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Abstract—Aging effects in nano-scale CMOS circuits im-
pair the reliability and Mean Time to Failure (MTTF) of
embedded systems. Especially for FPGAs that are manufac-
tured in the latest technology node, aging is a major concern.

We introduce the first cross-layer aging-aware placement
method for accelerators in FPGA-based runtime reconfig-
urable architectures. It optimizes stress distribution by ac-
celerator placement at runtime, i.e. to which reconfigurable
region an accelerator shall be reconfigured. Additionally, it
optimizes logic placement at synthesis time to diversify the
resource usage of individual accelerators, i.e. which CLBs of
a reconfigurable region shall be used by an accelerator. Both
layers together balance the intra- and inter-region stress
induced by the application workload at negligible perfor-
mance cost. Experimental results show significant reduction
of maximum stress of up to 64% and 35%, which leads to
up to 177% and 14% MTTF improvement relative to state-
of-the-art methods w.r.t. HCI and BTI aging, respectively.

I. Introduction and Related Work

Runtime reconfigurable architectures enable dynamic adap-
tation to changing workloads, which allows to optimize area,
performance and power [1]. They consist of a general purpose
processor core and a reconfigurable fabric that is implemented
as an SRAM-based field programmable gate array (FPGA) to
allow fast runtime reconfiguration. The reconfigurable fabric
of the system is divided into multiple rectangular regions
into which hardware accelerators can be reconfigured during
runtime. Fig. 1 shows an example of a reconfigurable fabric
with 8 regions that are composed of an array of configurable
logic blocks (CLBs) with interconnects. Each CLB consists of
several look-up-tables (LUTs) that can be programmed with a
configuration to implement a desired logic function. Complex
applications typically utilize multiple reconfigurable regions
and multiple different accelerators for different computations.
For instance, video encoding can be expedited by using accel-
erators for motion estimation, transformations, filters, entropy
coding etc. Whenever switching from one computational kernel
to another (e.g. from motion estimation to transformations),
some or all regions may be reconfigured with different acceler-
ators for the next kernel.

FPGAs are implemented in the latest technology node (e.g.
20nm/16nm for Xilinx’ recent/announced UltraScale family)
and FPGA-based reconfigurable regions suffer from degradation
due to aging [2, 3]. This paper focuses on FPGA aging,
as in reconfigurable architectures most of the application’s
computations are offloaded to the reconfigurable regions. The
manifestations of aging can range from increased transistor
switching delay up to severe permanent defects that cause
a transistor or interconnect wire to fail entirely. Different
types of aging mechanisms have been reported for the cur-
rent generation of CMOS designs, e.g. Negative/positive biased
temperature instability (NBTI/PBTI), time-dependent dielec-

tric breakdown (TDDB), hot carrier injection (HCI) or elec-
tromigration (EM) [4]. The main causes of these effects are
environmental and electrical stress. Stress can be induced in
different ways, e.g. through the presence of strong electrical
fields or high current density [2, 5]. Due to the increasing
susceptibility of current CMOS technology nodes, these effects
cannot be ignored anymore [6] and their consideration has
become essential for dependable designs.

Aging mitigation by wear-leveling in FPGA-based runtime
reconfigurable architectures can be achieved by using alterna-
tive logic mappings in CLBs, using spare resources in the fabric,
and changing placements of accelerators [7]. In [8], a combined
process variation and NBTI-aware placement algorithm is pro-
posed. While the authors suggest that the logic placement and
configuration bitstream generation could be recomputed during
runtime, for most embedded systems such a computation would
cause too much overhead.

Since typically not all CLBs in a region are actively used
by an accelerator configuration [5], it is possible to prepare
alternative placements and to reconfigure between them to
distribute stress. The CLBs that are unused in a particular
configuration can be configured to minimize stress [7]. This
reduces the maximum stress in the resources and increases
the system’s Mean Time to Failure (MTTF), as demonstrated
in [5, 9, 10]. However, [5, 9] target systems without runtime
reconfiguration. They create alternative configurations for the
entire FPGA, i.e. placing one accelerator anywhere on the
FPGA. Zhang et al. [10] consider runtime reconfiguration with
multiple regions and accelerators. For each accelerator they
create multiple alternative configurations independently, i.e.
without considering other accelerators. As their optimization is
performed at synthesis time, they cannot consider dynamically
changing workload at runtime. With regard to place-and-route
during synthesis, the method of [10] is the current state-of-the-
art approach and we will compare with it in the evaluation.

The online placement of accelerators proposed in [11] ex-
tends the KAMER placement algorithm [12] by considering the
maximum stress in the regions. The accumulated stress of the
resources in the candidate region are stored in a degradation
table. The algorithm performs a local optimization that consid-
ers the accelerators one after the other. With regard to runtime
accelerator placement, the method of [11] is the current state-of-
the-art approach and we will compare with it in the evaluation
to show the advantages of our cross-layer placement.

This paper proposes STRAP, a novel cross-layer place-
ment method to reduce the maximum stress by aging mit-
igation. For the first time, it combines complex offline op-
timizations at the synthesis layer with situation-dependent
adaptation at the runtime layer to optimize the intra- and
inter-region stress distribution simultaneously. At the runtime
layer, STRAP proposes an algorithm that places accelerators
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Fig. 1: Transistor stress distribution in a reconfigurable fabric with
8 regions; each region consists of 4×20 CLBs with 8 LUTs each
(same setup as for evaluation); the color of a CLB corresponds to
the highest toggle rate of any of its transistors; the symbol ◮ on
the right scale denotes the maximum stress over all regions

to different reconfigurable regions (i.e. it decides to which
region they shall be reconfigured) while considering the induced
intra- and inter-region stress distribution simultaneously. At the
synthesis layer, STRAP proposes an algorithm that diversifies
stress during place-and-route by preventing overlapping of high
stress CLBs from different accelerators, which further improves
the intra-region stress distribution at runtime. For prototyping
purposes, we have integrated STRAP into the Xilinx tool-chain
and the runtime system of a reconfigurable processor.

Paper structure: Section II presents the system overview.
Section III provides background information on stress modeling
and representation. Sections IV and V explain the details of our
accelerator placement and logic placement, respectively. Results
are discussed in Section VI.

II. Overview of our STRAP method

The MTTF of a system is constrained by the component
with the highest stress [5]. In order to prolong the MTTF of
a reconfigurable fabric, we need to reduce its peak stress and
avoid stress accumulation. Fig. 1 shows a typical reconfigurable
fabric with 8 reconfigurable regions and 4×20 CLBs per region.
The figure visualizes the distribution of HCI stress after running
an H.264 video encoder. Higher HCI stress corresponds to more
toggles per second of a transistor (stress and aging background
is explained in Section III). For each CLB, the highest toggle
rate of any transistor is identified and plotted in a color-scale
from 0 (low stress, bright gray) to 20 million toggles per second
(high stress, dark red). It is noticeable that several CLBs are
not used, e.g. most parts of region 5 and some parts of regions 3
and 4, whereas some CLBs in region 1 contain transistors that
are highly stressed. The latter represent stress hotspots where
high stress accumulates in some of the components of the fabric,
hence reducing the MTTF of the system.

Our goal is to place accelerators such that the maximal
stress is minimized. Our method considers stress at the granu-
larity of CLBs, whereas our evaluation in Section VI considers
stress at transistor granularity. If the stress from a stress
hotspot can be distribute to less stressed CLBs like in regions
3–5 in Fig. 2, then the maximum stress in the reconfigurable
regions is reduced, leading to increased MTTF [5].

Fig. 2 provides an overview of our cross-layer placement
method STRAP, showing the synthesis layer, the runtime layer,
and how they interact with the hardware architecture of a
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Fig. 2: Overview of our cross-layer stress-aware placement method

reconfigurable system. For logic placement at synthesis time,
the challenge is to place-and-route accelerators in a way that
supports stress balancing at runtime, but without having run-
time information. STRAP first performs an offline application
profiling of each application kernel to obtain estimates on (i)
how often accelerators will be executed relative to each other
and (ii) how long each accelerator executes to finish its task.
This information is used to steer runtime accelerator placement
(Section IV) and synthesis time logic placement (Section V).

Based on the accelerator configuration after place-and-
route, the stress estimation process in Fig. 2 analyzes the signal
activities in all CLBs used by the accelerator to obtain the
information how much stress it induces to a reconfigurable
region. Accelerator execution and stress profiles are stored
together with the accelerator bitstreams in main memory for
runtime decision making.

At runtime, STRAP decides into which reconfigurable re-
gion an accelerator shall be reconfigured, whenever the appli-
cation demands different accelerators. It performs online moni-
toring of each region to track when the region was reconfigured
last and how often the currently-reconfigured accelerator was
executed. Whenever a region is reconfigured, the execution
counter and reconfiguration timestamp is read and reset. To-
gether with the accelerator stress profile created at synthesis
time, STRAP then calculates the exact stress state for all
CLBs of the region. This information is used to decide the
runtime accelerator placement (details in Section IV). Note that
with the feature of partial reconfiguration provided by FPGA
vendors, reconfigurable regions are spatially isolated from each
other, i.e. the reconfiguration of one region does not affect the
resource usage (and thus stress) of any other region. The size
of the regions are chosen such that accelerators can be fitted
into any region.

III. Stress and Aging Background

Before describing the details of our cross-layer stress-aware
placement method in Sections IV and V, we clarify basics about
aging, explain the assumptions we make for our method, and
how we represent stress.

A. Basic Stress Properties
Aside from material constants, aging mainly depends on

three non-material factors: supply voltage, temperature, and
transistor activities. For the algorithms in our proposed method
we use a simplification that focuses on the aging effects induced
by transistor activities. That is a reasonable approximation as
reconfigurable accelerators are typically operated in a static
voltage domain (i.e. no dynamic voltage scaling) and do not
show high temperature variation (they are often optimized for
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Fig. 3: Threshold voltage increases over time due to HCI under
different toggling rates

data-level parallelism and thus run at rather low frequency [13]
with correspondingly low power density [14, 15]). However, for
the evaluation we use a more accurate model that also considers
the influence of temperature more detailed as described in the
experimental setup in Section VI-A.

The term stress is defined as the condition under which a
transistor is experiencing electrical and physical degradations.
An example for such a degradation is the threshold voltage
shift ∆Vth, which may eventually cause a failure of the circuit.
Different aging mechanisms exist that lead to threshold voltage
shift. For instance, Fig. 3 shows the threshold voltage increase
due to HCI that depends on the transistor toggling rate. We
define the Mean Time to Failure (MTTF) of a transistor as
the time until its threshold voltage exceeds a certain critical
value. Reducing the threshold voltage shift by reducing the
stress increases the MTTF.

In the following, we distinguish two types of stress in
nano-scale CMOS circuits: static stress and dynamic stress. A
transistor is under static stress when an electric field is exerted
across its gate oxide to induce a conducting channel. Static
stress is characterized by the stress duty cycle, i.e. the fraction
of operation time that a transistor is conducting. Reducing
the stress time stressstat also reduces the stress duty cycle,
which leads to an increase of the transistor’s MTTF. Instead, a
transistor is under dynamic stress when current flows between
its source and drain. Dynamic stress is characterized by the
toggling rate, i.e. the ratio of number of toggles and total
operating time. Reducing the number of toggles stressdyn also
reduces the toggling rate, which leads to an increase of the
transistor’s MTTF. Static stress leads to aging effects like BTI,
while dynamic stress leads to aging effects like HCI.

There are different models for these aging effects, e.g.
[2, 4, 5, 16, 17], and they all indicate that in the long term the
transistor degradation monotonically increases with stressstat

or stressdyn for static or dynamic stress, respectively.
For instance, ∆Vth(stressstat1) > ∆Vth(stressstat2) when
stressstat1 > stressstat2 under the same supply voltage and
temperature [16, 17]. In other words, the aging effects are
reduced when stressstat or stressdyn is reduced.

In addition, stressdyn is generally considered as additive.
For instance, the dynamic stress of two different workloads
corresponds to the number of toggles that these workloads
impose on a transistor. Intuitively, the combined dynamic
stress is the sum of these toggles, which is proportional to
the amount of charge transported between drain and source
[17, 18]. In general, the total stress experienced by a transis-

tor under different workloads (stressdyn(work1 + work2)) is
the sum of stress experienced under the individual workloads
(stressdyn(work1) + stressdyn(work2)). In the long term, this
argument also holds for stressstat. Actually, BTI aging may ex-
perience a recovery effect, but that requires complex conditions
or long relaxation periods [3] and will thus hardly affect the
additive property.

The monotonic and additive properties of stressstat and
stressdyn allow a simplified consideration of CLB stress during
decision making (cf. Sections IV and V) rather than evaluating
complex aging models at runtime. However, even though stress
is additive, the resulting degradation (∆Vth) is not necessarily
so. While our proposed STRAP method exploits the monotonic
and additive property during decision making, we use state-of-
the-art aging models for evaluation and their details are given
in Section VI-A and Appendix A. As STRAP applies to both
types of stress, we will refer to “stress” when we do not need to
explicitly differentiate between static and dynamic stress. Note
that STRAP optimizes either for dynamic or for static stress.

B. Stress Representation
The transistors of a reconfigurable region are stressed by

the reconfigured accelerator in a way that is determined by its
logic functionality and input signal patterns. As the number
of transistors in a region may be huge, we combine the stress
experienced by individual transistors to CLB granularity for
our cross-layer placement method. We define CLB stress as
the sum of the stress experienced by all its transistors. With
this definition, CLB stress preserves the additive property of
transistor stress, i.e. the total stress a CLB experienced from
different accelerators is the sum of the induced stress from
individual accelerators.

Runtime reconfigurable architectures can execute different
applications. Each of them can use different accelerators that
use different CLBs to implement their timing-critical path. As
any reconfigurable region can be reconfigured to implement
any of these accelerators, it is not possible to identify upfront
which CLBs are more important than others w.r.t. protection
against aging. Therefore, our method treats all CLBs in the
reconfigurable fabric equally important.

With the established stress properties, we are able to
describe the stress in the reconfigurable fabric in a formal way.
The stress state of a reconfigurable region (as it is visualized
in Fig. 1) is denoted as matrix S, where each entry represents
the stress experienced by the corresponding CLB in the region.
The stress that a particular accelerator induces per clock cycle
is obtained from offline stress estimation and called unit stress,
denoted by matrix U of the same size as S. In general, the
stress increase due to the work done by an accelerator is shown
in Eq. (1), where scalars τexec and τidle denote the number of
clock cycles when the accelerator is in execution or idle, while
matrices Uexec and Uidle denote the unit stress induced by the
accelerator during execution or idle time:

s := τexecUexec + τidleUidle. (1)

During idle, we assume all inputs to the accelerator are hold at
constant values, e.g. all zeros. In this case, the accelerator ex-
hibits a different stress pattern from when it is being executed.

To obtain the unit stress of an accelerator, the placed-and-
routed configuration and its input signal activities (toggle rate
and average duty cycle) are fed to a power analyzer1 that

1we used Xilinx XPower



computes the signal activity of every wire in the accelerator.
The wires are then matched to the CLB inputs to obtain
the input signal activities of every LUT in the CLBs used
by the accelerator. We employ a transistor-level LUT model
[2, 19] to calculate the toggle rate and stress duty cycle of
individual transistors by propagating the LUT input signal
activity through the LUT model.

During synthesis time, the values for τexec and τidle are
obtained from application profiling to construct the stress
matrices (Eq. (1)) for every accelerator. They are used by the
stress-diversifying logic placement and the runtime system. The
runtime system uses them to determine how much stress an
accelerator would induce to a region before actually placing
it. It also uses online monitoring information (cf. Section II)
that provides the actual number of accelerator executions and
idle times for each region after a computational kernel finished
execution. This allows to keep track of the actual stress that
a region experienced, which is the starting point for the next
placement decision.

IV. Runtime Accelerator Placement

The reconfigurable fabric consists of N equally sized rectan-
gular regions. During runtime, the application requests to con-
figure M (M ≤ N) accelerators to speed up its computational
kernels. The runtime system has to decide to which regions the
M accelerators shall be configured. For M < N application-
requested accelerators, the runtime system first decides which
N −M regions shall not be reconfigured, e.g. by using a least
recently used replacement policy. The decision to which of the
remaining regions an accelerator is placed does not affect the
application performance.

Each region contains X ×Y CLBs with an (x, y) coordinate
relative to the top-leftmost CLB in the region. The stress
experienced so far by the CLBs in region k is denoted as [Sk]xy

(with 1≤k ≤N, 1≤x≤X, 1≤y ≤Y ). Similarly, the stress that
will be induced by an accelerator j (1 ≤ j ≤ M) is denoted as
[sj]xy (cf. Eq. (1)). It depends on how often the accelerator will
be executed, as determined by offline profiling (cf. Section II).
If an accelerator j is placed into region k, then the accelerator
executions increase the stress state of the region to S′

k = Sk+sj.
The task is to place each accelerator to a region, such that

upon completion of the application kernel the maximum CLB
stress over the N regions is minimized, i.e. maxk,x,y[S′

k]xy is
minimized. It can be easily seen that the strict lower bound of
the maximum CLB stress is

1

NXY

(

N
∑

k

Sk +

M
∑

j

sj

)

, (2)

which is reached if and only if the stress is uniformly distributed
over all CLBs. Therefore, to minimize the maximum CLB
stress in the reconfigurable fabric, the CLB stress from the
accelerators that are to be placed needs to be distributed evenly.
To achieve this at runtime, we propose a heuristic that follows
these two rules: 1) maximal utilization of under-stressed CLBs
within one region, i.e. the stress shall be evenly distributed
among different CLBs within the region (intra-region distribu-
tion), and 2) avoid placing high-stress accelerators into highly
stressed regions, i.e. the stress shall be evenly distributed among
different regions (inter-region distribution). We define the profit
function of placing accelerator j into region k as

Profitjk = Profitintra
jk + Profitinter

jk , (3)

where Profitintra
jk and Profitinter

jk represent the profit from the
stress distribution within one region and across all regions,
respectively:
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∣

∣
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∣

∣
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∣
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with Λ=
1

N

∑

k,x,y

[Sk]xy and Λ′ =
1

N

(

∑

k,x,y

[Sk]xy +
∑

j,x,y

[sj]xy

)

.

The two summation operations in the intra-region profit func-
tion (Eq. (4)) express the sum of the CLB stress deviation
from the average stress value before and after placing accel-
erator j into region k, respectively. A larger sum of deviation
implies that more CLBs are over- or under-stressed. This profit
function thus describes the improvement of stress distribution
within region k after placing accelerator j into it. In a similar
manner, the inter-region profit function in Eq. (5) describes the
deviation from perfect even stress distribution evaluated at the
level of reconfigurable regions, i.e. the deviation of the total
stress in a region from the average total stress per region.

Our stress-aware runtime accelerator placement (Alg. 1)
iterates through all required accelerators (Lines 2 to 17). In each
iteration, it calculates the profits of placing the accelerator into
all available regions (Lines 5 to 14) and places the accelerator
into the region that provides the highest profit (Line 15). The
complexity of this algorithm is O(M2XY ). If the application
decides to keep an accelerator configuration for a longer time
(i.e. to not reconfigure it), then the stress may not be dis-
tributed evenly to all regions. The region where this accelerator
resides would be constantly stressed by one accelerator without
stress redistribution. This happens if an accelerator delivers
high speedup and is frequently required by the application.
As a solution, our runtime accelerator placement forces that
region to be reconfigured after a user-defined time period.
This time period should not be too short to prevent increased

Algorithm 1 Stress-aware runtime accelerator placement

Input: List of accelerators Acc and list of regions Reg that shall
be reconfigured

1. occupied := array of length len(Reg) initialized to zeros
2. for j := 1 to len(Acc) do

3. max profit := −∞
4. selected reg := null

5. for k := 1 to len(Reg) do

6. if occupied[k] == 1 then

7. continue

8. end if

9. profit := CalcProfit(Acc[j], Reg[k]) // Eq. (3)
10. if profit > max profit then

11. max profit := profit

12. selected reg := k

13. end if

14. end for

15. Place accelerator j into region selected reg

16. occupied[selected reg] := 1

17. end for
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reconfiguration overhead, while also not too long to avoid stress
accumulation. For instance, a time period of 100 million cycles
(1 s at 100 MHz) is short enough to avoid aging accumulation
and the induced application performance degradation is only
0.21%.

V. Synthesis time Logic Placement

Fig. 4 shows that dynamic stress is uniformly distributed
over all reconfigurable regions when employing our runtime
accelerator placement from Section IV, compared to the stress-
unaware placement in Fig. 1. The maximal transistor toggle rate
is reduced by more than 73% from 18.8 to 5.0 million toggles/s.
However, when high stress CLBs of different accelerators over-
lap at the same relative (x, y) location, the runtime accelerator
placement cannot achieve intra-region stress distribution, as
noticeable in the upper-middle part of all reconfigurable regions
in Fig. 4. STRAP addresses this problem by applying placement
constraints at synthesis time to diversify the CLB usage among
different accelerators, which reduces the overlapping of high
stress CLBs. To minimize the timing impact on accelerators,
the mapping of logic functions to CLBs is left to the vendor
place-and-route algorithm. Instead we only constrain which
CLBs shall be used to place-and-route an accelerator without
additional constraints on logic mapping or routing.

Our logic placement algorithm (Alg. 2) diversifies the high
stress CLBs of different accelerators to different (x, y) CLB
locations in the reconfigurable regions. First, unconstrained
configurations of all accelerators are generated (Lines 1 to 5).
For each accelerator configuration the CLB stress is estimated
(see Section III-B), and the maximal achievable frequency is
extracted from the place-and-route log files (Lines 3 and 4). The
generated initial configurations are then sorted in ascending
order of their maximal achievable frequencies (Line 6). The
reconfigurable fabric typically runs at the frequency of the
slowest accelerator fmin. In order to minimize the impact on
system performance, it is placed and routed without stress-
diversifying placement constraints. Its CLB stress distribution
is taken as the initial reference distribution (Line 7). As long as
the proposed logic placement does not reduce the frequency
of an accelerator below fmin, there is no performance im-
pact/penalty for the whole system. During the generation of
other accelerator configurations, R keeps track of the sum of the
stress distribution of all j−1 previously generated accelerators,
i.e. R =

∑j−1

i=1
si.

The remaining accelerators will be placed-and-routed again
in ascending order of their maximal frequencies (Lines 8 to 23).

Algorithm 2 Stress-diversifying logic placement

Input: List of accelerators Acc.
1. for j := 1 to len(Acc) do

2. Place-and-route Acc[j] without any placement constraints
3. sj := get stress(Acc[j])

4. Acc[j].max freq := get max freq(Acc[j])

5. end for

6. Acc := sort ascending(Acc, key=max freq)

7. R := s1

8. for j := 2 to len(Acc) do

9. prohibit xy := ∅
10. for x := 1 to Acc[j].n cols do

11. for y := 1 to Acc[j].n rows do

12. if Condition Eq. (6) is satisfied for (x,y) then

13. prohibit xy.add((x,y))
14. end if

15. end for

16. end for

17. Place-and-route Acc[j] with prohibited CLB locations
listed in prohibit xy

18. if Place-and-route failed then

19. prohibit xy.remove(argminxy∈prohibit xy[R̂ + ŝj]xy)

20. goto Line 17

21. end if

22. R := R + get stress(Acc[j])

23. end for

To avoid that high stress CLBs of the currently placed accelera-
tor Acc[j] overlap with those in previously placed accelerators
Acc[1],. . .,Acc[j-1], we prohibit the placement to specific
CLB locations for Acc[j] (Lines 9 to 17), identified by their
(x, y) coordinates, if the following condition is satisfied:

[

R̂
]

xy
>

1

Lj

∑

uv

[̂sj]uv (6)

with R̂ =
1

maxuv [R]
uv

R and ŝj =
1

maxuv[sj]uv

sj

where Lj is the number of used CLBs by the currently place-
and-routed accelerator Acc[j]. R̂ and ŝj are normalized stress
matrices of R and sj. In earlier iterations, the reference distri-
bution is less even, which implies that few CLB locations in the
reference distribution have much higher values than the others,
and therefore it is less likely that the condition (Eq. (6)) is
satisfied. In turn, fewer locations are prohibited for placement
in earlier iterations, which implies less timing impact on slower
accelerators. If place-and-route fails due to too many prohibited
CLB locations, the locations xy where the stress overlapping
[R̂ + ŝj]xy is lowest are removed from prohibit xy (Line 19),
and place-and-route is re-executed with the relaxed constraints.

With synthesis time stress diversification, high stress CLBs
from different accelerators are placed to different CLB loca-
tions, and thus better intra-region stress distribution can be
achieved during runtime placement. As shown in Fig. 5, after
applying both stress-aware runtime placement and synthesis
time stress diversification for dynamic stress, the maximal
transistor toggle rate is further reduced by additional 44% from
5.0 to 2.8 million toggles/s.

VI. Experimental Evaluation

A. Experimental Setup
The presented method is evaluated in a reconfigurable

architecture implemented on a Xilinx Virtex-5 LX110T FPGA.
Each region consists of 4×20 CLBs with eight 6-input LUTs per
CLB. Our method performs optimizations on CLB granularity.
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Fig. 5: Transistor stress distribution using both stress-aware run-
time accelerator placement and synthesis time stress diversification

To evaluate the actual stress for each transistor, we use a
transistor-level model of LUTs that is based on [2, 19] using
NMOS pass transistors for multiplexers. To evaluate the thresh-
old voltage shift due to stress, state-of-the-art aging models are
employed (detailed equations and used parameters are given in
Appendix A). A complex H.264 video encoder that uses nine
distinct accelerators (first column in Table II) was chosen as
target application since video and image processing are typical
applications for reconfigurable architectures [1]. The resource
usage of each accelerator within one region ranges from 8.8% to
66.3%. A SystemC-based cycle-accurate architectural simulator
is used to evaluate the STRAP method for systems that differ
in the number of reconfigurable regions and runtime strategies,
and to compare it with related work. It accurately models
the hardware implementation of the reconfigurable architecture
including the bus arbitration in the reconfigurable fabric, the
duration of reconfiguration, and the application behavior. Alg. 1
is integrated into the simulator and Alg. 2 is implemented as a
script that generates the placement constraints and automati-
cally calls the Xilinx place-and-route tools.

The experimental evaluation flow is shown in Fig. 6. The
placed-and-routed accelerators are fed to Xilinx XPower an-
alyzer to obtain the signal activities and power consumption
of logic elements and nets. The power consumption is then
aggregated to CLB granularity by summing up the power con-
sumed by LUTs and their fan-in nets in one CLB. The leakage
power of a region is proportional to its size. Architectural
simulation produces the accelerator execution trace, i.e. the
complete execution and idle history of each accelerator in each
region. Together with the power profile of each accelerator, we
obtain the power trace of each CLB. The power trace and the
fabric floorplan of the FPGA (based on a die image acquired
from chipworks.com) is then fed into Hotspot2 [20] to obtain the
temperature trace of each CLB, which will be used to evaluate
the threshold voltage shift. The accelerator execution trace and
the LUT signal activities of each accelerator are combined to
calculate the LUT signal activities for the regions. This is then
used to evaluate the stress of individual transistors by using the
LUT transistor model [2, 19].

We vary the number of regions from 5 to 12 and perform
separate evaluation of the proposed method for dynamic and
static stress mitigation. The baseline system does not use any
stress distribution method. For comparison, we implemented
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Fig. 6: Experimental flow to evaluate the transistor stress and
threshold voltage shift

two state-of-the-art stress distribution methods [10, 11]. Zhang
et al. [10] use three different configurations for each accelerator
and switch between them to migrate stress, whereas Angermeier
et al. [11] consider the peak stress of regions to place an
accelerator (cf. Section I). As proposed for STRAP, we extended
[10, 11] to replace an accelerator if its reconfigurable region has
not been reconfigured for 100 million cycles (see Section IV).
This improvement reduces the peak stress of [10, 11] and thus
makes the comparison with state-of-the-art more competitive.
Regarding temperature variation, we perform a conservative
comparison. To calculate the threshold voltage shift for [10, 11]
we use the lowest temperature that was observed for any CLB
at any time in the obtained temperature trace as constant
temperature for all CLBs, while we use the highest observed
temperature for STRAP. Thus, the threshold voltage shift
reported for [10, 11] is a lower limit, whereas the one for STRAP
is a conservative upper limit.

B. Results

Fig. 7 shows the maximal (lighter color) and average (darker
color; arithmetic mean) dynamic transistor stress, measured
in million toggles/s, in the whole reconfigurable fabric for
systems with different number of regions. Similarly, Fig. 8 shows
the static transistor stress measured in normalized stress time
(stress duty cycle), i.e. the fraction of operation time the tran-
sistor is under static stress. The figures show that all methods
reduce the average stress compared to the baseline because
they all distribute the stress to more transistors. While the
reduction of the average stress is similar for all three methods,
the reduction of the maximal stress (i.e. the critical part for
system mean time to failure/MTTF) differs significantly. The
reason is that Angermeier et al. [11] perform only runtime inter-
region stress distribution, while Zhang et al. [10] perform only
synthesis time intra-region stress distribution for individual
accelerators. In contrast, STRAP performs cross-layer stress-
aware placement at runtime and synthesis time, which leads to
the highest reduction of maximal stress in all evaluated cases.
The reduction of the maximum stress by STRAP in Fig. 7 and 8
is up to 64% and 35% higher than the closest competitors w.r.t.
dynamic and static stress, respectively. Table I summarizes the
stress reduction shown in Fig. 7 and 8.

We calculate the MTTF improvement by assuming that a
device fails when ∆Vth of any transistor exceeds 50% of its
original value (Vth0). The MTTF improvement due to dynamic
and static stress reduction is shown in the last two columns in
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Table I. With the STRAP method, the MTTF improvement
relative to the baseline is 413% and 13% in average for HCI
and BTI aging, respectively. Relative to the closest competitors,
STRAP achieves up to 177% and 14% MTTF improvement
w.r.t. HCI and BTI aging, respectively.

Fig. 9 analyzes the detailed per-transistor stress (static and
dynamic) of a system with 8 reconfigurable regions. It compares
STRAP that optimizes for static stress or dynamic stress
against the baseline. Each point represents the stress value of
one transistor in the reconfigurable fabric. Points closer to the
lower-left corner denote less dynamic and less static stress. The
horizontal and vertical lines represent the upper boundary for
dynamic stress and static stress in all three cases. Although
during optimization only one type of stress is considered,
actually both types of stress are reduced simultaneously. With
STRAP targeting the static stress distribution, we observe a
reduction of 52% in dynamic and 38% in static stress. When
targeting dynamic stress, STRAP delivers 82% reduction in
dynamic stress and 21% reduction in static stress. The reason
behind the reduction of both stress types is that STRAP
implicitly distributes the transistor usage as well, which reduces
the individual static and dynamic transistor stress.

STRAP’s stress-diversifying logic placement at synthesis
time may affect the accelerator frequency. The timing impact
of the placement constraints is shown in Table II. The place-
and-route tool is given a target frequency of 250 MHz as timing
constraint to obtain the maximum operating frequency of each
accelerator. On average, the maximum accelerator frequency
decreases by 7%. Since accelerators with longer critical path
(lower maximum frequency) are imposed with fewer constraints
(see Section V), their maximum frequencies are less affected.

TABLE I: Reduction of avg./max. stress and MTTF increase of
STRAP and state-of-the-art [10, 11] compared to the baseline;
averaged over all numbers of reconfigurable regions

Strategy
Reduction of Reduction of MTTF
avg. stress[%] max. stress[%] improvement[%]

dyn. stat. dyn. stat. HCI BTI

Angermeier [11] 60.6 47.4 61.2 0.02 157.7 0.0
Zhang [10] 62.6 49.6 39.9 4.5 66.4 2.3
Our STRAP 67.9 59.6 80.5 33.1 413.0 13.4

TABLE II: Change in maximum frequency of accelerators

Accelerator Original [MHz] STRAP [MHz] Worstcase ∆ [%]

Clip3 133 122–130 8.2
CollapseAdd 158 158–158 0.0
LF BS4 121 115–120 5.0
LF Cond 146 132–140 9.6
PointFilter 89 89 0.0
QuadSub 257 232–257 9.7
SADrow 4 100 96–96 4.0
SAV 139 120–138 13.7
Transform 167 145–166 13.2

System freq. 89 89 0.0
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Fig. 9: Transistor stress for different STRAP optimization goals

The maximum system frequency is however limited by the
accelerator with the longest critical path, i.e. PointFilter, which
runs at fmin = 89 MHz (cf. Section V). Therefore, STRAP has
no negative timing impact on the whole system.

For the evaluated systems, the worst-case overhead of the
runtime accelerator placement algorithm ranges from 1.2 ms
for 5 regions to 6 ms for 12 regions on a SPARC V8 LEON3
processor running at 100 MHz.

VII. Conclusions

The dependable operation of runtime reconfigurable ar-
chitectures is threatened by aging. This paper presented the
novel cross-layer stress-aware placement method STRAP, which
for the first time combines 1) stress-aware runtime placement
of accelerators, and 2) stress-diversifying logic placement at
synthesis time. STRAP mitigates aging by balancing stress
both within a reconfigurable region as well as across all recon-
figurable regions in the system. Compared to state-of-the-art
methods, STRAP significantly reduces the maximum dynamic
and static stress by up to 64% and 35% with negligible impact
on application performance, respectively. As a result, STRAP



achieves up to 177% and 14% MTTF improvement relative to
the closest competitors w.r.t. HCI and BTI aging, respectively.
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Appendix

A. Details of the aging model
We employed state-of-the-art physics-based aging models

for BTI and HCI effects to evaluate the threshold voltage shift
depending on stress, temperature and time. The BTI aging
model is adopted from [17, 21]:

∆Vth =
q

Cox

(∆NIT + ∆NET + ∆NOT ) (7)

∆NIT = A(VGS − Vth0 − ∆Vth)ΓIT e
−

EAIT
kT d

1

6 t
1

6

with d =
Λ

1 +
√

1−Λ

2

∆NET = B(VGS − Vth0 − ∆Vth)ΓET e
−

EAET
kT Λ

∆NOT = C(1 − e
−( t

n )βOT

)Λ

with n = η(VGS − Vth0 − ∆Vth)
ΓOT
βOT e

EAOT
kT βOT

where T denotes temperature, t operating time and Λ stress
duty cycle. A, B, C are fitting parameters depending on
the manufacturing process [21]. Device dependent parameters
such as Cox and Vth0 are extracted from the PTM 22-nm
HKMG model [22]. The supply voltage is 1.0 V. All other model
parameters are as in [21].

The HCI aging model is adopted from [17, 18, 23]:

∆Vth =
q

Cox

D

(

t
rQDS

W
e

−
φit

qλEm

)

1

2

(8)

where t denotes operating time, r the toggling rate, and QDS

the amount of charges flowing through the channel during one
toggle calculated using PTM 22-nm HKMG model [22]. φit and
Em are extracted from [23]. λ is temperature dependent and is
calculated based on [24]. W is assumed to be the same as the
transistor channel length. D is a fitting parameter depending
on the transistor geometry and manufacturing process [17].


