconfigurable, interchangeable and red-
undant components, a communication network, paral-
lelism, and the tools to use this kind of architecture.
However, current work focused only on using CGRAs as
hardware accelerators. In our work, we widen the focus
on using CGRAs as a reliability enhancer and exploit
CGRAs’ flexibility of fast reconfiguration to realize se-
veral functions in a single component:

• The CGRA can be used as a hardware accelerator until
failures occur; that is, the reliability enhancing hard-
ware is used from the very beginning, albeit for diffe-
rent purposes.

•When failures occur within other components, the
CGRA is partially remapped, softly transitioning from
hardware accelerator to full component replacement.

•When failures occur within the CGRA, the conse-
quences are limited: we turn off individual failing PEs
and remap their functionality within the CGRA.

• As the CGRA can dynamically take over virtually any
functionality, it allows MPSoCs that can tolerate the
failure of an initially unknown subset of their com-
ponents.

• Instead of hardening every MPSoC component for in-
creased reliability, we concentrate the hardening ef-
forts onto few components that dynamically take over
faulted functionality (cf. Section 2.2). This keeps the
overall hardware overhead for the reliability small.

• Having a reliable CGRA, we also use it to monitor the
functionality of other components.

4.1 Low-cost TMR

A common strategy to achieve fault tolerance is to in-
troduce redundant logic by duplication with comparison
(DWC) or by triple modular redundancy (TMR). The

disadvantage of redundant hardware is its high hardwa-
re overhead and power consumption. To overcome these
limitations we developed a strategy that exploits the
built-in redundancy of CGRAs, utilizes spare FUs of a
PE, and takes advantage of the fast reconfiguration me-
chanism of CGRAs to implement low-cost TMR.

We started by designing a flexible error handling mo-
dule (FEHM). The FEHM monitors data to detect and
mask permanent, transient and timing faults. Based on
the FEHM we developed our low-cost TMR strategy
[20] for CGRAs. Traditional TMR allows error detec-
tion and error masking. This can be implemented by
adding two FUs and an FEHM to a Standard PE. In
our FEHM PE-Cluster approach, TMR is realized by
combining the FUs of three PEs in a fault tolerant da-
ta path instead of adding FUs to PEs. When FEHM is
enabled, the FUs of the FEHM PE-Cluster form a sin-
gle unit. However, when FEHM is disabled, each PE can
also operate independent of the others. Our approach of
an FEHM PE-Cluster is only viable if for each used FU
two spare FUs are present. That means the ratio of spare
FUs to used FUs, the redundancy ratio, must be equal
or greater than two for each context. If, in the case of the
FEHM PE-Cluster, the redundancy ratio is too small to
find a valid TMR mapping for each context, we insert
additional contexts by means of runtime reconfiguration
to increase the number of spare FUs.

4.2 Dynamic remapping

One of the results of the FEHM implementation is to
extend the capabilities of the CGRA to detect and to
signal defects in PEs. The main goal of dynamic remap-
ping is the development and evaluation of methods that
– based on these signals – move (remap) functionality of
defective PEs to unused, non-defective PEs and thereby
allowing graceful degradation.

Since data paths are mapped to the CGRA within spa-
tial and temporal domain, PEs are likely to be reused by
different parts of the mapped data path. This has to be
accounted for by updating all data paths that make use
of the deactivated PE resources, a process referred to as
remapping. To achieve this goal we have implemented a
remapping flow that is based on our CGRA compiler.

The first task in our remapping flow [21] is the Archi-
tecture Correction. The system keeps an internal repre-
sentation of the architecture and in case of a failure this
representation is corrected such that it represents the
current state of the architecture. Depending on the fai-
lure resources are removed from this representation. It is
possible to remove a defective FU (FU-failure), defecti-
ve register set (reg-failure), or, in case of other defective
PE components, the entire PE (PE-failure).

Recompiling the entire application would be too time
intensive. Therefore, we limit the remapping process to
the PEs neighboring the defective PE. This is perfor-
med by the Subgraph Extraction stage. In the Schedu-

6

0 2% 4% 6% 8% 10%
0

0.2

0.4

0.6

0.8

1

0 2% 4% 6% 8% 10%
0

0.2

0.4

0.6

0.8

1

0 2% 4% 6% 8% 10%
0

0.2

0.4

0.6

0.8

1

Figure 5: Probability histograms for the performance impact
after remapping depending on the defective resource.

ling and Place & Route stages the actual mapping of the
extracted application sub-graph is performed. Because
the corrected architecture subgraph is targeted in this
stage, the mapping process does not make use of any de-
fective resource. Resources that were not needed in the
previous mappings are now allocated in order to replace
the defective components. The alternative mapping can
potentially change the delay of the critical path. Based
on a delay table the remapping process can estimate the
new timing and, if necessary, the clock frequency is de-
creased accordingly in the Frequency Adaption stage.
Finally, in the Configuration Generator stage the confi-
guration data of the new mapping are generated. These
data replace parts of the original configuration data in
the system memory.

After integrating the remapping flow into our testing en-
vironment we performed experiments targeting a CGRA
with 64 PEs and 8 contexts. The recovery from all possi-
ble single resource failures was evaluated. For instance,
we mapped various signal processing algorithms (FIR
filter, FFT, DCT and Raycasting) that on average re-
quired 87% of available registers, 74% of the FUs and
44% of the routing resources. Of course, the usage varies
for each region in the PE array and hence, the complexi-
ty of the remapping problem strongly depends on which
PE and what PE-component fails. For each FU, regi-
ster, or entire PE of the array, a failure was simulated
and the remapping engine activated to find a new valid
mapping. Remapping might change the delay of some
routings in such a way that the critical path changes.
Figure 5 depict the probability that the performance is
affected by a certain percentage. In most cases the per-
formance is not affected at all. With a relatively small
probability it is decreased by up to 10%.

5 Conclusion

In this paper we presented reactive and proactive measu-
res at different layers to address dependability threats
for future heterogeneous MPSoCs that combine gene-
ral purpose processors along with dedicated application-
specific hard-wired accelerators, fine-grained reconfigu-
rable processors, and coarse-grained reconfigurable ar-
chitectures. In particular, we focused on the layers of

the runtime system, system architecture, micro archi-
tecture, and gate netlist.

By combining techniques of thermal-aware task map-
ping, communication virtualization, online testing, error
detection, diversified accelerator configurations, and ad-
aptive fault tolerance at these layers, we achieved stress
mitigation and graceful degradation w.r.t. aging and
permanent faults, which altogether improves system de-
pendability.

Acknowledgement

This work is supported in parts by the German Research
Foundation (DFG) as part of the priority program “Depen-
dable Embedded Systems” (SPP 1500 – http://spp1500.
itec.kit.edu).

Literature

[1] J. von Neumann, Probabilistic logics and synthesis of re-
liable organisms from unreliable components, Automata
Studies, pp. 43–98, 1956.

[2] S. Borkar, Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation, IEEE Micro, 25(6):10–16, 2005.

[3] A. Avizienis, J.-C. Laprie, B. Randell et al., Basic con-
cepts and taxonomy of dependable and secure computing,
IEEE Transactions on Dependable and Secure Compu-
ting, 1(1):11–33, 2004.

[4] J. Henkel, L. Bauer, N. Dutt et al., Reliable on-chip sy-
stems in the nano-era: lessons learnt and future trends ,
Design Automation Conference (DAC), 2013.

[5] J. Henkel, L. Bauer, J. Becker et al., Design and archi-
tectures for dependable embedded systems, IEEE Interna-
tional Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pp. 365–374, 2011.

[6] D. J. Frank, R. H. Dennard, E. Nowak et al., Device sca-
ling limits of Si MOSFETs and their application depen-
dencies, Proceedings of the IEEE, 89(3):259–288, 2001.

[7] H. P. Huynh and T. Mitra, Runtime adaptive extensible
embedded processors – a survey , International Workshop
on Embedded Computer Systems: Architectures, Mode-
ling, and Simulation (SAMOS), pp. 215–225, 2009.

[8] H. Amano, A survey on dynamically reconfigurable
processors, IEICE Transactions on Communications,
89(12):3179–3187, 2006.

[9] A. DeHon, H. Quinn, and N. Carter, Vision for cross-
layer optimization to address the dual challenges of ener-
gy and reliability , Conference on Design, Automation
and Test in Europe (DATE), pp. 1017–1022, 2010.

[10] N. P. Carter, H. Naeimi, and D. S. Gardner, Design tech-
niques for cross-layer resilience, Conf. on Design, Au-
tom. and Test in Europe (DATE), pp. 1023–1028, 2010.

[11] J. Henkel, L. Bauer, H. Zhang et al., Multi-layer depen-
dability: From microarchitecture to application level , IE-
EE/ACM Design Automation Conference (DAC), 2014.

[12] T. Ebi, D. Kramer, W. Karl et al., Economic learning
for thermal-aware power budgeting in many-core archi-
tectures, Int’l Conf. on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pp. 189–196, 2011.

[13] H. Rauchfuss, T. Wild, and A. Herkersdorf, Enhanced
reliability in tiled manycore architectures through trans-
parent task relocation, Workshop on Dependability and
Fault-Tolerance (VERFE) at ARCS, pp. 263–274, 2012.

[14] S. Wallentowitz, V. Wenzel, S. Rösch et al., Dependa-
ble task and communication migration in tiled manycore
system-on-chip, Forum on Spec. and Design Lang., 2014.

7

[15] L. Bauer, C. Braun, M. E. Imhof et al., Test strategies for
reliable runtime reconfigurable architectures , IEEE Tran-
sactions on Computers (TC), 62(8):1494–1507, 2013.

[16] H. Zhang, L. Bauer, M. A. Kochte et al., Module diversi-
fication: Fault tolerance and aging mitigation for runti-
me reconfigurable architectures, IEEE International Test
Conference (ITC), pp. 1–10, 2013.

[17] H. Zhang, M. A. Kochte, M. E. Imhof et al., GUARD:
Guaranteed reliability in dynamically reconfigurable sy-
stems, Design Automation Conference (DAC), 2014.

[18] J. M. Kühn, S. Eisenhardt, T. Schweizer et al., Improving
system reliability using dynamic functional verification
on CGRAs, Int’l Workshop on Highly-Efficient Accele-
rators and Reconfigurable Technologies (HEART), 2012.

[19] T. Schweizer, P. Schlicker, S. Eisenhardt et al., Low-cost
TMR for fault-tolerance on coarse-grained reconfigurable
architectures, Int’l Conference on Reconfigurable Com-
puting and FPGAs (ReConFig), pp. 135–140, 2011.

[20] T. Schweizer, A. Küster, S. Eisenhardt et al., Using run-
time reconfiguration to implement fault-tolerant coarse
grained reconfigurable architectures, Int’l Parallel and
Distrib. Processing Symp. Workshop (IPDPSW), 2012.

[21] S. Eisenhardt, A. Küster, T. Schweizer et al., Spatial and
temporal data path remapping for fault-tolerant coarse-
grained reconfigurable architectures, IEEE International
Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2011.

[22] M. Shafique, P. Axer, C. Borchert et al., Multi-layer soft-
ware reliability for unreliable hardware, it - Information
Technology, submitted, 2015.

[23] M. Glaß, H. Aliee, L. Chen et al., Application-aware
cross-layer reliability analysis and optimization, it - In-
formation Technology, submitted, 2015.

[24] H. Amrouch, V. van Santen, T. Ebi et al., Towards inter-
dependencies of aging mechanisms, Int’l Conference on
Computer-Aided Design (ICCAD), pp. 478–485, 2014.

[25] V. Narayanan and Y. Xie, Reliability concerns in embed-
ded system designs, Computer, 39(1):118–120, 2006.

[26] J.-P. Vasseur, M. Pickavet, and P. Demeester, Net-
work Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS, Elsevier, 2004.

[27] M. Gao, H.-M. Chang, P. Lisherness et al., Time-
multiplexed online checking , IEEE Transactions on Com-
puters (TC), 60(9):1300–1312, 2011.

[28] S. Srinivasan, R. Krishnan, P. Mangalagiri et al., To-
ward increasing FPGA lifetime, IEEE Transactions on
Dependable and Secure Computing, 5(2):115–127, 2008.

[29] D. Milton, S. Dhingra, and C. E. Stroud, Embedded pro-
cessor based built-in self-test and diagnosis of logic and
memory resources in FPGAs, Int’l Conf. on Embedded
Systems and Applications (ESA), pp. 87–93, 2006.

[30] A. Kanamaru, H. Kawai, Y. Yamaguchi et al., Tile-
based fault tolerant approach using partial reconfigura-
tion, International Workshop on Reconfigurable Com-
puting (ARC), pp. 293–299, 2009.

Dr. Lars Bauer received the Dipl.-Inform and Dr.-Ing degrees
from the University of Karlsruhe, Germany, in 2004 and 2009, re-
spectively. He is currently a research assistant, lecturer, and group
leader at the Karlsruhe Institute of Technology.

Address: Karlsruhe Institute of Technology (KIT), Chair for Em-
bedded Systems (CES), E-Mail: lars.bauer@kit.edu

Prof. Dr. Jörg Henkel is directing the Chair for Embedded
Systems (CES) at the KIT, Germany. He is an initiator and the
spokesperson of the national priority program “Dependable Em-
bedded Systems” of the German Science Foundation.

Address: Karlsruhe Institute of Technology (KIT), Chair for Em-
bedded Systems (CES), E-Mail: henkel@kit.edu

Prof. Dr. Andreas Herkersdorf is head of the Institute for
Integrated Systems at Technische Universität München. He is co-
initiator of the national priority program “Dependable Embedded
Systems” of the German Science Foundation.

Address: Technische Universität München, Institute for Integrated
Systems, E-Mail: herkersdorf@tum.de

Dr. Michael A. Kochte received a Dr. rer. nat. (Ph.D.) degree
from the University of Stuttgart in 2014. He is currently a resear-
cher at the same university.

Address: Institut für Technische Informatik (ITI), Universität
Stuttgart, E-Mail: kochte@iti.uni-stuttgart.de

Johannes Maximilian Kühn received his Dipl.-Inform. degree
at the Eberhard Karls Universität Tübingen in 2012 and is since
then a doctoral candidate under the guidance of Prof. Wolfgang
Rosenstiel and Prof. Hideharu Amano (Keio University, Japan).

Address: Department of Computer Engineering, University of
Tübingen, E-Mail: johannes-maximilian.kuehn@uni-tuebingen.de

Prof. Dr. Wolfgang Rosenstiel received his Ph.D. in 1984
from Karlsruhe University. Since 1990, he is Professor (Chair for
Computer Engineering) at the Wilhelm-Schickard-Institute for In-
formatics at the University of Tübingen and serves currently as
Dean of the Faculty of Science.

Address: Department of Computer Engineering, University of
Tübingen, E-Mail: wolfgang.rosenstiel@uni-tuebingen.de

Dr. Thomas Schweizer received a Dr. rer. nat. (Ph.D.) degree
from the University of Tübingen in 2010. He is currently a rese-
archer at the same university.

Address: Department of Computer Engineering, University of
Tübingen, E-Mail: thomas.schweizer@uni-tuebingen.de

Stefan Wallentowitz is a doctoral candidate working on efficient
manycore inter-task communication.

Address: Technische Universität München, Institute for Integrated
Systems, E-Mail: stefan.wallentowitz@tum.de

Volker Wenzel received a Diploma in Physics from the Univer-
sity of Mainz in 2013. He is currently a research assistant at the
Karlsruhe Institute of Technology (KIT)

Address: Karlsruhe Institute of Technology (KIT), Chair for Em-
bedded Systems (CES), E-Mail: volker.wenzel@kit.edu

Dr. Thomas Wild is member of the permanent scientific staff
at the Institute for Integrated Systems of TU München. He works
there on multi-/many-core architectures and their exploration on
system level.

Address: Technische Universität München, Institute for Integrated
Systems, E-Mail: thomas.wild@tum.de

Prof. Dr. Hans-Joachim Wunderlich is Director of the Insti-
tut für Technische Informatik (ITI), Universität Stuttgart. He has
authored and co-authored more than 200 publications in the area
of test, reliability, and fault tolerance.

Address: Institut für Technische Informatik (ITI), Universität
Stuttgart, E-Mail: wu@informatik.uni-stuttgart.de

Hongyan Zhang received the M.Sc. in Electrical Engineering
and Information Technologies from the Karlsruhe Institute of
Technology in 2011. He is currently a research assistant at the
same university.

Address: Karlsruhe Institute of Technology (KIT), Chair for Em-
bedded Systems (CES), E-Mail: hongyan.zhang@kit.edu

8

